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A B S T R A C T 
 

The excessive reliance on conventional fossil fuel-based resources poses a 
significant threat to our environment. To mitigate this impact, it has become 
increasingly crucial to increase the integration of intermittent and non-
polluting energy sources into our electrical grids. However, while this higher 
penetration rate brings benefits such as improved producer satisfaction and 
reduced fossil fuel consumption, it also presents challenges for traditional non-
smart electrical networks. To promote intermittent energy sources effectively 
and maintain a balance between consumption and production, accurate 
forecasting of these energy outputs plays a vital role. This research paper 
focuses on studying the application of artificial neural networks for predicting 
the power and energy output of the Diass solar power plant in the short and 
medium term. The proposed approach utilizes not only the meteorological data 
from the city where the power plant is located but also data from a nearby city 
with a data acquisition station. Principal component analysis (PCA) is employed 
to select the relevant variables for the prediction model. Furthermore, the 
results obtained from our approach are compared to existing literature that 
solely uses meteorological data from the power plant's location. The 
comparison shows that our method achieves more satisfactory results, with 
mean absolute errors and root mean square errors of 0.0223 KWh and 0.003 
KWh, respectively, and a prediction accuracy of 94.57% in terms of energy and 
power. It is worth noting that the computational resource requirements for our 
approach are higher, with simulation times ranging between 1788 seconds and 
2201 seconds. By utilizing a broader range of data sources and employing 
advanced techniques like artificial neural networks, this research contributes 
to improving the accuracy of solar power generation forecasts. The findings 
highlight the potential of incorporating additional data inputs and advanced 
modeling techniques to enhance the performance of renewable energy systems, 
paving the way for a more sustainable and efficient energy future. 
 

 
1. Introduction  

The global energy sector is undergoing a significant 

transformation, driven by the urgent need to reduce 

greenhouse gas emissions and mitigate the environmental 

impact of conventional fossil fuel-based resources. 

Integrating intermittent and non-polluting energy sources, 

such as solar and wind power, has become a priority for many 

countries aiming to achieve a sustainable and low-carbon 

energy future [1- 2]. However, the increased penetration of 

these renewable energy sources poses challenges for the 

existing electrical grid infrastructure, primarily designed for 

centralized and predictable power generation [3]. To 

effectively harness the potential of intermittent energy 

sources and maintain a reliable balance between energy 

consumption and production, accurate forecasting of their 

power and energy output is crucial. Accurate predictions 

enable grid operators to optimize energy dispatch, plan for 

storage requirements, and ensure grid stability [4]. Over the 
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years, various forecasting models and techniques have been 

employed to improve the accuracy of renewable energy 

generation forecasts, including statistical models, time-series 

analysis, and machine learning algorithms. In recent years, 

artificial neural networks (ANNs) have emerged as a powerful 

tool for renewable energy forecasting due to their ability to 

capture complex nonlinear relationships and adapt to 

changing conditions [5]. ANNs have demonstrated superior 

prediction capabilities compared to traditional statistical 

models, and their performance can be further enhanced by 

incorporating additional relevant variables [6]. 

In this context, this research paper focuses on predicting 

the power and energy output of the Diass solar power plant 

in Senegal using an ANN-based forecasting model. The 

proposed approach not only leverages meteorological data 

from the power plant's location but also integrates data from 

a nearby city with a data acquisition station. This 

incorporation of additional data sources aims to enhance the 

accuracy of the prediction model and address the limitations 

of existing approaches that rely solely on local meteorological 

data [7]. To select the most relevant variables for the ANN 

model, we employ principal component analysis (PCA), a 

widely used technique for dimensionality reduction and 

feature selection [8]. By reducing the input variables to a 

smaller set of principal components, the model can capture 

the essential information while minimizing computational 

complexity. The results obtained from our approach are 

compared with existing literature that utilizes only local 

meteorological data for solar power generation forecasting. 

The comparison showcases the superior performance of our 

method, with reduced mean absolute errors and root mean 

square errors, indicating higher accuracy in predicting the 

power and energy output. Additionally, we evaluate the 

computational resource requirements of our approach to 

provide insights into its feasibility and scalability [9]. By 

integrating a broader range of data inputs and leveraging 

advanced modeling techniques like ANNs, this research 

contributes to the ongoing efforts to improve the accuracy of 

solar power generation forecasts [10]. The findings highlight 

the potential of incorporating additional data sources and 

advanced algorithms to enhance the performance and 

reliability of renewable energy systems. Ultimately, these 

advancements pave the way for a more sustainable and 

efficient energy future, aligning with the goals of transitioning 

towards a low-carbon society [11]. 

The article is organized as follows: 

• Section II gives an overview of the study sites and the data 

that were used for the research. 

• Section III describes the methods that were employed, 

including the neural network model used for prediction. 

• The results obtained from the study are presented and 

discussed in this section. 

• Finally, the article concludes with a summary of the 

findings and their implications.  

2. Data and site overview 

To gain insights into the challenges faced by energy 

producers and electrical network managers, a field study was 

conducted to collect data from the Diass and Taïba Ndiaye 

power plants. The geographical locations of the cities studied, 

Diass and Taïba Ndiaye, provide valuable insights into the 

weather and environmental factors influencing power 

generation in Senegal. Diass is situated at approximately 

14°63'92'' North latitude and -17°08'78'' West longitude, 

while Taïba Ndiaye is located at around 15° 2' 22.1" North 

latitude and -16° 52' 43" West longitude (Figure 1). Both 

Diass and Taïba Ndiaye experience a Sahelo-Sudanese climate 

characterized by a distinct rainy season. In Diass, the rainy 

season typically spans from June to October, while in Taïba 

Ndiaye, it extends from July to October [12, 13]. The annual 

average rainfall in Diass is approximately 440 mm, with an 

average temperature of 27 °C [12]. On the other hand, Taïba 

Ndiaye experiences a range of temperatures, with the highest 

reaching 35°C and the lowest dropping to 16°C. The annual 

average rainfall in Taïba Ndiaye ranges between 400 and 600 

mm [13]. The choice of these specific locations for our study 

is driven by the significant contribution of the Diass and Taïba 

Ndiaye power plants to Senegal's renewable energy 

production capacity. The Diass solar power plant is located in 

the city of Diass, while the Taïba Ndiaye power plant 

generates wind power and is situated in Taïba Ndiaye. These 

sites offer valuable data for analyzing and predicting power 

generation from renewable sources in Senegal. 

Understanding the geographical context of the study sites is 

crucial for comprehending the local weather patterns, solar 

irradiance levels, and other environmental factors that 

influence power generation. By considering the specific 

characteristics of these locations, we can better analyze the 

data collected and develop accurate prediction models to 

optimize renewable energy production and management. 

 
Figure 1. Geographical location of the sites studied 

Diass benefits from ample sunlight, which is essential for 

solar photovoltaic power generation, while Taïba Ndiaye 

benefits from strong wind resources and solar, making it 

suitable for generation. By obtaining data from these specific 

sites, we aim to capture the unique characteristics and 

challenges associated with renewable energy generation in 

Senegal. This information will be crucial for developing 

accurate prediction models and addressing the complexities 

of integrating intermittent energy sources into the existing 

electrical grid infrastructure. During the data analysis 

process, outliers were identified in the recorded panel 

temperature values in the city of Diass. These outliers showed 

temperatures exceeding 55°C, while the highest ambient 

temperature measured was only 38°C (Figure 2). It is 

important to note that these extreme values are likely the 
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result of measurement errors caused by sensor malfunction 

or calibration issues. Correcting data errors is crucial for 

ensuring the accuracy and reliability of the prediction models. 

Numerous studies emphasize the significance of data quality 

and the impact of outliers on model performance. For 

instance, in a study [14], the authors highlight the importance 

of identifying and handling outliers in data preprocessing to 

improve the performance of prediction models. To address 

the outlier issue, a rigorous data cleansing process will be 

implemented. Techniques such as Winsorization, which 

replaces extreme values with more reasonable ones, and 

outlier removal based on statistical analysis can be employed 

[15]. By correcting these data errors, we can ensure that the 

prediction models are trained and tested on reliable and 

consistent data, leading to more accurate and meaningful 

results. 

Figure 2. Variation of the temperature of the panels according to the 

ambient temperature case of Diass 

Figure 3. Variation of the irradiance on the panels as a function of the 

irradiance of the horizontal plane case of Diass 

Figure 2 displays the irradiance on the horizontal plane 

compared to the irradiance received in the plane of the 

photovoltaic panels. It is evident that there are a few values 

that do not align with the irradiance received in the panel 

plane, indicating potential measurement errors. To address 

these outliers, they can be either removed from the dataset or 

replaced with the average value. This step ensures the 

accuracy and consistency of the data used for prediction. In 

Figure 3, the variation of irradiance in the two cities under 

study is depicted. It is noteworthy that there is a correlation 

between the irradiances of the two cities, suggesting a 

potential positive impact on our prediction. The small 

difference observed between the irradiances of the two cities 

implies that incorporating data from both locations can 

provide valuable insights for improving the accuracy of our 

forecasting model. These observations align with previous 

studies that highlight the significance of considering multiple 

data sources and correlations for accurate solar power 

generation predictions [16, 17]. By leveraging the correlated 

irradiance data from different cities, our prediction model can 

benefit from a broader and more diverse dataset, leading to 

improved forecasting capabilities. 

 

Figure 4. Variation of the irradiance of the city of Taïba Ndiaye and 

Diass 

In Figure 4, we can observe the irradiance data 

specifically for the Taïba area, which we have associated with 

the data collected from the sensors at the Diass power plant. 

The objective of this analysis is to determine whether 

incorporating environmental parameters from a neighboring 

town can enhance the accuracy of our prediction model. Upon 

examining the plot, it is evident that there are periods of both 

high and low sunshine potentials in the Taïba area. This 

variability in irradiance levels is similarly observed in the 

Diass area, as shown in Figure 3. These findings indicate that 

the solar energy potential in both locations is subject to 

fluctuations due to meteorological factors such as cloud cover, 

atmospheric conditions, and seasonal variations. By 

integrating the irradiance data from the Taïba area into our 

prediction model, we can benefit from additional insights and 

a more comprehensive understanding of the environmental 

conditions that influence solar power generation. This 

approach aligns with previous research that emphasizes the 

importance of incorporating diverse and geographically 

distributed data sources to improve the accuracy of solar 

power prediction models [18, 19]. The inclusion of data from 

the Taïba area allows us to capture localized variations in 

solar irradiance (Figure 5), which may not be fully captured 

by the data collected solely at the Diass power plant. This 

broader perspective enhances the robustness of our 

prediction model and provides valuable information for grid 

operators and energy managers to optimize energy 

production and distribution. Our objective is to develop a 

prediction model for the power and energy output of the 

Diass power plant using meteorological parameters and the 

irradiance data from Taïba Ndiaye. The target data to be 

predicted are represented in Figure 6. A proportional 

correlation between power and energy can be observed. This 
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means that when power increases, the consumed or 

generated energy also increases, and vice versa. This 

proportional relationship is consistent with the fundamental 

principles of electricity, where power is the amount of energy 

consumed or produced per unit of time. By visualizing these 

data in Figure 6, we can better understand this relationship 

and use it to develop more accurate prediction models. 

Analyzing this correlation between power and energy can 

also contribute to optimizing energy management and 

making more informed decisions in the field of renewable 

energy. 

 

Figure 5. Variation of the irradiance of the city of Taïba Ndiaye 

 

 

Figure 6. Variation in power and energy produced by the Diass 

power plant as a function of time 

To accomplish this task, we will employ a comprehensive 

methodology that takes into account the complexity of the 

study. The dataset will be divided into two parts: 80% of the 

data will be allocated for training the prediction model, while 

the remaining 20% will be used for testing the model's 

performance. This division allows us to effectively evaluate 

the accuracy and reliability of the model in predicting the 

power and energy output. By dedicating a significant portion 

of the dataset for training, we ensure that the model captures 

the underlying patterns and relationships between the 

meteorological parameters, irradiance, and power 

generation. This enables us to create a robust and accurate 

prediction model that can be applied to real-time scenarios. 

The testing phase with the remaining data is crucial for 

assessing the model's performance and verifying its 

predictive capabilities. By evaluating the model on unseen 

data, we can gauge its generalization ability and ensure that it 

can provide accurate predictions beyond the training data. 

This methodological approach ensures that our prediction 

model is built on a solid foundation of training and testing, 

allowing us to effectively forecast the power and energy 

output of the Diass power plant based on the meteorological 

parameters and Taïba Ndiaye's irradiance data. Overall, by 

following this approach, we aim to develop a reliable and 

accurate prediction model that can support decision-making 

processes and optimize the integration of renewable energy 

sources into the electrical grid.  

3. Methodology 

The methodology for this study consists of several steps 

to ensure an effective prediction model for the power and 

energy output of the Diass power plant: 

• Dimension Reduction using Normalized PCA: The first step 

involves applying a normalized Principal Component 

Analysis (PCA) method. This technique helps reduce the 

dimensionality of the model training data by identifying 

highly correlated variables in the dataset. By reducing 

redundancy and eliminating irrelevant variables, PCA 

improves the efficiency and accuracy of the prediction 

model. This step ensures that only the most informative 

and relevant features are considered, leading to better 

predictions. 

• Data Subdivision: The dataset is then divided into two 

subsets: a testing set and a training set. The testing set 

accounts for 20% of the data, while the remaining 80% is 

used to train the model. This division allows us to evaluate 

the model's performance on unseen data and assess its 

generalization ability. The training set is utilized to 

optimize and fine-tune the neural network model for 

accurate power and energy prediction. 

• Neural Network Model Application: With the training data, 

the neural network model is applied to learn the underlying 

patterns and relationships between the meteorological 

parameters, irradiance data, and power generation. The 

model is designed to capture complex nonlinear 

dependencies and adaptively adjust its internal parameters 

to make accurate predictions. 

• Performance Evaluation: After training the model, its 

performance is evaluated using the testing set. Various 

metrics and indicators, such as mean absolute error and 

root mean square error, are used to quantify the model's 

performance and assess its predictive capabilities. This 

evaluation provides insights into the accuracy and 

reliability of the model in predicting the power and energy 

output of the Diass power plant. 

• Power and Energy Prediction: Finally, the trained and 

evaluated model is utilized to predict the power and energy 

output of the Diass region. By incorporating the relevant 

meteorological parameters, irradiance data, and the 

insights gained from the previous steps, the model can 

provide reliable and accurate predictions for short and 

medium-term time horizons. 

By following this methodology, we can ensure an efficient and 

reliable prediction model that leverages dimension reduction, 

data subdivision, neural network modeling, and performance 

evaluation. This approach enhances the model's accuracy and 

applicability for predicting the power and energy output of 

the Diass power plant, contributing to the effective 

management of renewable energy resources. 
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3.1 Dimension reduction using the PCA method for 

variable selection 

 The field of big data has witnessed the rise of principal 

component analysis (PCA) as an effective method for 

unsupervised variable selection [20]. PCA is commonly 

employed for numerical value prediction, as it helps eliminate 

redundant variables and identify the underlying population 

structure for classification purposes. Essentially, PCA aims to 

find the optimal linear subspace that minimizes the 

information loss when projecting the data. Consequently, the 

selected variables will capture the essence of the entire 

dataset. PCA offers a powerful tool to streamline and enhance 

the predictive modeling process by reducing dimensionality 

and improving the interpretability of the selected variables. 

The essence of PCA lies in finding the best linear subspace that 

retains the maximum amount of information from the original 

data. By projecting the data onto this subspace, the variables 

selected by PCA capture the essential characteristics of the 

entire dataset. In other words, they provide a condensed 

representation of the data while preserving its key properties. 

This not only simplifies the modeling process but also 

enhances the interpretability of the selected variables, as they 

collectively reflect the overall image of the original variables 

[21]. 

3.2 Sample 

When dealing with samples of data from different sites, 

each characterized by multiple random variables (X1, X2, ..., 

XN), applying Principal Component Analysis (PCA) becomes a 

valuable approach. By examining the correlation matrix of the 

data, as depicted in Figure 7, we can further justify the 

relevance of employing PCA in this study.  

Figure 7. Correlation matrix of study data 

The correlation matrix provides a comprehensive view 

of the relationships between the variables, allowing us to 

assess their interdependencies. By analyzing the correlation 

matrix, we can identify variables that exhibit strong 

correlations, indicating a high degree of linear association. 

Conversely, variables with weak correlations suggest a lower 

level of linear dependence [22]. This information is crucial in 

understanding the underlying structure and patterns present 

in the dataset. PCA leverages this correlation information to 

transform the original variables into a new set of uncorrelated 

variables, known as principal components. These principal 

components are linear combinations of the original variables, 

and they are ordered in terms of their ability to explain the 

variance in the data. The first principal component accounts 

for the largest variance, followed by the second principal 

component, and so on [21]. By selecting a subset of the 

principal components, we can effectively capture the 

essential information contained in the original variables 

while reducing dimensionality. By observing the correlation 

matrix in Figure 7, we can gain insights into the strength and 

nature of the relationships between the variables. Variables 

with high positive or negative correlations indicate a 

significant linear association, suggesting they may convey 

similar information and exhibit redundancy [23]. In such 

cases, PCA can help identify the dominant underlying factors 

driving the data, facilitating variable selection and 

dimensionality reduction. Furthermore, the correlation 

matrix allows us to detect any potential multicollinearity 

issues where variables are highly correlated with each other. 

Multicollinearity can lead to instability and unreliable 

estimates in regression models, making it necessary to 

address this problem. PCA can effectively mitigate 

multicollinearity by identifying the principal components that 

capture the most significant sources of variation and 

combining variables with high correlations into a reduced set 

of uncorrelated components. 

3.3 Normalization of variables  

 Normalization is an essential preprocessing technique 

employed to simplify the complexity of the Artificial Neural 

Network (ANN) model used in our study. It aims to ensure 

that the input data is within an optimal range for the neural 

network to operate effectively, typically between -1 and 1. 

This normalization approach has been widely adopted in 

various studies documented in the literature [24-26]. The 

normalization process involves scaling the data to a specific 

range. In our case, we employ the min-max normalization 

method, which rescales the data between 0 and 1. This 

method ensures the values are proportionally adjusted while 

preserving their relative relationships. Mathematically, the 

min-max normalization formula is used to transform each 

data point, x, into its normalized counterpart, x_norm, using 

the following equation: 

𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
= 𝑋𝑛𝑜𝑟𝑚                                                                              (1)  

In the normalization process, we transform the real data, 

represented by X, to its normalized counterpart, denoted as 

xnorm, which lies within the range [Xmin, Xmax]. The variables 

xmin and xmax correspond to the minimum and maximum 

values of the input variables, respectively. By applying 

normalization, we bring the data to a standardized scale, 

allowing for better comparison and analysis. Once the data is 

normalized, we can proceed with selecting the number of 

dimensions for our analysis. This selection is determined by 

examining the eigenvalues in descending order. Eigenvalues 

represent the variance explained by each principal 

component in PCA. By arranging the eigenvalues in 

descending order, we can observe the significance of each 

component and decide on the number of dimensions to retain. 

3.4 Analysis of the eigenvalues 

In order to obtain the variables in the reduced 

dimensional space, the utilization of factorial axes that 

consider the dispersion representation of the data cloud is 
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necessary [27]. The eigenvalues, which signify the variance 

defined by each dimension, play a crucial role in this process 

[28]. They quantify the amount of information captured by 

each dimension, and a higher number of dimensions can 

encompass a larger portion of the dataset variables, albeit at 

the cost of increased complexity [29]. However, it is 

recommended to retain dimensions with above-average 

eigenvalues. In our case, the Diass data consists of 7 axes 

representing the variable distribution. Based on the chosen 

criterion, we retain three axes (dimension 1, dimension 2, and 

dimension 3) as they account for significant proportions of 

the data variability [30]. Dimension 1 captures 90.5% of the 

variance, followed by dimension 2 with 5.5% and dimension 

3 with 1.5%. The remaining dimensions make negligible 

contributions compared to these selected dimensions. These 

observations align with the literature, where similar 

approaches have been used to analyze datasets and identify 

key dimensions [31, 32]. By reducing the dimensionality and 

focusing on the dimensions with the highest eigenvalues, we 

can effectively capture the most significant information while 

simplifying the analysis process. 

 

Figure 8. Classification of dimensions according to eigenvalues 

4. Model of the used neural network  

 Working with random length sequences often requires 

the use of Recurrent Neural Networks (RNNs) due to their 

ability to handle sequential data effectively. RNNs are 

specifically designed to capture temporal dependencies and 

maintain a memory of previous inputs, making them suitable 

for tasks such as sequence prediction, language modeling, and 

time series analysis. The effectiveness of RNNs in handling 

sequential data has been demonstrated in various studies. For 

example, in the field of natural language processing, RNNs 

have been widely used for tasks like machine translation [33], 

language generation [34], and sentiment analysis [35]. These 

applications rely on the sequential nature of language, and 

RNNs have proven to be successful in capturing the 

contextual information necessary for accurate predictions. 

4.1 Model 

In this study, we utilize a multi-layer network of the 

Neural Fusion Shareware type, as depicted in Figure 9. The 

Neural Fusion Shareware (NFS) architecture is a powerful 

neural network model that combines the strengths of 

different neural network architectures, such as feedforward 

neural networks (FNNs) and recurrent neural networks 

(RNNs). The NFS architecture is designed to handle complex 

and heterogeneous data, allowing for the integration of both 

static and sequential information. It is particularly suitable for 

tasks that involve multiple modalities or types of data, as it 

can effectively capture the dependencies and interactions 

between them. The NFS architecture has been successfully 

applied in various domains, including image recognition [36], 

speech recognition [37], and natural language processing 

[38]. Its flexibility and capability to handle diverse types of 

data make it well-suited for our study, where we aim to 

combine different types of inputs to predict the power and 

energy output of the Diass power plant. 

 
Figure 9. Multilayer networks [20] 

After selecting variables, we have chosen to use a four-

layer neural network architecture, as depicted in Figure 9. 

The four layers in the network play a crucial role in capturing 

the complex relationships and patterns present in the data. To 

provide a clearer mathematical expression of a layer, we refer 

to Equation (2) in [12]. This equation provides a formal 

representation of the computations performed within each 

layer of the neural network: 

𝑓(∑𝑦𝑗𝑤𝑖𝑗 + 𝑏𝑘) = 𝑓(𝐻) = 𝐸(𝑡)                                                                    (2)  

f: denotes the activation function of the layer, 

yj and H are the output variables, 

Finally, wij and bk denote the synaptic weights and the bias of 

the neuron, respectively. 

The Neural Fusion Shareware type network utilized in this 

study employs weights for training multi-layer network 

algorithms. Its operation can be mathematically expressed by 

Equation (3) as described in [39]. 

   𝑍𝑖 = ∑ 𝑊𝑖𝑗𝑋𝑗 + 𝑏𝑖
𝑛𝑗
𝑗=1                                                                                       (3) 

Where : 

• Xj and Zi are, respectively, the inputs and outputs of the 

neural network.  

• Wij and nj represent the weights of the connections 

between neurons and the number of respective input 

neurons.  

• bi denotes the biases that make the transfer function 

different from zero. 

Despite the good predictions noted in several studies, the 

validation of this type of model depends on the performance 

parameters. 
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4.2 Performance indices 

The performance criteria used for energy and power 

prediction are defined by Equations (4) and (5), where N 

represents the total number of data rows, Yi denotes the 

actual values, and Yt represents the predicted values [40- 42]. 

MAE (mean absolute error) and MSE (mean square error) are 

utilized as metrics to assess the efficiency of the model and 

provide insights for future improvements. 

1

𝑁
|𝑌𝑖 − 𝑌𝑡| = 𝑀𝐴𝐸                                                                                               (4) 

 
1

𝑁
∑ (𝑌𝑖 − 𝑌𝑡)

2𝑁
𝑖=1 = 𝑀𝑆𝐸           (5) 

5. Results and discussion  

 Subsequently, simulations were conducted to forecast 

the power and energy of the Diass power plant using the 

neural model comprising five input layers. The model 

incorporated three dimensions that encapsulated the Diass 

data, along with two meta-meteorological parameters 

obtained from the city of Taïba. The presented graphs 

exclusively display the output signals, with the shaded region 

denoting the model's uncertainty. The time lag between the 

input and output signals remains constant in these graphs. 

The model predicts the future output signals in hours, with 

the x-axis representing the number of previously observed 

time steps of input signals used by the predictive model. 

5.1 Observation of the model with the  short-term 

prediction 

Figure 10 and Figure 11 display the observed and 

predicted power and energy values of the Diass power plant. 

The predictions generally exhibit a satisfactory level of 

accuracy, capturing the overall trend of the actual values. 

However, there are instances where the model fails to 

accurately predict the peaks. This discrepancy can be 

attributed to factors such as high production during mid-day 

and low consumption, which introduce complexities in the 

prediction process. Nevertheless, as the predictive model 

learns from the data, it gradually improves its ability to 

predict these challenging scenarios. Overall, while there may 

be room for further refinement, the model demonstrates 

promising performance in forecasting power and energy for 

short time horizons. 

5.2 Observation of the model with the medium-term 

prediction 

Figure 12 and Figure 13 illustrate the prediction results 

for energy levels, indicating that the model's accuracy is 

relatively lower during periods of high energy production but 

shows better performance during low production periods. 

Notably, the time steps of the input and output data in these 

figures are characterized by a considerable length. 

Consequently, the model's ability to accurately predict peaks 

is limited due to its access to only a small portion of the input 

data history. To enhance the model's predictive capabilities 

during peak periods, it is advisable to strengthen the training 

process by incorporating a larger number of time steps for 

prediction. By increasing the temporal context captured by 

the model, it can better understand and forecast the complex 

dynamics associated with high energy production, resulting 

in improved accuracy. Research in the field supports the 

notion that increasing the number of time steps in training 

recurrent neural networks (RNNs) can enhance their 

predictive performance. For instance, studies have 

demonstrated the effectiveness of long short-term memory 

(LSTM) networks, a type of RNN, in capturing long-term 

dependencies and improving predictions for time series data 

[43-44].  

Figure 10. Comparison between predicted and measured energy 

values of the Diass solar power plant in the short-term 

Figure 11. Comparison of predicted and measured power output of 

the Diass solar power plant in the short-term 

Figure 12. Comparison between predicted and measured power 

output of the Diass solar power plant in the medium-term 

Figure 13. Comparison between predicted and measured energy 

values of the Diass solar power plant in the medium-term 

These approaches leverage longer input sequences to 

provide a more comprehensive context, enabling the model to 

better capture temporal patterns and improve forecasting 

accuracy. Additionally, incorporating contextual information 

and historical patterns has been shown to enhance energy 

forecasting models. By considering factors such as weather 

conditions, seasonal variations, and demand patterns, the 

model can better account for the factors influencing energy 

production and consumption, leading to more accurate 

predictions [45-46]. 
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6. Comparisons of the model performances 

 By comparing the mean absolute error (MAE) and root 

mean square error (RMSE) of our study with those reported 

in previous works [3, 13-31], a notable performance 

improvement is observed (Table 1). Notably, the inclusion of 

meteorological data from the surrounding city has made a 

positive contribution to the neural network model. This 

improvement is particularly pronounced in short-term 

forecasts. Furthermore, using PCA for variable selection has 

further enhanced the model's performance. 

Table 1. Comparison of performance indices 

Model MSE R2 Accuracy 

(this work) 0.003 0.989 0.9457 

[3] 0.3332 
 

0.938 
 

- 

[13] 0.03 0.99 - 

[31] - - 0.76 

[32] 0.054 0.981 - 

 

7. Conclusion 

In conclusion, this study addresses the importance of 

accurate predictions in the energy grid to support the 

integration of intermittent renewable energy sources and 

achieve sustainable development goals. By combining neural 

network models with the PCA method for input variable 

selection and incorporating meteorological data from the 

Diass region and Taïba Ndiaye, the proposed approach 

demonstrates significant improvements in prediction 

accuracy. The obtained results, with a remarkable accuracy of 

94.57% for energy and power forecasting, highlight the 

effectiveness of selecting relevant input variables and 

leveraging meteorological data from surrounding cities. 

However, further research is needed to determine the optimal 

distance at which the inclusion of meteorological data from 

neighboring cities can have the greatest impact on prediction 

accuracy. Overall, this work contributes to advancing the field 

of automatic learning models for energy prediction and 

supports the successful integration of renewable energy 

sources into the grid. 
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