
S. Petridis et al. /Future Energy                                                                                                    August 2025| Volume 04 | Issue 03| Pages 35-47 

35 

 

 

 

Article 

Transfer learning for power system fault location 

using artificial neural networks 
Stefanos Petridis1, Petros Iliadis1, Angelos Saverios Skembris2, Rakopoulos Dimitrios2*,  

Elias Kosmatopoulos1 

1Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece 
2Sustenergo CERTH Spin-off P.C., Kozani, Greece 

A R T I C L E   I N F O 
 

Article history: 
Received 26 May 2025  
Received in revised form 
03 July 2025 
Accepted 12 July 2025 
 
Keywords: 
Artificial neural networks, Fault location,  
Transfer learning, Power distribution systems, 
IEEE test feeders, Classification 
 
*Corresponding author 
Email address:  
rakopoulos@certh.gr 
  
 
DOI: 10.55670/fpll.fuen.4.3.4 

A B S T R A C T 
 

This paper investigates the application of transfer learning techniques to 
artificial neural networks (ANNs) for fault detection in power distribution 
systems, formulated as a classification problem. Comprehensive datasets are 
developed using multiple IEEE test feeders of varying complexity, including the 
13-bus, 34-bus, 37-bus, and 123-bus test feeders. Various fault types are 
simulated across all three-phase buses in each system. Baseline performance is 
established by independently training ANNs on each feeder. Subsequently, 
knowledge learned from the complex 123-bus feeder is transferred to 
accelerate and improve fault location in simpler networks. The results 
demonstrate that transfer learning significantly improves both training 
efficiency and classification performance. Training convergence is accelerated 
by a factor of 1.68 to 2.56 across target feeders, corresponding to epoch 
reductions between 40.6% and 61.0%. Additionally, computational time is 
reduced by 24.0% to 49.5%, further enhancing the practical viability of the 
proposed approach. These findings suggest that transfer learning offers a 
powerful strategy to address data scarcity and computational challenges in fault 
location, enabling utilities to deploy accurate, efficient fault detection systems 
across diverse distribution networks with minimal retraining effort. 
 

 
1. Introduction  

The rapid identification and localization of faults in 

power distribution systems is crucial for minimizing outage 

durations, optimizing repair crew dispatch, and improving 

system reliability indices. Traditional fault location methods 

often rely on impedance-based calculations or rule-based 

systems that may struggle with the increasing complexity and 

dynamic nature of modern distribution networks. Machine 

learning techniques, particularly artificial neural networks 

(ANNs), have shown promising results in addressing these 

challenges by learning patterns from system measurements 

to accurately classify fault locations [1]. ANNs are capable of 

learning complex relationships between electrical 

measurements and fault parameters, offering better accuracy 

and noise tolerance than traditional impedance-based or 

traveling-wave techniques [2]. A significant number of recent 

works have focused specifically on ANN-based approaches. 

For example, Pourahmadi-Nakhli and Safavi [3] employed 

ANNs combined with wavelet features for path characteristic 

frequency-based fault location. Rafinia and Moshtagh [4] used 

ANNs and fuzzy logic to locate faults in underground systems 

based on high-frequency features extracted from current and 

voltage signals. Dashtdar et al. [5] developed an ANN-based 

system for fault section identification and localization in 

distribution networks. Similarly, Aslan and Yagan [6] used 

ANN models to classify fault types and distances based on the 

frequency spectra of fault signals. Other studies have 

enhanced ANN-based models to address the challenges posed 

by distributed generation. Javadian et al. [7] combined ANN 

with distributed generation information to determine fault 

types and locations. Bakkar et al. [8] presented an ANN-based 

protection framework for smart grids. Shafiullah et al. [9] 

introduced a wavelet-based extreme learning machine, an 

ANN variant, for fault location. Lout and Aggarwal [10] 

proposed an ANN-based method that uses current transients 

for fault phase selection and location in active networks with 

spurs. While ANN-based methods have proven effective 

under known network configurations, they typically require 

extensive retraining when network topology or operating 

conditions change, limiting their practical deployment in 

evolving smart grids. Traditional ANN approaches for fault 

location typically train separate models for each distribution 

system [1], ignoring potential knowledge transfer between 

networks of varying complexity.  
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This methodology becomes increasingly inefficient as 

utilities manage diverse feeder configurations ranging from 

simple radial systems to complex meshed networks with 

distributed generation [11]. Therefore, despite their 

effectiveness, the deployment of ANNs in real-world settings 

is hindered by two significant limitations. First, deep learning 

models typically require large amounts of labelled training 

data—an unrealistic expectation in power systems where 

fault events are both rare and sparsely labelled [12]. Second, 

these models often lack the flexibility to generalize across 

varying network topologies [13]. In practical utility 

applications, this poses a major barrier: acquiring sufficient 

fault data for every unique or reconfigured network is rarely 

feasible. As a result, while ANNs offer a compelling solution in 

theory, their practical implementation remains constrained 

by data availability and transferability challenges. 

Transfer learning offers a promising solution to this 

challenge by enabling models trained under one set of 

conditions to adapt to new scenarios with minimal additional 

data. This approach aligns with the intuition that the 

underlying physical phenomena of fault behavior share 

common characteristics across different network topologies, 

despite variations in specific electrical parameters and 

configurations. Recent studies have successfully applied 

transfer learning to fault detection tasks: Shakiba et al. [14] 

used CNNs for transmission line fault diagnosis under varying 

line characteristics; Yao et al. [15] applied deep transfer 

learning to improve fault detection across different nuclear 

power plant conditions; and Asutkar and Tallur [16] 

demonstrated efficient domain adaptation in machine fault 

diagnosis. These works show that transfer learning can 

significantly reduce training costs, improve generalization, 

and accelerate model deployment, making it a highly 

attractive tool for fault detection in dynamic and distributed 

energy systems. However, few studies have yet explored its 

potential specifically for distribution networks with high 

variability — a gap this paper aims to address. The remainder 

of this paper is organized as follows: In Section 2, the Fault 

Location problem is described and formulated. A brief 

description of neural networks is also provided, along with 

their use in similar tasks. In Section 3, the transfer learning 

approach is presented. In Section 4, the methodology for 

creating comprehensive fault datasets across multiple test 

feeders is described in detail. The data manipulation, the ANN 

architectures used, and the training procedures for 

establishing baseline performance as well as for transfer 

learning are presented in Section 5. The experimental results 

are analyzed in Section 6, and the baseline and transfer 

learning performance are compared. The findings of the 

experiments are summarized in Section 7, and their 

implications for practical applications are discussed. 

2. Fault location with neural networks 

In this section, a brief description of the fault location 

problem is provided. Subsequently, a small introduction to 

ANNs is included, along with the way they can be applied to 

the fault location problem. 

2.1 Fault location problem formulation 

In this paper, it is assumed that voltage phasor 

measurements are available for all connected phases at all 

buses of the distribution network. That is, for a certain 

distribution network bus, i, a vector [𝑉𝑖
𝑎, 𝜃𝑖

𝑎 , 𝑉𝑖
𝑏 , 𝜃𝑖

𝑏 , 𝑉𝑖
𝑐 , 𝜃𝑖

𝑐]𝑇 ∈

ℝ6 exists where: 

• 𝑉𝑖
𝑎, 𝑉𝑖

𝑏  and 𝑉𝑖
𝑐  are the voltage magnitudes of phases a, b and 

c, respectively, on bus i. 

• 𝜃𝑖
𝑎 , 𝜃𝑖

𝑏  and 𝜃𝑖
𝑐  are the voltage angles of phases a, b and c, 

respectively, on bus i. 

For a distribution network containing n buses, a single data 

point, k, that includes all buses’ measurements can be 

represented as a single vector, x𝑘 ∈ ℝ6𝑛 . The entire dataset of 

all m data points measured for the examined distribution 

network can be represented as a single matrix x𝑘 ∈ ℝ6𝑛×𝑚. 

The fault location problem is, then, formulated as a 

classification task where the classifier’s objective is to locate 

the faulty bus if one is present. That is, given a data point x𝑘 , 

the faulty bus 𝑦
^

𝑘  is determined by the following: 

𝑦
^

𝑘 = 𝑓(x𝑘) (1) 

where f  is the classification method. 

2.2 Introduction to artificial neural networks 

ANNs are computational models inspired by the 

structure and functioning of biological neural networks in the 

human brain. They have emerged as powerful machine 

learning tools for solving complex problems across various 

domains, including pattern recognition, function 

approximation, classification, and prediction tasks [17]. The 

key strength of neural networks lies in their ability to learn 

representations from data without explicit programming of 

rules, making them particularly effective for problems where 

Abbreviations 

ANN Artificial Neural Network 

PG Phase-to-Ground 

DPG Double-Phase-to-Ground 

IEEE Institute of Electrical and Electronics Engineers 

MLP Multi-Layer Perceptron 

PP Phase-to-Phase 

ReLU Rectified Linear Unit 

SGD Stochastic Gradient Descent 

SPG Single-Phase-to-Ground 

Nomenclature  

b  Bias term  

C  Number of classes E - Error function 

f  Activation function or classifier 

I  Current magnitude (A)  

N  Number of samples  

n  Number of neurons  

P  Active power (W) 

Q   Reactive power (VAr)  

V  Voltage magnitude (V)  

wi  Weight of i-th neuron  

xi  Input value  

y  Output  

Z  Impedance (Ω)  

η  Learning rate  

θ  Phase angle (rad) 

 µ  Mean 

σ  Standard deviation 
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mathematical formulation is difficult or unknown. The 

fundamental idea behind neural networks is to simulate the 

behavior of interconnected neurons that process and 

transmit information. Similar to biological neural networks, 

artificial neural networks learn by adjusting the connections 

(weights) between artificial neurons in response to input 

stimuli, enabling them to recognize patterns and make 

predictions based on previously unseen data. An artificial 

neuron is called the perceptron, graphically depicted in 

Figure 1, and is the fundamental building block of neural 

networks. The mathematical representation of a perceptron 

of n inputs and one output, y, is the following: 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏) (2) 

where 𝑥𝑖  represents the ith input value, 𝑤𝑖  the weight of the ith 

neuron that is applied to the input 𝑥𝑖 , b the bias term, and 𝑓(·) 

the activation function. 

 

 
Figure 1: Schematic representation of a perceptron, showing inputs 

xi, weights wi, bias b, activation function f, and output y. 

A multi-layer neural network, shown in Figure 2, also 

known as a multi-layer perceptron (MLP), consists of an input 

layer, one or more hidden layers, and an output layer. Each 

layer contains multiple neurons (perceptrons), with each 

neuron in a layer connected to all neurons in the subsequent 

layer, forming a fully connected structure. The key advantage 

of multi-layer neural networks is their ability to learn 

hierarchical representations. Lower layers typically learn to 

detect simple features, while higher layers combine these 

features to recognize more complex patterns. The universal 

approximation theorem states that a feedforward network 

with a single hidden layer containing a finite number of 

neurons can approximate any continuous function on 

compact subsets of ℝ𝑛, given sufficient neurons and 

appropriate activation functions [18]. 

2.3 Neural networks for classification tasks 

Classification represents one of the primary applications 

of ANNs, wherein the objective is to assign input data to 

predefined categories or classes [17]. In the context of power 

systems, classification tasks encompass fault detection, fault 

type identification, and fault location—the focus of this study. 

 

Figure 2. Schematic representation of a multilayer ANN, with n 

inputs, two hidden layers, and one output 

When configured for classification, the architecture of an 

ANN must accommodate the discrete nature of the output 

space. For a classification problem with C classes, the output 

layer typically contains C neurons for multi-class 

classification or a single neuron for binary classification. The 

final layer employs specific activation functions conducive to 

classification tasks. For the purposes of fault detection in 

distribution networks, multi-class classification is performed 

with n + 1 different classes, where n is the number of buses in 

the network. The additional class corresponds to normal 

operating conditions (no fault detected). The activation 

function used in the output layer is called Softmax [19], which 

is commonly used in multiclass classification problems, 

transforming the ANN’s output into a probability distribution 

across all classes: 

𝜎(z)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑛+
𝑘=1

 (3) 

where 𝑧𝑗  represents the input to the softmax function for class 

j, and the output 𝜎(𝐳)𝑗  is the probability that the input belongs 

to class j. 

During training, classification networks typically minimize 

cross-entropy loss functions [20]. For multi-class problems, 

the categorical cross-entropy is defined as: 

𝐿 = − ∑  𝑁
𝑖=1 ∑  𝐶

𝑗=1 𝑦𝑖𝑗log (𝑦
^

𝑖𝑗)  (4) 

where N is the number of samples, C is the number of classes, 

𝑦𝑖𝑗  is a binary indicator (0 or 1) if class j is the correct 

classification for sample i, and 𝑦
^

𝑖𝑗  is the predicted probability 

that sample i belongs to class j. 

For the fault location problem formulated in Section 2.1 and 

for the purposes of this paper, the ANN classifier, f, maps the 
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voltage phasor measurements, x𝑘 , to the predicted fault 

location, 𝑦
^

𝑘. The network architecture used consists of: 

• An input layer with 6n neurons, corresponding to the 

voltage magnitude and angle measurements for all phases 

at all buses 

• Two hidden layers containing neurons with rectified linear 

unit (ReLU) as their activation function: 

ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (5) 

• An output layer with n + 1 neurons (representing n possible 

fault locations plus a ”no-fault” state). 

This architectural configuration allows the neural network to 

learn the complex, nonlinear relationships between voltage 

measurements and fault locations across the distribution 

network. The model captures patterns in voltage sags, phase 

shifts, and other disturbances that characterize different fault 

locations, enabling accurate classification even in complex 

distribution systems with unbalanced loading and varying 

operational conditions. 

3. Transfer learning with artificial neural networks 

Transfer learning represents a paradigm in machine 

learning wherein knowledge gained while solving one 

problem is applied to a different but related problem. In the 

context of ANNs, transfer learning enables leveraging pre-

trained models’ capabilities to improve performance on 

target tasks with limited data availability or computational 

resources. This methodology is particularly valuable in power 

system applications, where obtaining comprehensive labeled 

datasets for diverse network topologies can be both time-

intensive and computationally expensive [21]. 

3.1 Theoretical foundations of transfer learning 

The fundamental premise of transfer learning is that 

representations learned for one task may be beneficial for 

another related task. Formally, given a source domain 𝒟𝑆  with 

learning task 𝒯𝑆  and a target domain 𝒟𝑇  with learning task 𝒯𝑇  

, transfer learning aims to improve the performance of the 

target predictive function 𝑓𝑇(⋅) in 𝒟𝑇   using the knowledge 

from 𝒟𝑆  and 𝒯𝑆, where 𝒟𝑆 ≠ 𝒟𝑇  or 𝒯𝑆 ≠ 𝒯𝑇 . In neural 

networks, transfer learning typically manifests through the 

following approaches: 

• Feature extraction: Using the pre-trained network as a 

fixed feature extractor, where the early layers capture 

domain-independent features. 

• Fine-tuning: Initializing a new model with parameters from 

a pre-trained model and then updating all or a subset of 

these parameters on the target dataset. 

• Domain adaptation: Modifying the network architecture to 

minimize the discrepancy between source and target 

domains while maintaining performance on the source 

task. 

The efficacy of transfer learning is predicated on the degree 

of similarity between the source and target domains. Greater 

similarity typically facilitates more effective knowledge 

transfer, while significant domain shift may necessitate more 

extensive adaptation techniques [22]. The aforementioned 

approaches can be implemented by the following 

methodologies: 

 

3.1.1 Layer-specific transfer 

In layer-specific transfer learning, certain layers of the 

pre-trained model are frozen while others are fine-tuned. 

Typically, early layers capturing low-level features are 

preserved, while later layers are retrained to adapt to the 

target task. This approach is formalized as: 

𝜃𝑇 = {𝜃𝑆,1:𝑘 , 𝜃𝑇,𝑘+1:𝑛} (6) 

where 𝜃𝑇  represents the parameters of the target model, 𝜃𝑆,1:𝑘  

denotes the parameters of the first k layers from the source 

model, and 𝜃𝑇,𝑘+1:𝑛  represents the newly initialized or fine-

tuned parameters for the remaining layers. 

3.1.2 Weight initialization and regularization 

Transfer learning can be implemented through weight 

initialization, where the parameters of the target model are 

initialized with values from the source model and then 

updated via backpropagation: 

𝜃𝑇
(0)

= 𝜃𝑆
(∗)

            (7) 

where 𝜃𝑇
(0) represents the initial parameters of the target 

model and 𝜃𝑆
(∗)

 denotes the optimized parameters of the 

source model. Additionally, regularization techniques can be 

employed to prevent significant deviation from the source 

model’s weights: 

ℒ𝑟𝑒𝑔(𝜃𝑇) = ℒ(𝜃𝑇) + 𝜆‖𝜃𝑇 − 𝜃𝑆
(∗)

‖2          (8) 

where ℒ(𝜃𝑇) is the primary loss function, λ is the 

regularization parameter, and ‖𝜃𝑇 − 𝜃𝑆
(∗)

‖2 penalizes 

divergence from the source model’s parameters. 

3.2 Transfer learning for fault location in power 

distribution networks 

In the context of fault location in power distribution 

networks, transfer learning offers several advantages: 

• Reduction in the volume of training data required for new 

network topologies 

• Decreased computational resources needed for model 

training 

• Improved generalization capabilities across diverse 

operating conditions 

• Accelerated deployment of fault location systems for newly 

commissioned networks 

For the specific application of transferring knowledge from 

models trained on a larger feeder to other smaller feeders, the 

process involves recognizing common patterns in voltage sag 

propagation and phase angle shifts during fault conditions. 

Despite differences in network topology, operational 

parameters, and loading conditions across different test 

feeders, fundamental electromagnetic principles governing 

fault behavior remain consistent. 

3.3 Metrics for evaluating transfer learning 

effectiveness 

The efficacy of transfer learning for fault location can be 

quantified through several metrics: 

• Transfer Ratio (TR): The ratio of performance achieved 

through transfer learning to that obtained with full training 

on the target domain: 

TR =
Performancetransfer

Performancefull training
 (9) 
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• Data Efficiency (DE): The proportion of target domain data 

required to achieve equivalent performance to full training: 

DE =
Data size required with transfer learning

Data size required for full training
 (10) 

• Convergence Acceleration (CA): The reduction in training 

iterations needed to reach a specific performance 

threshold: 

CA =
Iterations for convergence without transfer

Iterations for convergence with transfer
 (11) 

These metrics provide quantitative measures for assessing 

the benefits of transfer learning in terms of data 

requirements, computational efficiency, and model 

performance. 

4. Dataset creation 

4.1 Overview 

This section details the methodology employed to 

generate comprehensive datasets for fault location 

classification across multiple IEEE test feeders [23]. The 

datasets were specifically designed to train and evaluate 

ANNs for power system fault location tasks. The data 

generation process leveraged OpenDSS [24], an open-source 

electric power distribution system simulator, to model 

various fault scenarios across four standard IEEE test feeders 

of increasing complexity. 

 

4.2 IEEE test feeders 

The study utilized four standardized, non-symmetrical 

IEEE test feeders, each representing different network 

topologies and complexities commonly encountered in 

distribution systems. These test feeders serve as benchmarks 

in the power systems community and provide a standardized 

basis for comparing different methodologies. The test feeders 

utilized in this study include: 

• IEEE 13-bus Test Feeder: A small, relatively simple feeder 

with both overhead and underground lines operating at 

4.16 kV. This feeder includes unbalanced spot and 

distributed loads, shunt capacitors, and an in-line 

transformer. 

• IEEE 34-bus Test Feeder: A medium-sized, long, and lightly 

loaded feeder operating at 24.9 kV. This feeder features 

two voltage regulators, an in-line transformer, unbalanced 

loading, and both spot and distributed loads. 

• IEEE 37-bus Test Feeder: A delta-configured feeder with 

relatively short line segments, characterized by 

underground cables operating at 4.8 kV, featuring 

unbalanced loading and constant PQ loads. 

• IEEE 123-bus Test Feeder: A large, complex feeder 

operating at 4.16 kV. This feeder includes multiple voltage 

regulators, shunt capacitors, overhead and underground 

lines, multiple laterals, and unbalanced loading with 

various load models. 

Table 1 summarizes the key characteristics of each test 

feeder, including the number of buses, three-phase buses, 

voltage levels, and other distinguishing features. It needs to 

be mentioned that in the second column of the table, the bus 

number shown on each feeder is larger than the one in its 

corresponding name. This occurs because OpenDSS models 

regulators, transformers, and distributed loads as additional 

buses in the power system. 

Table 1. Characteristics of IEEE test feeders used for dataset 

generation 

 

4.3 Fault simulation methodology 

The dataset generation process involved systematically 

simulating faults at each bus within the test feeders. Three 

common fault types were considered (Figure 3) to ensure 

comprehensive coverage of realistic fault scenarios: 

• Single-Phase-to-Ground (SPG): Represents a fault where 

one phase comes into contact with ground, a common 

occurrence in distribution systems due to events such as 

tree contacts or insulation failure. 

• Phase-to-Phase (PP): Represents a fault where two phases 

make contact without ground involvement, often caused by 

conductor slapping or vegetation. 

• Double-Phase-to-Ground (DPG): Represents a more severe 

fault where two phases make contact with ground 

simultaneously. 

 
 Figure 3. Schematic representation of the three fault types simulated 

in this study 

For each three-phase bus in every test feeder, 300 faults 

were simulated, distributed equally among the three fault 

types. The fault impedance was randomly varied within a 

realistic range of 0.05 to 5 ohms to account for various fault 

resistance scenarios encountered in real-world situations. 

This relatively low impedance range was selected to 

represent bolted or low-impedance faults, which are 

generally more severe and critical for system protection. 

Additionally, to enable the network to distinguish between 

normal operating conditions and fault conditions, 400 data 

points representing normal operation without any faults 

were included in each dataset. These no-fault scenarios were 

generated by varying load levels and power factors within 

typical operating ranges to represent diverse normal 

operating conditions. 

 

 

Test 

Feeder 

Total 

Buses 

3-Phase 

Buses 

Voltage 

Level 

Special Features 

IEEE 

13-bus 
16 11 4.16 kV 

Inline 

transformer, 

unbalanced loads 

IEEE 

34-bus 
37 29 24.9 kV 

Voltage 

regulators, 

long lines 

IEEE 

37-bus 
39 39 4.8 kV 

Delta 

configuration, 

underground 

cables 

IEEE 

123-

bus 

132 71 4.16 kV 

Multiple voltage 

regulators, switch 

operations 
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4.4 Data collection process 

The fault simulation and data collection process 

consisted of the following steps, executed via Python using 

the OpenDSSDirect interface: 

• System Initialization: Each test feeder was loaded into 

OpenDSS, and a base case power flow solution was 

obtained. 

• Three-Phase Bus Identification: All buses in the network 

were examined to identify those with three phases, as these 

represented the locations where all fault types could be 

applied. 

• Fault Application: For each three-phase bus and fault type 

combination: 

a) The system was reset to its base case. 

b) A fault with randomly selected parameters (phase 

selection, fault impedance) was applied. 

c) A power flow solution was obtained. 

• No-Fault Scenarios: For the 400 no-fault data points: 

a) The system was reset to its base case. 

b) Load levels were randomly varied within ±20% of 

nominal values. 

c) Power factors were randomly varied within typical 

ranges (0.85-0.98). 

d) A power flow solution was obtained under these normal 

operating conditions. 

• Feature Extraction: After each simulation (both fault and 

no-fault), per-unit voltage magnitudes and angles were 

collected from all buses in the network. These voltage 

measurements serve as the feature vectors for the fault 

location classification task. 

• Label Assignment: For fault scenarios, the faulted bus name 

was recorded as the classification label. For no-fault 

scenarios, a special ”no-fault” label was assigned. 

4.5 Dataset characteristics 

The resulting datasets exhibit the following key 

characteristics: 

• Feature Dimensionality: Each feature vector consists of 

per-unit voltage measurements from all buses in the 

network. The dimensionality varies by test feeder, ranging 

from relatively small (for the 13-bus feeder) to significantly 

larger (for the 123-bus feeder). 

• Class Balance: The dataset for each feeder contains an 

equal number of samples for each three-phase bus location, 

ensuring balanced representation across all potential fault 

locations. Additionally, each dataset includes 400 no-fault 

scenarios. 

• Fault Type Distribution: Within each fault location, there is 

an approximately equal distribution of fault types (SPG, PP, 

DPG). 

• Dataset Size: The total number of samples per feeder is 

determined by the equation: 

Nsamples= (N3ϕbuses × 300) + 400 (12) 

where N3ϕbuses is the number of three-phase buses in the 

feeder, each bus has 300 fault scenarios (approximately 33 for 

each fault type), and 400 represents the no-fault scenarios. 

Table 2 summarizes the key statistics for each generated 

dataset. 

 

 

Table 2. Statistics of generated fault datasets 

 

5. Baseline and transfer learning methodology 

In this section, the baseline and transfer training 

methodology for fault classification in IEEE distribution test 

feeders is described. The ANN models were trained 

independently on four standard IEEE test feeders: the 13-bus, 

34-bus, 37-bus, and 123-bus feeders. For each feeder, a 

separate classifier was trained to pinpoint the location of 

faults. Then, the ANN trained on 123-bus feeder data was 

utilized for transfer learning purposes. 

5.1 Data preprocessing 

Prior to training, the datasets were split into training, 

validation, and test sets using an 80%, 10%, and 10% ratio, 

respectively. This partitioning ensures sufficient data for 

training while reserving independent sets for validation 

during training and final performance evaluation. Data 

normalization was applied to improve the convergence and 

performance of the ANNs. The training data for each feeder 

was normalized using the StandardScaler function of Python’s 

scikit-learn library, which transforms features to have zero 

mean and unit variance, following the following formula: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋−𝜇

𝜎
 (13) 

where µ is the mean and σ is the standard deviation of each 

feature in the training set. The validation and test sets were 

normalized using the same scaling parameters derived from 

the training set to prevent data leakage. This standardization 

process is critical for neural networks as it ensures all 

features contribute equally to the model training regardless 

of their original scales. 

5.2 Neural network architecture 

The baseline neural network architecture consists of a 

fully connected feedforward network with two hidden layers. 

The architecture was kept consistent across all feeders with 

the exception of the first hidden layer size, which was 

adjusted based on the complexity of the feeder: 

• Input Layer: Dimensionality matched to the number of 

features in each feeder dataset 

• First Hidden Layer: 40 neurons for the 13-bus, 34-bus, and 

37-bus feeders; 256 neurons for the 123-bus feeder 

• Second Hidden Layer: 20 neurons for all feeders 

• Output Layer: Dimensionality matched to the number of 

potential fault locations (classes) for each feeder 

Glorot uniform initialization [25], also known as Xavier 

initialization, was used for all weight matrices to improve 

training convergence. This initialization method samples 

weights from a uniform distribution with limits based on the 

number of input and output units in the weight tensor. 

Dataset 
3-Phase 

Buses 

Faults 

per Bus 

No-Fault 

Samples 

Total 

Samples 

IEEE 13-bus 11 of 16 

300 400 

3,700 

IEEE 34-bus 29 of 37 9,100 

IEEE 37-bus 39 of 39 12,100 

IEEE 123-bus 71 of 132 21,700 
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5.3 Baseline training process 

The networks were trained using the Adam optimizer 

with a learning rate of 0.001 and categorical cross-entropy as 

the loss function, which is appropriate for multi-class 

classification problems. The training process was configured 

to use mini-batch gradient descent with a batch size of 32 

samples. To prevent overfitting and optimize training 

efficiency, an early stopping mechanism was implemented 

with a patience parameter of 50 epochs. This approach 

monitored the validation loss and stopped training when no 

improvement was observed for 50 consecutive epochs, 

restoring the model weights to the best-performing 

configuration. 

5.4 Transfer learning process 

The transfer learning methodology leverages knowledge 

from the more complex 123bus feeder model to improve 

classification performance and training efficiency on the 

simpler feeders (13-bus, 34-bus, and 37-bus). This approach 

is particularly valuable in power systems applications, where 

obtaining comprehensive labeled datasets for all network 

topologies can be resource-intensive. The dimensional 

mismatch between source and target feeders is addressed by 

the following methodology: 

• Input Adaptation Layer: A dense layer with ReLU activation 

that transforms the input features from the target feeder’s 

dimensionality to match the expected input dimension of 

the 123-bus model: 

x𝑎𝑑𝑎𝑝𝑡𝑒𝑑 = ReLU(W𝑎𝑑𝑎𝑝𝑡𝑒𝑟x𝑖𝑛𝑝𝑢𝑡 + b𝑎𝑑𝑎𝑝𝑡𝑒𝑟) (14) 

where x𝑖𝑛𝑝𝑢𝑡 , the input vector of the target distribution 

network, W𝑎𝑑𝑎𝑝𝑡𝑒𝑟 , the weights of the new input layer, 

b𝑎𝑑𝑎𝑝𝑡𝑒𝑟  its bias vector and x𝑎𝑑𝑎𝑝𝑡𝑒𝑑  its output vector. 

• Transferred Hidden Layers: The first two dense layers from 

the pre-trained 123-bus model are reused without 

modification to preserve the learned feature 

representations: 

h1 = ReLU(W1x𝑎𝑑𝑎𝑝𝑡𝑒𝑑 + b1                    (15) 

h2 = ReLU(W2h1 + b2)               (16) 

where W1, W2 the weights, b1, b2 the bias vectors and h1, h2  

the output vectors of the first and second layer respectively. 

• New Output Layer: A dense layer with Softmax activation 

that maps the second hidden layer’s output to the 

appropriate number of fault location classes for the target 

feeder: 

y𝑝𝑟𝑒𝑑 = Softmax(W𝑜𝑢𝑡h2 + b𝑜𝑢𝑡)        (17) 

where, Wout, the weights of the output layer, bout its bias vector 

and ypred, output vector of the ANN. 

This architecture enables effective knowledge transfer while 

accommodating the structural differences between source 

and target networks. Additionally, the transfer learning 

process utilized a two-phase training strategy to optimize 

knowledge transfer while allowing adaptation to the target 

feeder’s characteristics: 

Phase 1: Feature Extraction (First 2500 epochs) 

• The pre-trained hidden layers were frozen 

• Only the input adaptation layer and the new output layer 

were trained 

• A learning rate of 0.0001 was used with the Adam 

optimizer 

• This phase allowed the model to adapt its input and output 

mappings while preserving the intermediate feature 

representations learned from the more complex 123-bus 

feeder 

Phase 2: Fine-Tuning (Subsequent 2500 epochs) 

• All hidden layers were unfrozen. 

• The learning rate was reduced by a factor of 10 (to 

0.00001) to prevent catastrophic forgetting. 

• This fine-tuning phase allowed for more subtle 

adjustments to the entire network, optimizing the 

transferred knowledge for the specific characteristics of 

the target feeder 

The categorical cross-entropy loss function was used 

throughout both training phases, consistent with the baseline 

training approach. Furthermore, the implementation 

included several key technical details to ensure effective 

knowledge transfer: 

• Weight Initialization: The input adaptation and output 

layers used Glorot uniform initialization for stable gradient 

flow during training 

• Batch Processing: Training was performed using full-batch 

gradient descent due to the moderate size of the datasets 

• Training Duration: A fixed budget of 5000 total epochs 

(2500 for each phase) was allocated to each transfer 

learning experiment 

• Early Stopping: Similar to the baseline training, an early 

stopping mechanism with a patience parameter of 50 

epochs was employed to prevent overfitting and optimize 

training efficiency 

• Performance Monitoring: Training and testing accuracy 

were monitored throughout the process to evaluate the 

effectiveness of knowledge transfer. 

6. Results and discussion 

This section presents and assesses the result stemming 

from the experiments conducted for the purposes of this 

study. 

6.1 Baseline model training evaluation 

Table 3 presents the quantitative results from the 

baseline model training. Contrary to intuitive expectations, 

training duration did not correlate linearly with network 

complexity. The IEEE 34-bus feeder required the highest 

number of epochs (928) to converge, despite representing an 

intermediate level of complexity. Meanwhile, the IEEE 123-

bus feeder—the most complex topology with 71 three-phase 

buses—achieved convergence in only 305 epochs. The IEEE 

13-bus and IEEE 37-bus feeders required intermediate epoch 

counts (415 and 613, respectively) to reach convergence. 

These results suggest that convergence behavior in fault 

location ANNs is influenced not only by network size but also 

by the electrical characteristics and topology of the specific 

distribution system. Classification accuracy varied 

substantially across the four test feeders. The IEEE 37bus 

feeder achieved the highest test accuracy (96.25%) and F1-

score (0.9609), followed by the IEEE 13-bus feeder (91.67%, 
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0.9167), the IEEE 123-bus feeder (87.45%, 0.8508), and the 

IEEE 34-bus feeder (74.52%, 0.7330). 

Table 3. Performance metrics for baseline neural network training 

on IEEE test feeders 

Test 

Feeder 

Epochs Time (s) Dataset Loss Accuracy/F1-

Score 

IEEE 

13-bus 

415 53.75 Train 

Validation 

0.1155 

0.1260 

0.9260/0.9251 

0.9083/0.9062 

   Test 0.1203 0.9167/0.9167 

IEEE 

34-bus 

928 183.21 Train 

Validation 

0.5278 

0.5193 

0.7518/0.7371 

0.7758/0.7609 

   Test 0.5386 0.7452/0.7330 

IEEE 

37-bus 

613 151.98 Train 

Validation 

0.0900 

0.1125 

0.9634/0.9618 

0.9463/0.9421 

   Test 0.0958 0.9625/0.9609 

IEEE 

123-

bus 

305 242.06 Train 

Validation 

0.2086 

0.2092 

0.8784/0.8551 

0.8782/0.8559 

   Test 0.2128 0.8745/0.8508 

 

The superior performance of the IEEE 37-bus model 

merits particular attention, as it outperformed models for 

both simpler and more complex networks. This could be 

attributed to several distinguishing characteristics of this 

feeder: 

• Delta configuration rather than wye configuration 

• Uniform underground cable construction throughout the 

network 

• Relatively short line segments with consistent impedance 

characteristics 

• Balanced three-phase construction (all buses are three-

phase) 

These features likely produce more consistent and distinctive 

voltage signatures during fault conditions, facilitating more 

effective classification. The relatively poor performance of the 

IEEE 34-bus model (74.52% accuracy) can be attributed to its 

distinctive characteristics that complicate fault location: 

• Long, lightly loaded feeder with distributed loads 

• Presence of voltage regulators introducing nonlinear 

behavior 

• Mix of one-, two-, and three-phase laterals 

• Significant voltage drops along the feeder length 

These characteristics create more complex and potentially 

similar fault signatures at different locations, increasing 

classification difficulty. 

Training time did not directly correlate with epoch count due 

to differences in per-epoch computational requirements. 

Despite requiring the fewest epochs, the IEEE 123-bus feeder 

demanded the longest training time (242.06 seconds) due to 

its significantly larger feature space and more complex 

neuron structure. The computational complexity scales with 

the number of neurons and connections in the network, which 

increases substantially with the dimensionality of input 

features. The IEEE 13-bus feeder, with its compact structure 

(16 buses total), required only 53.75 seconds for training, 

approximately 21% of the time needed for the IEEE 123-bus 

model despite requiring 36% more epochs. 

All models demonstrated robust generalization, as evidenced 

by the relatively small divergence between training and test 

metrics. This indicates that the selected architecture and 

regularization techniques (particularly early stopping) were 

effective in preventing overfitting. The consistent 

performance across datasets suggests that the models 

captured genuine patterns in the fault signatures rather than 

memorizing training examples. The IEEE 37-bus feeder 

exhibited particularly impressive generalization, with nearly 

identical performance across training, validation, and test 

datasets. This further supports the hypothesis that its 

uniform construction produces more consistent and 

learnable fault patterns. Confusion matrices, shown in Figure 

4 were utilized to visualize the ANN predictions. Predictions 

that fall onto the first diagonal of the confusion matrix 

represent true positives, indicating that the predicted class is 

the correct one. Several patterns are noteworthy: 

• Across all feeders, misclassifications predominantly occur 

between electrically adjacent buses or buses with similar 

electrical characteristics. 

• The IEEE 13-bus and IEEE 37-bus feeders exhibit strong 

diagonal patterns, indicating high classification accuracy 

across most fault locations. 

• The IEEE 34-bus feeder shows more pronounced off-

diagonal elements, particularly in certain network regions, 

suggesting clusters of buses with similar fault signatures. 

• The ”no-fault” class (representing normal operating 

conditions) is classified with high accuracy (95%) across all 

feeders, indicating robust discrimination between normal 

operation and fault conditions. 

• In the IEEE 123-bus feeder, misclassifications exhibit 

spatial correlation, with higher confusion rates between 

buses within the same lateral branches. 

These baseline results establish that neural networks can 

effectively locate faults across various network topologies, 

with performance generally correlating with network 

complexity and electrical characteristics. 

6.2 Transfer learning effectiveness 

Table 4 presents a comparative analysis between 

baseline training and transfer learning approaches, while 

Table 5 quantifies the efficiency gains through two key 

metrics: Transfer Ratio (accuracy of transfer model divided 

by accuracy of baseline model) and Convergence Acceleration 

(baseline epochs divided by transfer learning epochs). 

Figures 5 and Figure 6 further visualize these performance 

metrics. The data reveals several significant patterns 

regarding knowledge transferability between distribution 

networks. 

As quantified in Table 5, transfer learning demonstrated 

substantial improvements in training efficiency across all 

target feeders. The Convergence Acceleration metric—

defined as the ratio of baseline epochs to transfer learning 

epochs—ranged from 1.68 for the IEEE 34-bus feeder to 2.56 

for the IEEE 13-bus feeder. In practical terms, this represents 

a 61% reduction in required epochs for the IEEE 13-bus 

model, a 40.6% reduction for the IEEE 34-bus model, and a 

60% reduction for the IEEE 37-bus model.  
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(a) IEEE 13-bus feeder     (b) IEEE 34-bus feeder 

                      

(c) IEEE 37-bus feeder     (d) IEEE 123-bus feeder 

Figure 4. Confusion matrices for baseline fault location classification on test datasets for all four IEEE test feeders. Color intensity indicates 

classification frequency, with diagonal elements representing correct classifications. Note the stronger diagonal dominance in the 13-bus and 

37-bus feeders compared to the 34-bus and 123-bus feeders. 

Table 4. Performance comparison between baseline training and transfer learning 

Test Feeder Training Epochs Time (s) Dataset Loss Accuracy/F1-Score 

IEEE 13-bus Baseline 415 53.75 Train 
Validation 

Test 

0.1155 
0.1260 
0.1203 

0.9260/0.9251 
0.9083/0.9062 
0.9167/0.9167 

Transfer 162 27.96 Train 
Validation 

0.1230 
0.1306 

0.9201/0.9048 
0.9056/0.8876 

    Test 0.1249 0.9194/0.9124 

IEEE 34-bus Baseline 928 183.21 Train 
Validation 

Test 

0.5278 
0.5193 
0.5386 

0.7518/0.7371 
0.7758/0.7609 
0.7452/0.7330 

Transfer 551 139.24 Train 
Validation 

0.5643 
0.5716 

0.7349/0.7283 
0.7274/0.7210 

    Test 0.5652 0.7500/0.7453 

IEEE 37-bus Baseline 613 151.98 Train 
Validation 

Test 

0.0900 
0.1125 
0.0958 

0.9634/0.9618 
0.9463/0.9421 
0.9625/0.9609 

Transfer 245 76.77 Train 
Validation 

0.1375 
0.1447 

0.9361/0.9309 
0.9300/0.9212 

    Test 0.1361 0.9300/0.9241 
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Table 5. Transfer learning efficiency metrics 

Test 

Feeder 

Transfer 

Ratio 

Convergence 

Acceleration 

Time 

Reduction 

(%) 

Epoch 

Reduction 

(%) 

IEEE 

13-

bus 

1.003 2.56 48.0 61.0 

IEEE 

34-

bus 

1.006 1.68 24.0 40.6 

IEEE 

37-

bus 

0.967 2.50 49.5 60.0 

 

These findings suggest that feature representations 

learned from the IEEE 123-bus feeder contained 

generalizable knowledge about fault signatures that could 

accelerate learning in target networks. The magnitude of 

convergence improvement appeared inversely related to the 

topological similarity between source and target networks. 

The IEEE 13-bus feeder, with its compact radial structure, 

differs substantially from the more complex IEEE 123-bus 

network, yet it exhibited the greatest Convergence 

Acceleration (2.56). This counterintuitive result suggests that 

simpler networks may benefit more from transfer learning, as 

they can more readily adapt generalizable features learned 

from complex networks to their simpler topologies. The 

impact of transfer learning on classification accuracy varied 

across the three target feeders, as reflected in the Transfer 

Ratio metric in Table 5. For the IEEE 13-bus feeder, transfer 

learning yielded a Transfer Ratio of 1.003, indicating a 

marginal improvement in test accuracy (91.94% versus 

91.67%) alongside a slight decrease in F1-score (91.24% 

versus 91.67%). The IEEE 34-bus feeder, which had the 

poorest baseline performance, showed a slightly higher 

Transfer Ratio of 1.006, achieving 75.00% accuracy compared 

to 74.52% in baseline training, and a 1.23 percentage point 

improvement in F1-score (74.53% versus 73.30%). 

Notably, the IEEE 37-bus feeder exhibited a Transfer 

Ratio of 0.967, reflecting a modest performance decline with 

transfer learning as test accuracy decreased from 96.25% to 

93.00%. This aligns with our baseline findings that identified 

the IEEE 37-bus feeder’s unique characteristics (delta 

configuration, underground cables, balanced construction) as 

particularly conducive to neural network learning. The 

feature representations learned from the wye-configured, 

overhead IEEE 123-bus network may not have captured the 

distinctive electrical behaviors of the delta-configured IEEE 

37-bus system, resulting in a less optimal starting point for 

learning. Despite this variability, all transfer learning models 

maintained reasonable generalization capability, with 

consistent performance across training, validation, and test 

datasets. This suggests that transfer learning preserves the 

robustness of the original training approach while 

significantly reducing computational requirements. 

As documented in Table 5, transfer learning delivered 

consistent computational savings across all target feeders. 

Time reductions ranged from 24.0% for the IEEE 34-bus 

feeder (139.24 seconds versus 183.21 seconds) to 49.5% for 

the IEEE 37-bus feeder (76.77 seconds versus 151.98 

seconds) and 48.0% for the IEEE 13-bus feeder (27.96 

seconds versus 53.75 seconds). These efficiency gains could 

prove significant for practical applications, particularly when 

training needs to be performed on resource-constrained 

systems or when models must be periodically retrained to 

accommodate network modifications. 

 
Figure 5. Comparison of test accuracy between baseline training and 

transfer learning across IEEE test feeders. The transfer learning 

approach shows comparable or slightly improved accuracy for the 

IEEE 13-bus and 34-bus feeders, while experiencing a modest decline 

for the IEEE 37-bus feeder. 

 

 

Figure 6. Comparison of training epochs required for convergence 

between baseline training and transfer learning across IEEE test 

feeders. Transfer learning consistently reduces the number of epochs 

required, with reductions of 61% for IEEE 13-bus, 41% for IEEE 34-

bus, and 60% for IEEE 37-bus feeders. 

The computational benefits of transfer learning exhibit a 

compound effect: not only do the models converge in fewer 

epochs, but the initial training phase (with frozen hidden 

layers) requires substantially less computation per epoch, as 

backpropagation is limited to the output layers. This 

approach enables rapid adaptation to new network 

topologies without sacrificing performance, making neural 

network fault location more practical for real-world 

distribution system applications. The successful application 

of transfer learning across diverse network topologies 

suggests that neural networks learn generalizable 

representations of fault signatures in electrical distribution 

systems. These representations appear to capture 

fundamental physical relationships between voltage 

measurements and fault locations that transcend specific 

network configurations. Several factors may explain these 

generalizable representations: 
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• Electrical principles governing fault propagation remain 

consistent across networks despite topological differences 

• Relative voltage perturbations during faults follow similar 

patterns regardless of absolute voltage levels or network 

size 

• Feature hierarchies learned by neural networks may 

correspond to physical phenomena at different spatial 

scales within the network 

• The nonlinear transformations learned by hidden layers 

may effectively normalize diverse network characteristics 

to a common representation space 

The variable impact of transfer learning across different 

target feeders highlights the importance of electrical 

characterization in knowledge transfer. While topological 

differences certainly influence transferability, our results 

suggest that electrical characteristics (configuration, 

construction type, phase balance) may play a more 

determinative role in successful knowledge transfer between 

distribution networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 presents the prediction results of the transfer 

learning ANNs in a visual manner, showcasing the similarity 

in performance with the baseline training ones.                    

7. Conclusion 

This paper investigated the application of transfer 

learning techniques to artificial neural networks for fault 

location in power distribution systems. Comprehensive 

experimentation across multiple IEEE test feeders 

demonstrated that knowledge gained from training on 

complex network topologies can be effectively transferred to 

accelerate and potentially improve fault location in simpler 

networks. The findings contribute several important insights 

to the field of power system fault detection and classification. 

First, the results establish that transfer learning enables 

significant improvements in training efficiency. The 

Convergence Acceleration metric, ranging from 1.68 to 2.56 

across different target feeders, translates to epoch reductions 

of 40.6% to 61.0%. This efficiency gain has substantial 

practical implications for utilities deploying fault location 

systems across diverse network topologies, as it dramatically 

            

(a) IEEE 13-bus feeder (Transfer)    (b) IEEE 34-bus feeder (Transfer) 

 

              (c) IEEE 37-bus feeder (Transfer) 

Figure 7. Confusion matrices for transfer learning fault location classification on test datasets for the three target IEEE test feeders. The 

transfer learning models preserve the strong diagonal structure indicative of accurate classification, with marginally different error patterns 

compared to their baseline counterparts. 



S. Petridis et al. /Future Energy                                                                                                    August 2025| Volume 04 | Issue 03| Pages 35-47 

46 

 

reduces the computational resources and time required for 

model training. Second, transfer learning was found to 

maintain or slightly improve classification accuracy for two of 

the three target feeders (Transfer Ratios of 1.003 and 1.006 

for the IEEE 13-bus and 34-bus feeders, respectively). 

Notably, the IEEE 34-bus feeder—which exhibited the 

poorest baseline performance due to its challenging electrical 

characteristics—benefited most from knowledge transfer, 

suggesting that transfer learning can be particularly valuable 

for networks with complex fault signatures. Third, the 

analysis revealed that electrical characteristics may play a 

more significant role than topological similarity in 

determining transfer learning effectiveness. The modest 

performance decline observed for the IEEE 37-bus feeder 

(Transfer Ratio of 0.967) highlights the importance of 

considering network configuration (delta versus wye), 

construction type (overhead versus underground), and phase 

balance when applying transfer learning across different 

distribution systems. The computational efficiency 

improvements demonstrated in this study—with time 

reductions ranging from 24.0% to 49.5%—further enhance 

the practical applicability of neural network approaches for 

fault location. These efficiency gains, combined with the 

ability to accelerate model training through knowledge 

transfer, address key barriers to the widespread deployment 

of intelligent fault location systems in distribution networks. 

Future research directions emerging from this work include: 

• Investigation of transfer learning effectiveness under 

reduced data availability scenarios, particularly relevant 

for newly commissioned networks with limited fault 

history 

• Exploration of alternative transfer learning architectures, 

such as domain adaptation techniques, to better address 

electrical characteristic differences between source and 

target networks 

• Extension of the knowledge transfer approach to 

incorporate dynamic network reconfigurations and the 

presence of distributed energy resources 

• Development of hybrid approaches combining physics-

informed constraints with transfer learning to enhance 

generalization across diverse network topologies 

In conclusion, this study demonstrates that transfer learning 

offers a promising approach to address the challenges of data 

scarcity and computational efficiency in power system fault 

location. By leveraging knowledge from more complex 

networks, utilities can deploy accurate fault location systems 

across diverse distribution feeders with reduced data 

requirements and training time, ultimately contributing to 

improved power system reliability through faster fault 

isolation and service restoration. 
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