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A B S T R A C T 
 

Ensuring manufacturing consistency in lithium-ion batteries is critical for 
reliable performance, safety, and longevity. This study examines the variability 
in initial pouch cell characteristics, including voltage, current, charge capacity, 
and discharge capacity, across 192 samples from 24 batches. Statistical analysis 
reveals that voltage remains relatively stable (mean = 3.951V, CV ≈ 6.45%), 
while charge and discharge capacities exhibit moderate variability (mean = 
2.286Ah, CV ≈ 47.99% and mean = 2.350Ah, CV ≈ 52.53%, respectively). Current 
demonstrates the highest variability, with a mean of 0.280A and a CV of 
195.25%, suggesting significant fluctuations possibly due to non-constant 
current and also likely influenced by process inconsistencies, operational 
conditions, or measurement sensitivity. Box plot and control chart analyses link 
many outliers to specific production factors, such as raw material lot changes 
and equipment maintenance cycles, pinpointing electrode preparation and 
formation as critical stages for mitigating variability. By integrating statistical 
insights with practical manufacturing considerations, this work provides a 
framework for proactive quality control, ultimately supporting scalable and 
high-quality lithium-ion battery production. While this study focuses on pouch 
cells, the underlying principles of variability analysis and targeted process 
improvements remain broadly relevant to other battery formats. 
 

 
1. Introduction  

Lithium-ion batteries (LIBs) have revolutionized energy 
storage since their commercialization in the 1990s, enabling 
advancements in portable electronics, electric vehicles (EVs), 
and grid-scale renewable energy systems [1]. Their high 
energy density, rechargeability, and declining costs have 
positioned LIBs as the cornerstone of the global transition to 
sustainable energy [2]. However, this rapid adoption has 
exposed critical challenges in manufacturing consistency, 
particularly as applications demand higher performance, 
longer lifespans, and stringent safety standards [3]. The 
automotive industry exemplifies these challenges. Modern 
EVs require battery packs comprising thousands of individual 
cells, where even minor inconsistencies in capacity, voltage, 
or internal resistance can cascade into pack-level imbalances, 
reducing efficiency, accelerating degradation, and increasing 
safety risks [4]. For instance, a 5% variation in cell capacity 
can lead to a 20% reduction in pack lifespan [5]. Such 
variability underscores the urgent need for precision in LIB 
manufacturing- a challenge magnified by the industry’s shift 
toward high-volume production to meet global 
decarbonization targets [6]. Early LIB manufacturing 
prioritized small-scale production for consumer electronics, 
where tolerances for variability were relatively lenient [7]. 
Processes such as slurry coating, calendaring, and electrolyte 

filling were optimized for flexibility rather than repeatability. 
However, the rise of EVs and stationary storage has 
necessitated a paradigm shift. Automotive-grade cells 
demand near-perfect consistency, with tolerances for 
capacity and voltage often tightened to <1% [8]. Despite 
advancements, LIB manufacturing remains a complex, multi-
stage process prone to variability. 
• Electrode preparation: Heterogeneity in slurry mixing, 

coating thickness, or drying rates can create localized 
defects in electrodes [9]. 

• Cell assembly: Variations in stacking alignment, tab 
welding, or electrolyte filling introduce mechanical and 
electrochemical inconsistencies [10]. 

• Formation and aging: Electrochemical activation steps (e.g., 
SEI layer formation) are sensitive to temperature and 
current rates, further amplifying variability [11]. 

While statistical process control (SPC) and machine learning 
(ML) have been deployed to monitor these stages [12], most 
quality control (QC) frameworks focus on post-production 
screening rather than preemptive variability reduction. For 
example, clustering cells by capacity post-manufacturing 
improves pack performance but does not address the root 
causes of variability [13]. Existing studies predominantly 
analyze variability in aged or cycled cells [14], overlooking 
initial characteristics that seed long-term degradation. 
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Furthermore, few works systematically link variability to 
specific manufacturing stages or batch-level trends. This gap 
limits actionable insights for upstream process optimization. 
Key Research Questions: 
• What is the magnitude of variability in key initial metrics 

(voltage, capacity) across batches? 
• Which manufacturing stages contribute most to this 

variability? 
• How can statistical tools like control charts inform real-

time QC interventions? 
Objectives: 
• Quantify variability in initial pouch cell characteristics 

using descriptive statistics and coefficient of variation (CV). 
• Map outliers to specific manufacturing stages (e.g., 

electrode coating, formation) through chronological 
control chart analysis. 

• Propose targeted process improvements to reduce 
variability at critical production junctures. 

This study focuses on pouch cells due to their growing 
dominance in EVs and energy storage, where their high 
energy density and modularity amplify the consequences of 
variability [15]. By analyzing 192 samples across 24 batches, 
we bridge the gap between academic research and industrial 
practice, offering a roadmap for preemptive QC in high-
volume LIB production. 

2. Methodology 

The dataset comprises 192 pouch cell samples from 24 
batches (8 samples/batch), manufactured under 
standardized protocols, providing a comprehensive overview 
of initial battery characteristics [16]. To ensure 
representative analysis: 
• Batches were chosen sequentially from a 6-month 

production period to capture natural process variations 
(e.g., equipment maintenance cycles, raw material lot 
changes). 

• All 192 samples were included in statistical analyses (e.g., 
CV, control charts). For visualization (Figures 1-3), one 
sample per batch (24 total) was randomly selected using 
Python’s numpy.random.choice to avoid cherry-picking 
biases. 

• Outlier Handling: Samples with incomplete data (e.g., 
interrupted charge cycles) were excluded prior to analysis 
(3 samples removed). 

All initial characterization tests were conducted in a 
controlled environment. The initial characterization tests for 
the cells included constant current constant voltage (CCCV) 
charge - constant current (CC) full discharge (4.2V - 2.7V) at 
C/2 rate to determine battery discharge capacity. The test 
procedure is as follows: 
Cells were initially charged to 100% SOC using the CCCV 
profile at C/2 rate.  
After reaching 100% SOC, the cells were discharged using 
constant C/2 current until they reached the lower limits of 
their assigned SOC ranges (i.e., 20% for 20% - 80% range) for 
partial cycling.  
Constant current charge (always C/2) and constant current 
discharge (C/2 or 2C) were applied to the cells for cycling 
between the desired upper and lower limits of SOC (i.e., 20% 
- 80%). 
A rest period of 30 min was applied to allow the cells to relax 
after every charge and discharge step. The specifications of 
the battery cells are given in Table 1. 

 

 

Table 1. Specifications of the pouch cell battery samples 

Battery (Parameters) Specifications (Value) 

Capacity Rating 3360 mAh 

Cell Chemistry Cathode: LiCoO2, Anode: graphite 

Nominal voltage 3.82 V 

Charge cut-off voltage 4.4 V 

Discharge cut-off voltage 3.0 V 

 

Each Excel file contains 17 sheets:  
• Global Info Sheet: This sheet includes metadata such as 

Sample No. and Channel, which are essential for identifying 
and tracking each sample within the file. 

• Statistics and Channel Data Sheets: For each of the 8 
samples in a file, there are two sheets: one for statistical 
data and one for channel data. These sheets provide 
detailed initial performance metrics. 

The data includes several key metrics that are critical for 
assessing initial battery characteristics. Some of the metrics 
are: Date Time, Test Time (s), Step Time (s), Step Index, Cycle 
Index, Voltage (V), Current (A), Charge Capacity (Ah), 
Discharge Capacity (Ah), Charge Energy (Wh), Discharge 
Energy (Wh), Internal Resistance (Ohm). Figure 1 shows the 
voltage change during five cycles for one of the sample 
batteries. The procedure for the batteries is given in Table 2. 
Figure 2 shows the current change during five cycles. 

Figure 1. Voltage data for one sample of a pouch Li-ion battery 

 

 
Figure 2. Current data for one sample of pouch Li-ion battery 
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The first cycle in Figure 2 shows a gradual increase in charge 
capacity, indicating the initial charging phase. The capacity 
stabilizes (in resting and discharging steps) before increasing 
sharply, due to an increase in charging. Cycles 2 through 5 
display a more consistent pattern, with each cycle showing a 
similar charge capacity profile. This suggests a stable and 
repeatable charging process after the initial cycle. After the 
initial increase, the charge capacity stabilizes in subsequent 
cycles, indicating that the battery reaches a consistent state of 
charge. The consistent pattern in later cycles suggests 
effective control over the charging process, with minimal 
variability between cycles. Figure 3 presents the charge 
capacity of the sample battery during the five cycles. 
Variability in initial battery characteristics was quantified 
using descriptive statistics (mean, standard deviation), and 
process stability was evaluated via control charts. The 
coefficient of variation (CV) normalized variability across 
metrics (e.g., voltage, capacity). Box plots and control charts 
(3σ limits) were employed to identify outliers and monitor 
batch-to-batch consistency. Data processing and visualization 
were implemented in Python using Pandas (v1.5.3) for 
dataset aggregation and cleaning, and Matplotlib (v3.7.1) for 
generating figures.  

 
Figure 3. Change in charge capacity over test time across multiple 
cycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3. Results and discussion 

3.1 Variability analysis 
The analysis focused on key metrics such as voltage, 

current, charge capacity, and discharge capacity. 
• The mean voltage across samples was 3.951V, indicating 

moderate variability. 
• The mean current was 0.280A, with a high coefficient of 

variation (CV=195.25%), suggesting high variability likely 
due to periods of rest or high-low activity during testing. 

• The mean charge capacity was 2.286 Ah, reflecting some 
variability in the initial state of charge. 

• The mean discharge capacity was 2.350 Ah, indicating 
moderate variability (CV=52.53%), potentially due to 
outliers or specific test conditions. 

Box plots were created for each key metric, voltage, current, 
charge capacity, and discharge capacity to summarize data 
distributions and highlight variability (Figure 4). This 
graphical approach helps identify potential anomalies or 
inconsistencies in the manufacturing process. The voltage box 
plot indicates a median around 3.95 V with a relatively 
narrow interquartile range (IQR), suggesting that most 
samples exhibit stable voltage levels. The coefficient of 
variation (CV) is 6.45%, showing minor variability across the 
dataset. A few outliers appear below the lower whisker, 
indicating isolated instances of reduced voltage that may 
warrant further examination. In contrast, the current values 
exhibit a significantly broader spread, with a mean of 0.280A 
and a notably high CV of 195.25%.  
The large variation suggests considerable fluctuations in 
current levels, clearly due to non-constant charging and 
discharging currents and likely due to measurement noise, 
process inconsistencies, or varying operational conditions. 
Several samples display extreme current values above the 
upper whisker, while some approach zero, reflecting the 
presence of resting or low-current phases. The charge 
capacity distribution has a median around 2.3 Ah, with an IQR 
indicating moderate variability across the dataset. The CV of 
47.99% suggests substantial batch-to-batch differences, 
potentially caused by variations in electrode materials, 
electrolyte composition, or cell formation conditions. 
Although most values fall within a reasonable range, a few 
outliers exceed the upper whisker, hinting at isolated cases of 
higher-than-expected charge retention. 

 

 

Table 2. Procedure protocol for the sample batteries 

Cycle# 

Step numbers 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
Charged, 

3.93 V 
C R D R 

C @CC 
0.16A 

R R C R D R R   

2        C C R D R R   

3        C C R D R R   

4        C C R D R R   

5              C C 
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Similarly, the discharge capacity exhibits a median of 
2.35 Ah, with whiskers spanning approximately 2.0Ah to 
2.7Ah. The CV of 52.53% underscores the substantial 
variability in discharge performance among samples. The 
presence of outliers above 2.7Ah indicates that some cells 
deliver higher-than-typical discharge capacity, which may be 
attributed to material inconsistencies, manufacturing 
deviations, or differences in cycling conditions. Among the 
four key metrics, voltage remains the most stable with a 
relatively low CV, whereas current demonstrates the highest 
variability. This analysis provides crucial insights into the 
variability of each parameter, guiding future quality control 
efforts. By identifying the root causes of extreme values, such 
as atypical process conditions, measurement errors, or 
material inconsistencies, manufacturers can refine 
production parameters and improve overall cell consistency. 

3.2 Control chart analysis 
Control charts were utilized to assess the stability of key 
parameters, voltage, current, charge capacity, and discharge 
capacity, across different production batches. This analysis 
aims to detect trends, shifts, and process variations that may 
not be evident in box plots alone. The control chart for voltage 
(Figure 5) confirms its relatively stable behavior, with most 
values remaining within control limits. The mean voltage of 
3.951 V and a CV of 6.45% indicate minimal process variation. 

 

 

 

 
  No significant outliers or trends suggesting systematic 

instability were observed. Given that the box plots already 
show a well-regulated voltage distribution, this control chart 
reinforces existing findings without introducing new insights. 
Therefore, it is omitted for brevity.  
Unlike voltage, the current exhibits substantial fluctuations, 
as seen in Figure 6. The mean current is 0.280A, yet it shows 
a remarkably high CV of 195.25%, indicating significant 
relative variations. This variability is not entirely because of 
the non-constant charging protocol, since it correlates with 
specific batch-level fluctuations that align with equipment 
maintenance cycles. 
In the figures, UCL/LCL are the upper and lower control limits 
of the values: 

UCL⁄LCL=μ±3σ            (1) 

Where μ is the mean and σ is the standard deviation. 
Key observations for current: 
• Several points exceed upper control limits, suggesting 

process inconsistencies. 
• Irregular fluctuations indicate variability in formation 

conditions or cycling processes. 
• These trends were not fully captured by box plots, making 

the control chart a valuable addition for diagnosing process 
variability. 

 

Figure 4. Visualizing the distribution and variability of voltage, current, charge capacity, and discharge capacity across samples 
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Figure 5. The control chart for voltage for all samples 

 

Figure 6. The control chart for current for all samples 

 
Control charts for charge capacity (mean = 2.286 Ah, CV = 
47.99%) and discharge capacity (mean = 2.350 Ah, CV = 
52.53%) (Figure 7) highlight batch-to-batch variability. 
Unlike voltage, these parameters show: 
• Gradual drifts across multiple batches, potentially linked to 

electrode material inconsistencies or electrolyte wetting 
variations. 

• Specific points beyond the control limits, aligning with raw 
material lot changes. 

• A pattern of variability that box plots alone do not fully 
capture, validating the use of control charts in this case. 

The box plots in Figure 4, together with the calculated means 
and coefficients of variation (CV), reveal distinct variability 
patterns across the four measured parameters: 
Voltage (Mean = 3.951, CV = 6.45%): The narrow distribution 
in the voltage box plot indicates a relatively stable formation 
process, aligning with industry best practices [16]. A small 
number of outliers suggests occasional deviations but does 
not undermine overall voltage consistency. 
Current (Mean = 0.280, CV = 195.25%): Although the box plot 
itself appears not to span a wide range, the small mean 

 

 

 

 
current makes even modest fluctuations disproportionately 
impactful, driving the CV upward. In addition to potential 
calibration drift and equipment maintenance issues, the 
intrinsically non-constant current during charge and 
discharge (e.g., changing between 4.89A and -2.89A) naturally 
elevates variability measurements. Sporadic spikes or dips 
observed in maintenance logs [19] likely further amplify 
these variations. 
Charge Capacity (Mean = 2.286, CV = 47.99%): The box plot 
shows a broad interquartile range and several outliers, 
signifying significant batch-to-batch variability. Variations in 
electrode materials (e.g., particle size, binder content) and 
process parameters (e.g., coating speed, solvent evaporation) 
are likely contributors. 
Discharge Capacity (Mean = 2.350, CV = 52.53%): Discharge 
capacity exhibits a similar level of variability, with notable 
outliers in Batches 7, 12, and 19. These outliers coincide with 
raw material lot changes and calendaring equipment 
maintenance logs, hinting at material heterogeneity (e.g., 
anode thickness variations) or process inconsistencies (e.g., 
electrolyte wetting) [17, 18]. 
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3.3 Root causes and contributing factors 
3.3.1 Material heterogeneity 
• Discharge capacity outliers correlate with specific raw 

material lot changes, suggesting feedstock variability (e.g., 
graphite particle size or binder composition). 

• Even minor deviations in electrode thickness (±3 µm) or 
slurry viscosity can substantially impact final capacity [20, 
 21]. 

3.3.2 Equipment calibration and process drift 
• The very high CV for current is partly explained by the 

small mean current value. Minor measurement errors or 
calibration drifts become disproportionately large in 
relative terms. 

• Maintenance records indicate that post-maintenance 
recalibration may not have been fully stabilized before 
production resumed, causing sporadic shifts in current 
measurements. 

 

 

 

3.3.3 Non-constant charge/discharge profiles 
• Battery formation and cycling often employ varying 

current profiles, which can elevate variability when viewed 
as a single metric. 

• This inherent fluctuation compounds any calibration or 
measurement inconsistencies, driving the CV higher than in 
processes where current is held more constant. 

3.3.4 Electrolyte wetting and formation procedures 
• Subtle variations in electrolyte wetting can lead to uneven 

solid-electrolyte-interphase (SEI) formation, impacting 
both charge and discharge capacities. 

• Voltage is relatively stable, but capacity and current 
measurements are more sensitive to small deviations in 
wetting, temperature, and humidity. 

 

 

 

Figure 7. The control chart for charge and discharge capacities for all samples 
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3.4 Strategic recommendations for mitigating variability 
3.4.1 Material standardization 
• Stricter specifications: Tighten control over critical 

material attributes (e.g., binder ratio, particle size 
distribution) to minimize the likelihood of outlier batches. 

• Advanced coating techniques: Investigate dry electrode 
processing or enhanced slurry mixing protocols to reduce 
thickness variability [22]. 

3.4.2 Enhanced process control 
• Real-Time sensing: Implement inline sensors (e.g., 

ultrasonic thickness gauges [23]) on calendaring and 
coating lines to catch off-spec thickness or density in real 
time. 

• Predictive maintenance: Employ AI-based models to 
anticipate calibration drift in formation equipment, 
allowing for proactive rather than reactive interventions. 

3.4.3 Quality control (QC) integration 
• In-Line SPC: Shift from post-production clustering to in-

line statistical process control (SPC) during electrode 
preparation [24]. Immediate feedback helps prevent entire 
batches from drifting. 

• Variability fingerprinting: Establish batch-specific profiles 
linking key process parameters (e.g., slurry viscosity, 
ambient conditions) to final capacity, facilitating targeted 
root-cause analyses. 

3.5 Broader implications and future directions 
3.5.1 Cost and reliability gains 
• Reducing early-stage variability can cut production costs 

by up to 15% for EV battery packs, largely by decreasing 
rework, scrap, and warranty claims [25]. 

• In grid-scale storage, higher consistency aids in accurate 
state-of-health (SoH) monitoring, extending system 
longevity [26]. 

3.5.2 Further investigations 
• Cell geometry comparisons: Contrast pouch, prismatic, and 

cylindrical cells to identify geometry-specific sensitivities 
to process deviations. 

• Environmental control: Examine humidity and 
temperature effects during electrolyte filling, factors often 
overlooked in standard QC protocols [27]. 

• Second-life applications: Investigate how initial variability 
affects the viability of second-life battery usage, where 
performance uniformity is paramount [28]. 

Both the box plot data and the high CV values underscore the 
interplay of material heterogeneity, equipment calibration, 
and the intrinsically variable current profiles used in battery 
charging/discharging. By refining material specifications, 
improving process controls, and better accommodating non-
constant current regimes, manufacturers can substantially 
reduce outliers and enhance overall process consistency. 

3.6 Limitations 
This study’s focus on pouch cells limits generalizability 

to prismatic/cylindrical designs. Additionally, the dataset 
excludes seasonal variations (e.g., summer vs. winter 
production), which may influence electrolyte viscosity [29]. 
By dissecting initial variability in pouch cell manufacturing, 
this work provides a blueprint for preemptive quality control. 
The integration of material standardization, real-time 
monitoring, and AI-driven analytics represents a paradigm 
shift from reactive screening to proactive consistency 
management- a critical step toward scalable, sustainable LIB 
production. 

4. Conclusion 

The comprehensive analysis of battery manufacturing 

revealed consistent voltage levels across batches, 

demonstrating effective control over this critical parameter. 

The stability in voltage serves as a strong indicator of a well-

managed manufacturing process, highlighting the 

manufacturer's ability to maintain precise electrical 

characteristics. However, the study also uncovered higher 

variability in current, charge, and discharge capacity, with 

notable outliers identified. These variations signal potential 

areas where the manufacturing process could benefit from 

further refinement to ensure more uniform performance 

across battery cells. Such variability can significantly impact 

battery reliability and overall performance, underscoring the 

critical need for robust quality control measures. The 

observed variations in key metrics emphasize the importance 

of maintaining consistent manufacturing processes. 

Addressing these inconsistencies is crucial for optimizing 

battery life, performance, and reliability. Continuous 

monitoring and targeted interventions will be essential in 

mitigating these variations and enhancing overall 

manufacturing consistency. Looking forward, several 

promising research directions emerge from these findings. 

Researchers should prioritize conducting in-depth analyses 

to explore the root causes of variability, focusing on intricate 

interactions between material properties, equipment 

calibration, and environmental factors. This comprehensive 

approach can provide deeper insights into the sources of 

performance inconsistencies. Advanced monitoring and 

analytics tools represent another critical avenue for future 

investigation. Developing real-time monitoring capabilities 

could enable proactive quality control, allowing 

manufacturers to identify and address potential issues before 

they impact final product quality. Such technological 

innovations could revolutionize the approach to battery 

manufacturing quality assurance. Material science and 

manufacturing process innovations also present significant 

opportunities for improvement. Exploring novel materials 

and advanced manufacturing techniques could potentially 

reduce variability and enhance overall battery performance 

and reliability. This approach requires interdisciplinary 

collaboration between materials scientists, engineers, and 

manufacturing experts. Longitudinal studies will be 

instrumental in understanding the long-term stability of the 

manufacturing process. By tracking changes in variability and 

performance over extended periods, researchers can gain 

comprehensive insights into the manufacturing process's 

evolution and identify potential improvement strategies. 

These research directions collectively represent a 

comprehensive approach to addressing manufacturing 

variability. By systematically investigating and addressing the 

sources of inconsistency, researchers and manufacturers can 

work towards developing more reliable, high-performance 

battery technologies. The ultimate goal is to create 

manufacturing processes that consistently produce high-

quality battery cells with minimal variability, meeting the 

increasingly demanding requirements of modern 

technological applications. The path forward involves a 

commitment to continuous improvement, innovative 

research, and a holistic approach to understanding and 
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controlling the complex factors that influence battery 

manufacturing quality. 
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