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A B S T R A C T 
 

Detecting multiple simultaneous faults in rotor systems is challenging, 
especially when labelled data is limited. This paper presents a novel framework 
combining unsupervised and semi-supervised machine learning to enhance 
fault diagnosis in rotor systems with various fault types. Using finite element 
method simulations, 100 vibration signal observations were generated for 
rotor systems under three fault conditions: imbalance, imbalance with shaft 
bending, and imbalance with cracking. Features were extracted via a multi-
layer autoencoder in an unsupervised manner, followed by sequential feature 
selection to identify the most informative attributes. Two classification 
approaches were then applied: k-means clustering for unsupervised fault 
detection and a semi-supervised model with a Softmax layer for classification. 
The semi-supervised method achieved over 95% accuracy using only three 
selected features, effectively distinguishing different fault types. In contrast, the 
unsupervised approach proved better suited for anomaly detection rather than 
precise fault identification. These results demonstrate the potential of 
integrating unsupervised feature extraction with semi-supervised classification 
for reliable fault diagnosis in rotor systems with scarce labelled data. 
 

 
1. Introduction  

Rotating systems like steam turbines, generators, and 

wind turbines are now the most widely used devices in the 

energy trade [1]. When the operation of these systems is 

abruptly stopped due to faults, financial losses occur; if these 

defects escalate to catastrophic failures, safety risks are also 

introduced. In the complex domain of rotating machinery, 

accurate detection of anomalies, including the identification 

of their type, magnitude, and severity, is imperative for 

ensuring optimal operation and longevity. One of the primary 

reasons vibration analyses are heralded among 

contemporary diagnostic techniques is its intrinsic capability 

to provide detailed and precise condition monitoring. This 

method's fidelity in capturing minute discrepancies allows for 

timely intervention, thereby potentially averting 

consequential system failures [2]. Manual or automated 

methods can be used to analyze real-time vibration signals. 

That is, in the manual approach, a specialist compares the 

signals recorded in the field with both the healthy condition 

and other fault scenarios using damage criteria and 

standards. However, in the automated approach, the same 

process can be performed using a pre-trained artificial 

network, such as machine learning (ML) [3]. A wide range of 

mechanical and material defects can adversely affect the 

performance of rotary devices. Although imbalance is the 

most common abnormality affecting rotor systems, it can also 

lead to other issues such as shaft cracks, alignment problems, 

and bearing complications. Conversely, a bowed shaft can 

exhibit symptoms such as imbalance, making it challenging to 

differentiate between the two faults [4,5]. Numerous studies 

on fault detection in rotary machines have utilized ML-based 

algorithms as a method for automated diagnostic models. For 

instance, Jablon et al. [6] presented a new method to diagnose 

unbalancing in a rotating system that is supported on rolling 

element bearings. Because of the rich information and the 

simple instrumentation, the authors proposed a combination 

of ML algorithms and vibration orbital features. To consider 

the probable impacts of uncertainty, two industrial scenarios, 

i.e., average and harsh conditions, were studied. Wisal and Oh 

[7] introduced a deep learning (DL) framework that merged 

ResNet and a convolutional neural network (CNN) to detect 

imbalances in rotating shafts. Using accelerometer data and 

emphasizing the effectiveness of short-time Fourier 

transform over fast Fourier transform data representation, 

the algorithm outperformed traditional methods. The 

research underscored computational challenges for real-time 

industry applications, but there was a lack of examining 

different rotor faults, incorporating varied data attributes, 

and devising an intuitive interface for industrial use. 
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Rodrigues et al. [8] undertook an analytical investigation 

of various ML methodologies for fault diagnosis in rotating 

machinery utilizing images of vibration spectra. The study 

encompassed a range of faults, including imbalance, 

misalignment, and rotor-stator rubbing, with data generated 

from spectral images during machine operation. Classifiers 

were trained using data simulated via the finite element 

method and subsequently evaluated using both simulated 

and experimental data derived from a rotor-disc system. 

Among the explored methods, CNN exhibited superior 

diagnostic performance. Notably, the principal component 

analysis combined with the k-nearest neighbors (KNN) 

classifier was distinguished by its efficient computational 

cost. The study did not encompass scenarios with coexisting 

multiple faults. Rezazadeh et al. [9] investigated unbalanced, 

cracked, and misaligned rotor-bearing systems using 

machine learning. Utilizing a 660-system dataset and 

extracting features from the time, frequency, and time–

frequency domains, supervised classifiers achieved high 

accuracy, whereas k-means clustering demonstrated lower 

performance. Supervised methods were superior, but 

clustering was effective for ambiguous damages and outliers. 

Ma and Chu [10] developed an ensemble DL method for 

diagnosing faults in the shaft and bearing parts in rotating 

machinery. This method combined a convolutional residual 

network, a deep belief network, and a deep auto-encoder 

using multi-objective optimization. Tested on an 

experimental rotor-bearing system, their approach 

outperformed other models in adaptability and accuracy. 

They proposed that future research extend this method to 

complex classification tasks and explore efficiency 

improvements through parallel computing. Semi-supervised 

classification algorithms offer an innovative approach to 

condition monitoring of machinery by leveraging both 

labelled and unlabeled data. These methods reduce the 

manual effort required for extensive labelling and enhance 

the accuracy and robustness of predictive models. As a result, 

machinery maintenance becomes more initiative-taking, 

minimizing downtime and prolonging equipment lifespan. To 

this end, Yu et al. [11] tackled the challenge of bearing fault 

diagnosis with limited labelled condition monitoring data. 

They introduced a three-stage semi-supervised learning 

method that combines data augmentation and metric 

learning. The process begins with seven data augmentation 

techniques to enhance the limited labeled samples, and then 

utilizes k-means to determine cluster centers. The Kullback-

Leibler divergence loss then assesses and minimizes 

variations between feature distributions. The technique was 

tested on two datasets related to bearing faults, 

demonstrating its enhanced performance over current 

methods, particularly when the number of labelled samples is 

limited. The authors suggested adapting this model to 

situations where the unlabeled samples might only include 

healthy samples or samples from specific health conditions. 

SMGJE (semi-supervised multi-graph joint embedding), a 

method for reducing dimensionality in rotating machines, 

was developed by Yuan et al. [12]. Unsupervised and 

supervised hypergraphs were utilized in a fault diagnosis 

technique that considered the relationship between high-

dimensional fault data. The method also generated 

straightforward graphs to increase dimensionality reduction 

and pattern recognition accuracy in a low-dimensional 

embedding space. Wu et al. [13] employed a semi-supervised 

learning model for fault diagnosis in rotor systems. The short-

time Fourier transform spectrograms were introduced to an 

autoencoder for feature extraction. Then, a Softmax layer was 

trained using the extracted features from the images for 

classification purposes. 

Although a limited number of studies have previously 

utilized semi-supervised convolutional neural networks for 

rotor system classification, the combined potential of 

autoencoders and clustering techniques has not been 

investigated in the context of rotor system fault clustering. 

Furthermore, a notable gap has been identified in the 

literature regarding the application of semi-supervised ML to 

time-series data for rotor systems with multiple faults. To fill 

these gaps, we propose two ML-driven fault detection 

strategies for rotor systems, namely, unsupervised and semi-

supervised learning. Three distinct health conditions of the 

rotor system are used to assess the performance of the 

proposed methodology. An unsupervised autoencoder is 

employed to extract pertinent features from the system. Once 

these features are extracted, they are subjected to clustering, 

and the outcomes are subsequently compared with results 

from supervised classification methods. 

2. Methodology  

Figure 1 illustrates the workflow of the proposed 

method, where the extracted features undergo two distinct 

learning methodologies: classification and clustering. It is 

pertinent to note that within the graph and in the empirical 

applications, the finite element model (FEM) can be replaced 

with a data acquisition system, a mechanism responsible for 

transforming analog signals, as captured by accelerometers, 

into their digital counterparts. While this conversion stage is 

commonly observed in real-world scenarios, our method 

generates these digital signals through FEM. The inclusion of 

this stage in the illustration is primarily to furnish a holistic 

understanding. This approach focuses on designing a semi-

supervised ML model for identifying flawed rotary systems 

and assessing its performance against that of an unsupervised 

model. In the preliminary stages, unbalanced, unbalanced-

bowed, and unbalanced-cracked rotor-bearing-disc systems 

were modelled using the FEM. Because simulations were 

conducted under various operational conditions, one 

hundred vibration signal observations for each health 

condition were produced. Given that these vibration signals 

served as the cornerstone for the subsequent feature 

extraction process, an autoencoder neural network was 

employed to extract salient features from them. As these 

features emerged, the four most pivotal attributes were 

meticulously isolated using the sequential feature selection 

(SFS) method, which was chosen to ensure computational 

efficiency. A hybrid approach was utilized for classification. 

Initially, the processed data was grouped into distinct clusters 

using the k-means clustering algorithm. Subsequently, 

features were isolated through SFS and were then fed into a 

custom-designed semi-supervised neural network model. 

Within this model, a Softmax layer was integrated to manage 

the classification based on various health conditions of the 

rotary systems.  
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Figure 1. Workflow of the proposed method 

 

 

 

The results from the k-means clustering and the neural 

network model were subsequently compared; the 

comparison was performed based on the acquired accuracies 

within the two models. A comprehensive review of each step, 

along with its technical rationale, was provided in the 

subsequent sections of the paper. 

2.1 Simulation of the rotor system 

For the rotating systems' FEM model, the shaft was 

segmented into 25 elements, with assumptions of bearings at 

both extremities, specifically at nodes 1 and 26; the central 

disc is positioned at node 13. Figure 2 shows the schematics 

of the rotor-bearing-disk systems for: the unbalanced 

condition combined with its FEM node-element depiction, the 

unbalanced-bowed, and the unbalanced-cracked states, 

labelled as a-c, respectively. Equation (1) shows the general 

form of the equation of motion for a dynamic system that 

includes a rotor-bearing-disc, where: M, C, and K are the mass, 

damping, and stiffness matrices; F, �̈�, �̇�, and X represent the 

 

 

 

 

 

force, acceleration, velocity, and displacement vectors. These 

matrices for a healthy rotor system were extracted in [14]. 

Based on the nature of a fault, mass, damping, stiffness, 

and/or force, these matrices can change. An external 

unbalancing force will add an external force term similar to 

that in equation (2), where: md, e, ω, and θ are the values of 

disc mass, disc eccentricity, rotational velocity, and 

unbalancing angle (angle between the new mass centre and 

shaft fundamental axis) [14]. A bowed shaft, on the contrary, 

introduces the static force terms in equation (3), where: K, δ, 

and φ are the stiffness matrix, initial bow vector, and initial 

bow angle to the shaft's main axis [15]. Although a cracked 

shaft does not add an external force to the system, it will give 

the element more flexibility. In addition, because of the 

breathing behaviour of the cracked element, for example, the 

frequent opening and closing of the crack's edges during a full 

rotation, a non-linear phenomenon will be added to the 

dynamics of the system. Equation (4) shows the expression 

for the stiffness matrix of a shaft with a breathing crack, 

Figure 2. Schematic of a rotor-disc-bearing system (a) unbalanced; (b) unbalanced-bowed; (c) unbalanced-cracked 
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where K0, K1, K2, K3, and K4 are related to the fully opened, 

half-closed, and fully closed crack conditions  [16]. 

[M]{Ẍ}+[C]{Ẋ}+[K]{X}={F}           (1) 

FU= mdeω2[cos(ωt+θ)+ sin(ωt+θ)]           (2) 

FB= [K]{δ}[cos(ωt+φ)+ sin(ωt+φ)]                  (3) 

[KBr]= 
K0+(K1 cos(ωt))+(K2 cos(2ωt))+(K3 cos(3ωt))+(K4 cos(4ωt))  

             (4) 

Once the effects of unbalancing, shaft bow, and shaft 

crack on the dynamics of a rotor system are calculated, for 

Class 1 of the current study (which refers to an unbalanced 

rotor system), only the force FU needs to be added to the right 

side of equation (1). For Class 2 and Class 3, both the right and 

left sides of equation 1 should be modified by inserting the 

force term FU+FB and the stiffness matrix for the breathing 

crack (e.g., KBr), respectively. For each scenario, the equation 

of motion was solved employing an implicit manner, i.e., 

Houbolt's method with a distinguished time increment. Table 

1 lists the indicators for each class and their associated 

damage scenarios. 

Table 1. Systems’ constant parameters 

Class indicator Fault scenario 

Class 1 Unbalanced 

Class 2 Unbalanced-bowed 

Class 3 Unbalanced-cracked 

 

2.2 Feature extraction 

ML algorithms, such as regression and classification, 

offer advantages over conventional analysis techniques for 

specific tasks. However, they also carry potential risks due to 

their data-hungry nature, dependence on labelled data, and 

diminished accuracy in automatic feature extraction. 

Consequently, establishing a robust feature extraction 

framework and learning model, under the assumption of a 

limited dataset, presents scientific interest [17]. Both manual 

and automated feature engineering methods can be used to 

uncover valuable insights within a dataset. Autoencoders are 

neural networks designed to reconstruct input data, making 

them especially effective for feature extraction, enabling 

dimensionality reduction, and capturing essential patterns in 

complex datasets [18].  

 

Figure 3. Stacked autoencoder and Softmax layer network 

An autoencoder consists of an encoder, a bottleneck, and 

a decoder (as depicted in Figure 1) where the encoder's 

output can be used as the feature for the next stages [19, 20]. 

Based on the above, the autoencoder was chosen as a feature 

extraction tool for this approach. It is essential to maintain a 

balance between the quality and quantity of extracted 

features, the time required, and the final accuracy of a 

learning model. Procedures such as feature selection and 

ranking are crucial for pinpointing the most significant 

characteristics within an attribute vector. Sequential feature 

selection (SFS) stands out in this domain. It is a technique that 

iteratively adds or removes features to optimize a model's 

performance, aiming for the most relevant subset of features. 

By evaluating the contribution of each feature in a systematic 

sequence, SFS ensures that redundancy is minimized and that 

the selected features collectively enhance the model's 

predictive accuracy [21]. 

2.3 K-means clustering 

K-means is an unsupervised ML technique specifically 

designed for clustering tasks. Its fundamental objective is to 

partition a dataset into 'k' distinct non-overlapping subsets, 

or clusters. Each cluster is represented by its centroid, which 

is essentially the meaning of the data points within that 

cluster. When deploying k-means, data points are initially 

assigned to one of the 'k' centroids based on the minimum 

distance principle, meaning every data point belongs to the 

cluster whose centroid is nearest to it. As iterations progress, 

these assignments might change, leading to a shift in the 

cluster centroids. This process is repeated, with centroids 

recalculated and data points reassigned, until the centroids 

no longer change significantly, or a set number of iterations is 

reached. While k-means has been proven to be effective for a 

variety of applications, it does come with challenges. One of 

its major limitations is the necessity to specify the number of 

clusters, 'k', in advance. Choosing an inappropriate 'k' value 

can lead to inaccurate clustering. Techniques such as the 

Calinski-Harabasz criterion, the elbow method, and silhouette 

analysis have been developed to aid in estimating the optimal 

number of clusters. Additionally, k-means is sensitive to the 

initial placement of centroids, which can sometimes result in 

suboptimal clustering solutions. To mitigate this, the 

algorithm can be run multiple times with different 

initializations, and the best result can be chosen [22, 23]. 

2.4 Semi-supervised classification 

Leveraging semi-supervised learning algorithms allows 

for the integration of the strengths of both unsupervised and 

supervised models, especially when working with a limited 

amount of labelled data.  
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By applying an unsupervised methodology for feature 

extraction (such as an autoencoder), one can glean 

informative details without any prior knowledge about the 

response of the observation. At the subsequent stage, there 

are two potential pathways. First, a classification layer (such 

as the Softmax layer) that can be directly attached to the 

feature extraction layer (in this case, the autoencoder). 

Alternatively, the extracted features can be stored and later 

utilized in a separate classification model, such as a support 

vector machine. The approach that has been adopted in this 

research opts for the former approach. Figure 3 illustrates the 

entire network for the semi-supervised case, which includes 

both the autoencoder and the Softmax layer. The model's 

performance was subsequently evaluated using the testing 

dataset. 

3. Results and discussion 

In this paper, the health scenario for unbalanced, 

unbalanced-bowed, and unbalanced-cracked rotor systems 

were modelled employing FEM then the vibration signals 

were saved as the data. To achieve this, fault parameters were 

randomly altered 100 times for each health condition. The 

eccentricity (e) on the assumption of unbalanced systems was 

chosen to be between 0.005 and 1.5 mm, and its phase angle 

(θ) was assumed to be between 0 and 2π. Similarly, the 

magnitudes of the initial bow and its phase angle in the case 

of Class 2 were also selected at the same limits. For the Class 

3 condition, besides the random selection of unbalancing 

parameters, the crack’s depth and the element were assumed 

to have changes between 0.04r and 0.6r, and 2 to 24, 

respectively (where r is the shaft radius). Other parameters 

that remained constant for all 300 sample tests (for the three 

classes) are listed in Table 2. 

The time increment of Houbolt's technique was chosen 

as 0.001 seconds. Since the initial speed was set to zero, 

because of the positive initial rotational acceleration, it was 

assumed that the system was during its start-up, the first 

24.148 seconds (immediately after passing the first critical 

speed). Figure 4 displays random examples of time-domain 

signals from the three classes. When the rotation begins, the 

system with an unbalanced bow exhibits a non-zero vibration 

amplitude. This is highlighted in the magnified section of the 

diagram, but this effect diminishes over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of the 100 sample tests belonging to each scenario, 85% 

were designated for training, while the remaining 15% were 

used for testing in the semi-supervised classification model. It 

is worth emphasizing that the data for the training and testing 

phases underwent random selection. For the clustering 

model, the entire dataset was implemented during the 

training phase, and the performance of this step was 

evaluated.  

In the feature extraction stage, a 20-layer autoencoder 

algorithm was implemented. To this end, the number of 

hidden layers, L2 weight regularisation (ridge regression), 

sparsity regularisation, and sparsity proportion for the 

autoencoder were set at 20, 0.001, 4, and 0.05, respectively. It 

is worth noting that the transfer functions for the decoder and 

encoder were selected as 'purelin' and 'logsig', respectively. 

SFS was then used to select the top three informative features 

(out of the twenty characteristics).  

Two approaches were applied in this study to cluster the 

data. First, the three selected features from the prior stage 

were put into the k-means model. Second, the same clustering 

model was examined with three manually extracted features. 

For the k-means, the method for selecting initial cluster 

centroid positions, values of replicates, distance metric, and 

maximum iteration were chosen as ‘Plus’ 5, ‘Cityblock’, and 

1000, respectively. Using known output labels, clustering 

accuracy was determined by comparing the clusters assigned 

to the actual classes. Feature extraction through the 

autoencoder yielded a 41% accuracy, while k-means 

clustering, assuming two clusters (with the unbalanced 

scenario considered typical, and the other two fault types 

grouped as abnormal conditions), achieved 70% accuracy. 

This suggests that k-means is more proficient in detecting 

abnormalities rather than pinpointing specific faults in the 

rotor system. In another attempt, three features, i.e., signal-

to-noise ratio (SNR), spurious free dynamic range (SFDR), 

and crest factor, were utilized in the same designed k-means 

model, delivering an 87% accuracy with three clusters.  

Figure 5 shows  2D scatter plots representing both the 

original data points and those obtained after manual feature 

extraction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Systems’ constant parameters 

Parameter Amplitude Parameter Amplitude 
Initial speed 0 Density 7.8e-6 kg /mm3 
Initial acceleration 250 rad/s2 Disc mass 20 kg 
Shaft length 720 mm Disc diametral moment of inertia 15.5e3 kg.mm2 
Shaft diameter 40 mm Bearing stiffness 450 N/mm 
Young modulus 208 GPa Bearing damping 0.6 Ns/mm 

 

 

Figure 4. Time-domain signals of a rotor-disc-bearing system (a) unbalanced; (b) unbalanced-bowed; (c) unbalanced-cracked 
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Figure 5. Scatter plot of (a) actual clusters, (b) assigned clusters 

The Calinski-Harabasz method was also used to 

determine the optimum number of clusters. When applied to 

two different feature extraction methods, i.e., one using the 

autoencoder and the other using the manual approach, it 

suggested 6 clusters for the former and 3 clusters for the 

latter. To evaluate the proficiency of the designed semi-

supervised model, the training and testing datasets were fed 

into it during their respective phases. The confusion matrices 

presented in Figure 6 provide insight into the classifier's 

performance during the training phase. During the training 

phase, the classifier demonstrates exemplary accuracy for 

Classes 1 and 2, correctly identifying all instances in these 

categories. However, a challenge arises when distinguishing 

between Class 2 and Class 3, with 12 instances from Class 3 

being misclassified as Class 2. This results in a training 

accuracy of 243/255, or approximately 95.3%.  

 

 
Figure 6. Confusion matrix of the training phase 

 

 

 

 

 

 

During the testing phase (Figure 7), the classifier 

accurately classifies all instances of the first two classes; 

however, it experiences minor issues with Class 3, 

misclassifying 2 of its instances as the second class. This 

yields a testing accuracy of 43/45 (95.6%). Given the 

consistent difficulty in predicting Class 3 in both phases, the 

classifier might benefit from further refinement to better 

differentiate between Class 2 and Class 3. 

 
Figure 7. Confusion matrix of the testing phase 
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4. Conclusion 

This paper investigated fault diagnosis in unbalanced 

rotor systems using machine learning techniques. A dataset 

comprising 100 observations for each of three fault scenarios, 

unbalanced, unbalanced-bowed, and unbalanced-cracked, 

was generated through finite element method simulations in 

MATLAB®. Features were extracted using a multi-layer 

autoencoder, followed by the selection of the three most 

informative features via sequential feature selection. Two 

approaches were evaluated: unsupervised clustering using k-

means and semi-supervised learning with a Softmax 

classification layer. While k-means clustering initially 

produced unsatisfactory accuracy, incorporating manually 

extracted features nearly doubled its performance. The semi-

supervised method, utilizing the three selected features, 

achieved a test accuracy of 95.6%, demonstrating its 

effectiveness in diagnosing multiple fault types within rotor 

systems. These findings suggest that combining unsupervised 

feature extraction with semi-supervised classification offers a 

promising approach for fault diagnosis when labelled data are 

scarce. Although fully unsupervised networks may be 

insufficient for detailed fault identification, they remain 

valuable for condition monitoring and anomaly detection. 

Future research should expand this work by considering a 

broader range of rotor faults to develop a more 

comprehensive diagnostic framework. Moreover, validating 

the proposed models on real-world rotor systems is essential 

to confirm their practical applicability and robustness beyond 

simulation environments. 
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