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Lithium-ion batteries, a popular electric energy storage device, have high
energy density and impressive working performance. However, the
temperature affects its life cycle, capacity, and performance. Different effects
are generated inside the battery for the different temperature conditions. It is
necessary to study their thermal and electric characteristics in various thermal
conditions since electric energy storage devices are used in various applications
at low or high temperatures. In this study, the experimental analysis was
performed to observe how a battery cell behaves above room temperature for
a different 18650 cylindrical battery cell with a capacity of 5200 mAh. The
testing temperature for this experiment was at 28°C, 50°C, 60°C, 70°C, and 100°C.
It is noted that the capacity of the battery cell fades drastically at high
temperatures compared to low temperatures due to internal short circuits
occurring at high temperatures.

1. Introduction

A battery, an energy storage device, is one of the most
important parts of electrical gadgets, where electrochemical
reactions occur and produce electricity [1, 2]. The battery
business went through an evolution when Sony Corporation
unveiled the first commercial LIB in 1991 [3]. An anode made
of carbon, a cathode based on lithium compounds, an
electrolyte, and a separator make up a typical LIB. The
majority of studies into LIBs have focused on identifying the
optimum electrode material in terms of specific energy, cycle
life, capacity, and power, with little emphasis devoted to
temperature control [4]. At high temperatures, LIBs
performance degrades due to thermal runaway, aging, etc.
Feng et al. [5] observed in their experiment that at high
temperatures, the rates of deterioration of all LIB components
increase. However, on the other hand, at low temperatures
due to low kinematics, the battery performance is found
limited [6]. Hence, it is very important to study the
temperature effect on a lithium-ion battery and find an
optimum safe operating temperature range. Complex
electrochemical changes take place during the charging and
discharging of a LIB with a significant amount of heat release.
The performance, longevity, as well as safety of a Lithium-Ion
battery, are affected by the operating or ambient temperature
[7, 8]. In addition, temperature affects the ionic conductivities
of electrodes and electrolytes [9]. The properties of
electrolytes are affected when the battery is exposed to cold
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temperatures. At low temperatures, the internal resistance of
the electrolyte rises due to its viscosity. As a result, the
Lithium-ion diffusivity and the electrolyte's ionic
conductivity, power, and capacity of the cell decrease [10-
12]. The charge transfer resistance (Rct) is one of the most
significant factors that also increases at low temperatures [6].
Zhang et al. interpreted in their experiment that it is more
difficult to charge a drained Li-ion battery than it is to
discharge a charged battery at a low temperature [6]. Petzl et
al. [13] demonstrated that at low temperatures, lithium
plating occurs. Lithium plating can penetrate separators and
reduce capacity. These lithium dendrites, which are located
on the surface of the negative electrode of LIBs, cause an
internal short circuit [14]. However, high temperatures
impair the performance of Lithium-ion batteries more than
low temperatures. At room or standard operating
temperature, electrochemical reactions and charge transfer
produce heat inside the battery [15]. Irreversible processes
such as heating due to mixing, polarization, enthalpy change,
etc. are also responsible for generating heat. Xiao and Choe
proposed a completely new heat generation formulation,
which incorporates enthalpy heating and heat of mixing [15].
The Thermal Runway is another destructive phenomenon for
a lithium-ion battery. It occurs when the heat formed inside a
battery surpasses the quantity of heat released to its
surroundings [16]. In Figure 1 thermal runaway process of a
LIBs cell is illustrated. At high temperatures, exothermic
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reactions occur in the battery, and uncontrollable heat is
produced. In addition to that, internal pressure is increased
due to the production of some gaseous elements. As a result,
exploration would occur [17]. Feng et al. [18] observed that
during thermal runaway, the internal temperature was
increased above 870°C, and the temperature difference was
approximately 520°C inside the tested battery. Depending on
the battery cells' chemistry, charge level, and the exothermic
processes that cause thermal runaway have different onset
temperatures. Typically, the lower the initiation temperature
for thermal runaway, the greater the cell voltage or state of

charge [19].

Anode

Protective Layer

Electrolyte

Cathode

Separator

Figure 1. Lithium-ion battery cell's thermal runaway process (Here
numbers represent: 1-heating begins, 2-protecting layer
disintegrates, 3-flammable gas is formed when electrolytes break, 4-
Separator melts may result in short circuits, 5-cathode disintegrates
and produces Oxygen)
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At high temperatures, LIB's lifespan, as well as performance,
are reduced due to aging. Leng et al. found by their
investigation that when a Sony Prismatic lithium-ion battery
was aged from 25°C to 55°C, its capacity decreased due to the
temperature effects [20]. The measuring techniques of a
battery's internal temperatures are more convoluted
compared to the surface temperature due to its multilayered
structures. However, using thermocouples and thermal
imaging systems, the surface temperature of LIBs can be
easily measured [21]. To detect the temperature by contact
measurement, temperature sensors such as Fiber Bragg
Grating (FBG) sensors or thermocouples are placed within
LIBs. However, the structural integrity of LIBs can be
damaged by the insertion of heat sensors [22]. That's why
electrochemical impedance-based and modeling simulation
techniques are developed to eliminate the damage to the
internal structure of the LIBs. The thermal model and the
thermal-electric model are the two numerical models that
were developed by the researchers for determining the
internal temperature of LIBs. In the thermal model, only
thermal and in the thermal-electric model, thermal as well as
electric characteristics inside batteries can be predicted [23,
24]. Electrochemical Impedance Spectroscopy (EIS) is
another technique for determining the electrochemical
impedance of an electrochemical system using a frequency-
varying sinusoidal current. The internal temperature and SOC
of LIBs can be monitored using EIS simulation software [25].
It is noted that a lithium-ion battery's life cycle, performance,
power, capacity, and other properties are all influenced by
temperature.

P ———

Maximum cutoff voltage 3.7V

Yes Minimum cutoff voltage 1.7V
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No Discharging 800 mA
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Figure 2. Schematic diagram of the experimental setup (here number represents: 1-Desktop Computer, 2-LAND Battery testing system, 3-
Magnetic stirrer with a hot plate, 4-Glass box, 5-18650 cylindrical Li-lon Battery, 6-Thermometer, and 7-Stand)
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There is a chance to develop new technologies that would
reduce the impact of temperature on LIBs, and the
performance of the LIBs can be enhanced by using different
nanomaterials and porous materials as the anode of LIBs
[2,26-32]. Additionally, studying how temperature affects
LIBs is essential for security concerns. In this study, the
cycling behaviors of a ‘18650 Lithium-Ion Battery’ cell under
different temperature conditions are explored
experimentally. In the battery industry, performing
experiments at a high temperature is a challenging task and
highly sought-after. The battery has been tested at 28°C, 50°C,
60°C, 70°C, and 100°C. The properties of the battery obtained
at higher temperatures are compared with the properties
obtained at room temperature.

2. Experimental setup

The investigation was carried out to study the cyclic
performance of 18650 «cylindrical Li-ion battery cells
according to a systematic process, which is illustrated in
Figure 2. The maximum capacity of the cell was 5200mAh.
During the experiment, the battery cell was connected to the
“LAND” battery testing system. Initially, the data were
collected at room temperature. Then, the heater was turned
on to create an environment above the room temperature to
collect data at 50°C, 60°C, 70°C, and 100°C. The heater was
enclosed with a glass box to maintain a constant temperature.
To measure the temperature, a thermometer and a
thermocouple were set near the battery. Batteries charging
and discharging were controlled by the LAND Battery testing
system.

3. Results and discussion

Figure 3 illustrates the typical V-t and I-t curves of
twenty cycles for a Li-ion battery in the charge-discharge test
at room temperature (28°C), where the red color line
indicates the voltage change and the blue color line indicates
the current change during the cycling. From the beginning to
the end of the charging-discharging operations, there were
four sudden voltage (V) fluctuations occurred in each cycle,
which is illustrated in Figure 4.
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Figure 3. Voltage and current vs. test time at room temperature
(28°C)

At the very beginning, when a new charge-discharge
cycle starts, the cell is first charged at a constant voltage for
10 minutes. Then a sudden voltage peak arises during a
constant current charging condition. A micro-level internal
short circuit may have occurred at this moment. After the
charging process was complete, the constant current
discharge process began. Voltage dropped gradually at this
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stage. During the rest period of the cell of 2 minutes, the
voltage was increased from 1.7V to 2.5V.

4 -+

| ccc
—

35 + Ve

w
}

Voltage (V)

cco ! Rest |
:

15 + + + + + +
0:19:26 0:23:01 0:26:35 0:30:09 0:33:43 0:37:18 0:40:52

Test Time

Figure 4. Voltage changes over time for one cycle

Figures 5 to 7 illustrate the discharging voltage versus
capacity change of the battery cell at 28°C, 50°C, 60°C, 70°C,
and 100°C, respectively. For each case, the voltage range was
between 1.7V to 3.7V; however, the capacity change was
different. Figure 5 depicts the discharging data of a fully
discharged cell that was kept at room temperature and 50°C.
From cycle 1 to 20, capacity was fading slowly when the cell
was at room temperature, which is shown in Figure 5(a). After
analyzing Figure 5 (b), it can be said that, during the first cycle
of discharging, the capacity of the cell was around 75mAbh.
But, from the first cycle to the second cycle, capacity fades
almost 25%. Analyzing the curves of the discharging voltage
from Figures 6 to 7, it can be said that above the room
temperature, the battery's capacity decreased by almost
66.67%, 75%, and 77% from the first cycle to the second cycle
when the cell temperature was 60°C, 70°C and 100°C,
respectively. The capacity-reducing phenomena may have
occurred due to the Solid Electrolyte Interphase (SEI) layer
formation in the anode [31-33], or maybe the Li-ion did not
get enough time to move from one electrode to the other
during the cycling operation. When the cell was discharged at
100°C, the internal short circuit occurred at the 16th cycle, as
shown in Figure 7. A large capacity drop was observed
between cycle 15 to cycle 17. The cell slightly recovered its
lost capacity after the internal short circuit in cycle 17.

Figure 8 depicts the discharging voltage over capacity at
cycles 1,10, and 20. It also demonstrates that there is a large
capacity gap between the first and the last cycle. However, the
capacity difference gap decreases when the temperature gets
higher and higher between cycle 10 and cycle 20. Figures 9 to
10 depict the charging and discharging capacity and efficiency
vs. cycle number at room temperature (28°C), 50°C, 60°C,
70°C, and 100°C, respectively. The efficiency discussed here is
the Coulombic efficiency, also known as Faradaic efficiency. It
is defined as the total charge extracted from the battery to the
total charge put into the battery over a full cycle. For each
case, the Coulombic Efficiency (CE) was escalated above
100%. Figure 9(a) depicts that the charging and the
discharging capacity fade gradually when the cell is at room
temperature, although the efficiency increases slightly. From
Figure 9(b), it can be concluded that the cell behaves
anomalously when it is at 50°C. At cycles 8 and 16, the
Coulombic Efficiency suddenly increased. Figures 9(c) and
9(d) exhibit the cyclic performance at 60°C and 70°C,
respectively.
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Figure 5. Voltage and Capacity change during discharging at (a) room temperature
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Figure 6. Voltage and Capacity change during discharging at (a) 60°C and (b) 70°C
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A sudden pick was observed during the 16th cycle when
the cell was at 60°C. But a sudden drop was observed during
the 19th cycle for 70°C. The discharging capacity, as well as
the charging capacity, changed in this case. These may have
occurred due to the internal short circuit that occurred inside
the battery cell. At high temperatures, the electrolyte may be
decomposed by the exothermic reaction; as a result, an
internal short circuit of a battery occurs when the two
electrode materials are internally and electronically
interconnected, resulting in high local current densities.
These Internal short circuits in lithium-ion batteries can
happen as a result of lithium dendrite formation or a
compressive shock [31]. The battery cell also behaves
anomalously when it is cycling at 100°C, as shown in Figure
10. A sudden increase and decrease in Coulombic efficiency
were observed. Some major abnormality was seen in cycles 4,
8, and 16. This phenomenon may have happened due to an
internal short circuit inside the battery cell [31]. The battery's
internal exothermic reaction, as well as the environmental
high temperature, were responsible for the internal short
circuit. The cell capacity may be decreased due to the internal
short circuit or other phenomena inside the battery cell, such
as severe volume changes during lithiation and delithiation,
resulting in inadequate cyclability and ultimate electrode
failure [29]. This phenomenon also affects the performance as
well as the cycle life of the battery cell. From Figure 11, it can
be concluded that the battery discharged rapidly at the 20th
cycle compared to the 1st cycle.

4. Conclusion

The charging and discharging characteristics of a Li-ion
battery for 20 cycles at different temperatures have been
analyzed. Observing how a battery cell behaves above room
temperature was the main purpose of this study. The findings
of this study can be concluded as follows:
» From the temperature of 50°C to 100 °C, there was a sudden
capacity drop observed between the first and the second
cycle.
¢ During charging at a constant current, a sudden voltage peak
was detected. This phenomenon occurs due to the micro-level
internal short circuit.
« Discharging Capacity faded above the room temperature.
The range of the capacity decreased from the first to the last
cycle as the cell was exposed to a higher temperature.
e Internal Short Circuit occurred above 70°C. These may occur
due to the decomposition of the electrolyte for an exothermic
reaction.
« The lifetime of the cell decreased at higher temperatures.
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