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Due to their complex compositions, high entropy alloys (HEAs) offer a diverse
range of material properties, making them highly adaptable for various
applications, including those crucial for future sustainability. Phase engineering
in HEAs presents a unique opportunity to tailor materials for environmentally
friendly technologies and energy-efficient solutions. However, the challenge of
predicting phase selection, a key aspect in harnessing the full potential of HEAs
for sustainable applications, is compounded by the limited availability of HEA
data. This study presents a distinctive approach by using a precisely produced
and selected dataset to train an artificial neural network (ANN) model. This
dataset, unlike prior studies, is uniquely constructed to contain an equal
amount of training data for each phase in HEAs, which includes single-phase
solid solutions (SS), amorphous (AM), and intermetallic compounds (IM). This
methodology is relatively unexplored in the field and addresses the imbalanced
data issue common in HEA research. To accurately assess the model's
performance, rigorous cross-validation was employed to systematically adapt
the model's hyperparameters for phase formation prediction. The assessment
includes metrics such as phase-wise accuracy (AM 86.67% SS 81.25% & IM
82.35%), confusion matrix, and Micro-F1 score (0.83), all of which collectively
demonstrate the effectiveness of this approach. The study highlights the
importance of feature parameters in phase prediction for HEAs, shedding light
on the factors influencing phase selection. Its balanced dataset and training
method notably advance machine learning in HEA phase prediction, providing
valuable insights for material design amidst challenges and data scarcity in the
field.

1. Introduction

concentrations can comprise an MPEA. We opt to constantly

Recently, Multi-principle element alloys (MPEAs) have
been different from conventional metal alloys, as these alloys
consist of an equal proportion of individual principal
elements [1]. MPEA is commonly mentioned interchangeably
with high entropy alloy (HEA) in the literature [2-4]. Due to
its remarkable properties, high entropy alloys are
characterized as novel and promising materials class. These
alloys tend to have complex chemical compositions
containing several components [5-8]. Nonetheless, the HEA
definition limits the number of species to a minimum of four.
In comparison, only two species of identical atomic
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use the term HEA in this paper because of its broader
classification [3, 9]. Phase engineeringis a strategic approach
that employs various phase structures found in HEAs to
achieve remarkable performance configuration [10]. This
approach offers an abundance of potential to modify HEAs for
specific applications, producing materials that are precisely
tuned to meetvarious technological requirements. HEAs can
exhibit a wide range of desirable characteristics, including
elevated strength for high load-bearing capacity, increased
hardness for improved durability, heightened ductility for
improved deformability, robust wear resistance against
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abrasion, immense environmental corrosion resistance, and
exceptional catalytic characteristics that enable various
chemical reactions [11-23]. Specific mechanical properties
can be targeted utilizing the phases present in HEAs. These
phases consist of amorphous (AM), intermetallic compounds
(IM), single-phase solid solutions (SS), and hybrid SS and IM
phases [6,24-26]. Predicting phase selection is essential for
designing HEA, though the mechanism behind predicting
phase selection is crucial in tailored HEA design, yet the
mechanisms underlying phase formation are uncertain.
Additionally, the properties of HEAs are significantly
impacted by the phase structure, and despite improvements,
designing HEA phasesis still challenging and time-consuming
[1,5,6].

Machine learning has become an important tool to help
with material design [27-29]. Machine learning, inclusive of
deep learning, requires extracting features from large
datasets to recapitulate the relationships, which also offers
the chance to predict the phase formation of HEAs focusing on
existing research data by using a range of deep learning
Several studies reveal intriguing outcomes in phase formation
prediction by compiling data on HEAs and developing deep
learning algorithms [30, 31]. For predicting phase formation,
Zhu et al. [5] have introduced a deep neural network (DNN)
architecture using a residual network (ResNet), which
achieves 81.9% overall accuracy. An ANN model is utilized in
Islam et al.'s study for phase prediction, with 99% accuracy
on training data, while the practical prediction accuracy was
below 80%. [1]. Several algorithms were employed, including
logistic regression, decision tree, support vector machine
(SVM) classifier, random forest, gradient boosting classifier,
and ANN in Y.V. Krishna et al.’sresearch work [32], ANN has
demonstrated the bestaccuracy of more than 80% for the test
data among these algorithms. New alloys were synthesized
and characterized to validate the predictions that ANN is the
most accurate prediction method in the studied alloy system.
K-nearest neighbors (KNN), SVM, and ANN are the three
machine learning algorithms used in the study by Huang et al
[33], and ANN exhibits superior testing accuracy than other
models for predicting phases in new HEAs. In Uttam et al.'s
[31] study, the use of a neural network (NN) model is
introduced for the first time to predict the hardness of a
refractory high entropy alloy (RHEAs), and the prediction is
verified through experimental synthesis and microstructural
analysis. This model successfully applies to various alloys to
predict hardness, which is consistent with available
experimental results. In another recent study [24], the
predictive accuracy of an ANN model in determining phase
selection across three distinct alloy types is evaluated. It
emphasizes the extensive impact of atomic size differences
(8) on the phases within AM, SS, and IM alloys. The research
effectively forecasts the phases in two novel alloys by
leveraging this learning model in conjunction with a
combination of three or four key parameters with
confirmation through X-ray diffraction. This approach
provides a potentially promising tool for advancing the
composition design and phase selection of novel alloys. While
the field is extending, challenges continue in predicting HEA
phases, such as advancing deep learning algorithms and
dealing with a lack of experimental data. Given the vast
unexplored compositional design space, developing efficient
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machine learning algorithms based on existing data becomes
crucial for precise HEA phase prediction.

This work presents an ANN model that tackles the
challenge of training with balanced data for each phase in
HEAs, contrasting the frequent problem of unbalanced
datasets in past research. The objective is to determine the
hyperparameters that maximize predictive accuracy and
generality when predicting phase selection in new HEAs,
utilizing a balanced dataset. In this study for HEA phase
formation prediction, an ANN model architecture is optimized
for the current balanced dataset and fine-tuned
hyperparameters such as batch size, learning rate, epochs,
and dropout rate. The model's performance is evaluated on
the final test set by measuring phase-wise accuracy,
originating a confusion matrix, and determining the Micro-F1
score, and the results are then compared with prior studies.
The study also analyses the significance of feature parameters
in phase prediction outcomes, clarifying the relative
importance of physical parameters influencing phase
selection.

2. Computational Methods

The HEA dataset underwent preprocessing and
preparation using conventional data science techniques prior
to being utilized to train the model. Three distinct datasets
from various earlier studies [34-36] were selected and
employed to construct the ANN-based model. A dataset of 240
HEAs was obtained after the elimination of redundant
samples and sections with incomplete or duplicated data. An
instance of randomly selected five rows of the dataset is
presented in the Pandas DataFrame format in Table 1. In this
dataset, there are an equal number of 80 data points for each
of the AM, SS, and IM phases. The dataset consists of 240
instances and 6 features, including 1 categorical feature
designating different phases (AM, SS, or IM) and 5 numeric
features representing valence electron concentration (VEC),
the difference in electronegativity difference (4y), atomic size
difference (6), mixing enthalpy (4Hmix), and mixing entropy
(Asmix)-

Table 1. A glimpse of Pandas displaying random 5 instances of the
data employed in this study. The units for AHmix and ASmix are
kJmol-1 and JK-1mol-1, respectively

Data serial Material VEC AX ] AH AS

145 CuNbNITiZr 6.800 0.222225 9.258017 -21.280000 13.380867
125 Fe7G5P16B6AI3 7.070 0.144184 10.138168 -25.004400 6.509662
132 Ni45Ti20Zr27AIB 6.620 0.246144 10.746126 -45.303600 10.282708
222 CoCrFeNiMoO.1 8200 0.110000 1.960000 -3.900000 12.200000

64  AICrFeMo0.8Ni 6.625 0.188403 6.015400 -11.145833 13.350675

The labels were encoded into integers and assigned the
values 0 for AM, 1 for SS, and 2 for IM phases, respectively, to
denote the alloy phases in the ANN model. The formulas
provided below are used to compute the numeric values for
the five features [37-40].

VEC = ?zlciVECi (1)

Ay = JXiiciO—x) (2)
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§ =100 X /T c; (1= /1) (3)
AHppi = Xitq i< j4H;j CiC; (4)
ASmix = —R Z?zlcilnci (5)

Here, ¢; (where 0 < ¢; < 1) denotes the atomic concentrations
of the i-th element, while n represents the total number of
components within a HEA. VEC; and r; signifies the atomic
concentration, VEC, and atomicradius of each species of the i-
th element and R denotes the gas constant. Using Miedema's
model, the enthalpy of atomic pairs, is calculated [41]. ¥ and
7 refer for the weighted Pauling electronegativity and atomic
radius, respectively, written as follows.

X = Xiicxi (6)
=Xl (7)

The data undergo preprocessing for feature values before
training the architecture. Using the Pandaslibrary [42], these
values are normalized and scaled them between 0 and 1, as
shown below:

Xi —Xmin,i

Xnew - Xmaxi— Xmini (8)
Where, Xnew represents to the normalized feature, X;refers to
the actual feature information, Xmi,i and Xmax,: stand for the
minimum and maximum values respectively. Through this
normalization procedure, dimensionless numeric features
are generated, which ensures effective uniform numeric
scaling and consistent treatment of all features.

Alayer of neurons performs computational task with the ANN
model. the output of each neuron within the hidden layer is
denoted by gj, as expressed in the following equation.

a]- = Z?:]_xi Wl]+ b] (9)
Where b; designates the bias coefficients and W;;
corresponds to the weights of each input parameter x;.
Google's TensorFlow [43] is a well-recognized library in this
field and based on that, the machine learning neural network
architecture is used. Figure 1 shows the architecture used in
this study which encompasses backpropagation functions
and several hidden layers. Eq. (9) is used to calculate the value
of a; for each neuron which is related with connection-
specific weights. The activation function takes it as an input
value. Five features of parameters are encompassed as input
and the three neurons denoting different phases are included
in the outputlayer.

The leaky Rectified linear unit (LReLU) activation
function has been applied within the hidden layers. The
Rectified Linear Unit (ReLU) [44], illustrated in Figure 2, is a
common and popular activation function in Neural Networks
(NNs). By compelling precise tuning of the learning rate, it
can extend past predefined bounds during the NN training
process because of its easiness and subsequent reduction in
training computation time. Due to this issue, the activation
function remains inactive for the neurons within the negative
region during the training process. By assigning a small
constant value, like 0.2, to the negative region, Leaky ReLU
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(LReLU) [45], solves this, as presented in Figure 2. Three
nodes of the model’s outputlayer represent the alloy phases
which receive input from the final hidden layer and then these
nodes employ activation functions to predict the phase. The
broadly used activation function, SoftMax, illustrated in
Figure 3, was utilized in the outputlayer for this classification.
The probability of the input belonging to different classes is
illustrated by this normalized exponential function illustrates.
Generally, the SoftMax function [46] is expressed as:
r eYi

a (yl-) = @ (10)
Here, o(y;) denotes the subsequent probability and the
prediction vector is referred as y; . Consequently, the model's
output was contrasted with the target labels to assess
network's error. Here, cross-entropy [47] is utilized as cost
(loss) function, which resembles to the negative logarithm of
probability, and the following equation represents the
function.

Hy(y) = - Z&,ylog(a(y))

Here, y' refer to the prediction and y stand for one of the three
target vectors. The neural network’s final outputis converted
into a probability, and then, using cross-entropy, it is utilized
to calculate the loss. The deviation between the actual
distribution and the model's expected output distribution is
computed by Cross-entropy. Afterward, the gradient descent
algorithm is used, utilizing a learning rate of 0.013, to convey
back this error through the network. The weights and bias are
initiated randomly in the beginning of the training process.
The loss function is minimized by adjusting them at each
epoch. The accuracy of the network is quantified by the
number of successful determinations of the target. The
hyperparameter configuration for the artificial neural
network (ANN) model encompassed a range of values and
architectures, contributing to the systematic tuning process.
For the number of hidden layers, the model was
experimented with settings ranging from 3 to 5 layers,
exploring the impact of network depth. Regularization
techniques, such as L1 and L2, were introduced within the
ranges of 0.01 to 0.025, allowing for the assessment of their
influence on model generalization. Similarly, the learning
rate, an essential factor in optimization, was varied between
0.001 and 0.013 to identify the optimal balance between
convergence and avoiding local minima. Dropout rates, a
regularization method to mitigate overfitting, were adjusted
within the range of 0.1 to 0.4. Different batch sizes, ranging
from 8 to 120, were examined to evaluate their effect on
model training efficiency and convergence. These diverse
configurations and their corresponding results constituted a
comprehensive exploration of the ANN's hyperparameters to
achieve the best predictive performance and phase wise
accuracy. After training the model with the training dataset, a
distinct, unseen test set, which was preserved during training,
was used to evaluate the model. The feedback from validation
provides guidance to adjustthe parameter. The best model is
chosen after demonstration of the optimum validation result
The hyperparameters are described in Table 2 and the test set
is used to evaluate this model.
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AM: Amorphous
SS: Solid solution
IM: Intermetallic

Input Values Input Layers

A\
Hidden Layers

Output Layers Output Labels

Figure 1. [llustration of the artificial neural network (ANN) architecture designed for predicting phase formations in High-Entropy Alloys
(HEAS). For clarity, only five neurons (illustrated as circles) within the hidden layers are depicted. Empty squares symbolize input features
and output values. The AM, SS, and IM phases are encoded as vectors 0, 1, and 2, respectively.

RelLU vs Leaky RelU

51— PRelU
—— Leaky RelU (alpha=0.2)

Activation

Figure 2. Rectified linear unit (ReLU) and leaky ReLU (LReLU)

3. Results and discussion
3.1 Data analysis

Comprehending the dataset of 240 records is an essential
preliminary stage before applying a machine learning
algorithm. Then, we generate a scatter matrix plot using the
Seaborn package and then compute the correlation matrix of
the features using Pandas library. These two matrices aid in
comprehending feature relationships within the curated HEA
dataset and offer both qualitative and quantitative

interconnection estimates. Our prediction pertains to the
phases, with a specific emphasis on five quantitative features
of the HEA compositions. To visualize the data, we employa 5
x 5 scatter matrix plot, as depicted in Figure 4. The diagonal
subfigures illustrate histograms of phase distributions,
considering individual utilization of each of the five features.
All histograms within subfigures overlap, suggesting no
isolated feature for complete alloy phase classification.
Correlations among the five features influence phase
selection in HEAs, which is evidentin off-diagonal subfigures
of Figure 4.
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Figure 3. SoftMax function
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Table 2. Hyperparameters of ANN
Hyperparameter Value
Number of hidden layers 5

Number of hidden neurons

150 neurons

Regularization L1:0.025,L2:0.01
Activation function LeakyReLU (alpha=0.1)
Dropout rate 0.4
Batch size 65
Learningrate 0.013 (Adam optimizer)
Epochs 100

Loss function

Categorical Crossentropy

We also calculate the Pearson correlation coefficient for
features x and y to provide a quantitative description of their

correlations [48].

_ 13 =00y
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Here, xand y represent the mean values of two features, while
Sy and S, are their respective standard deviations.
Correlation values can vary between -1 and 1, indicating
negative or positive relationships. The computed correlation
matrix elements are presented in Figure 5. Centeringon the
correlation between two distinct features, the matrix
elements range from -0.61 to 0.72. Out of the ten distinct
correlation matrix elements, seven exhibit negativity, while
the remaining are positive. This outcome also exhibits
resemblance to a prior study [1]. In the correlation matrix and
scatter plot, of electronegativity difference (4y) and atomic
size difference (§), a positive correlation is observed, meaning
that 4y tends to increase with higher values of §. Additionally,
both Ay and 6 show negative correlations with valence
electron concentration (VEC) and mixing enthalpy (4Hmix). In
general, the correlation matrix elements exhibit moderate
magnitudes, allowing all five features to be employed
collectively asinputfor our neural network architecture.
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Figure 4. The scatter plots presented in the off-diagonal sectionsreveal the correlations among the values of the five distinct features. Within
the diagonal panels, the histograms illustrate the distributions of the three phases based on the five features. Each phaseis represented using
varying shapes and colors: ayellow circle signifies amorphous (AM), a blue diamond represents solid solution (SS), and ared square denotes

intermetallic (IM).
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Figure 5. Correlation matrix heatmap of the five features

3.2 Artificial Neural Network (ANN) Results

The development of all Python network models is
accomplished using the Keras framework with a TensorFlow
backend for ANNs. Subsequently, the hyperparameter values
are adjusted and the optimal model and hyperparameter
settings for the ANN model are determined through a 3-fold
cross-validation process as depicted in Figure 6. The best
parameter resulted in an average cross-validation accuracy of
86.46%, as detailed in Table 2.

Afterwards, the ANN architecture is employed to train on
80% of the developed balanced dataset and then applied to
test the remaining 20% of the dataset. This process is
visualized in Figure 7(a), (b) and (c) illustrating the
progression of training loss and validation loss across number
of epochs for three separate folds.
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Notably, both the training loss and validation loss curves
exhibit a similar trajectory, demonstrating that the
optimization algorithm consistently updates the weights of
hidden layer neurons to minimize the loss and enhance the
learning process at each epoch without overfitting the data.
Across the three-fold training set, the loss converges to 1 after
40 epochs, maintaining a consistent trend thereafter.
Furthermore, it's important to highlight that when the model
is evaluated on the final set of data, there is a noticeable
decrease in the loss value. This reduction brings the loss down
to 0.5 after approximately 30 epochs of the training process.
This trend is visually represented in Figure 7(d), where the
curve illustrating the loss for the final test set which closely
resembles the trajectory observed during the training
process. This indicates that the model's performance on the
test data doesn't show any signs of overfitting. This consistent
reduction in loss and the convergence of the curves
emphasize the model's ability to generalize well and perform
effectively on new, unseen data for each of the HEA phases. In
Figure 8(a), a visual representation is provided for the three-
fold cross-validation process that was employed to assess the
model’s performance, showcasing the accuracy achieved for
each individual fold along with average accuracy while
training the data. Notably, the calculated average validation
accuracy across all three folds was determined to be 86.46%.
This approach of three-fold cross-validation ensures proper
evaluation of the model's effectiveness across different
subsets of the data. Additionally, the prediction of phase-wise
accuracy on the training datasets is depicted in Figure 8(b).
Remarkably, the final validation set attains a prediction rate
nearing 83.33%, affirming the strong performance of the
developed ANN model and its favorable generalization
capabilities.

80% Train +

Validation

20% Test

3-fold Cross
Validation

Train with Validate model
different for each
hyperparameters hyperparameter
settings setting

Training with best
hyperparameter
setting

Evaluate model
on testdata

Phase-wise
accuracy for final
testset

Average accuracy

for each
hyperparameter
setting

Figure 6. Trainingand testing process of the ANN model

Average accuracy
for final test set
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Figure 9 illustrates the accuracy comparison between the
training and validation processes for the final test set,
revealing a positive correlation between them and overall
accuracy improvement with epochs. Observing the training
outcomes depicted in Figure 9, it's evident that the training
set accuracy incrementally rises as iterations progress. After
approximately 30 epochs, the accuracy stabilizes, suggesting
effective convergence of the model. The effectiveness of the
ANN model in predicting each of the phases is displayed in
Figure 10. In contrast to some other studies that typically
reportoverall accuracy, itis equally crucial to highlight phase-
wise accuracy to illustrate the model's competence and its
ability to predict various phases effectively. The results
underscore the model's proficiency in accurately predicting
distinct phases, and notably, the phase-wise accuracy reaches
impressive levels, with AM achieving 86.67%, SS reaching
81.25%, and IM attaining 82.35%. These results exemplify the
ANN model's effectiveness in predictive performance,
particularly when it is trained on a balanced dataset for each
phase. Using Micro-F1 to evaluate the prediction outcomes,
the test set is employed to validate the effectiveness of the
ANN model. The necessary equations for calculating the
Micro-F1 score are provided below [5,49]:Using Micro-F1 to
evaluate the prediction outcomes, the test set is employed to
validate the effectiveness of the ANN model.

—Training Loss
—\alidation Loss

Loss

O P, N W b~ 01 OO N

0 50 100
Epochs

—Training Loss
—\/alidation Loss

Loss

O P, N W B~ OO N

o

50 100
Epochs
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The necessary equations for calculating the Micro-F1
score are provided below [5,49]:
L TR

. ——Zu=1 L
Recallmicro = Sy—rptgn—m, (13)

Precision D S (14)
MICTO T yn TP+ Y1 FP;
_ 5 Precisiongigo*Recallpicro
Flmicro - (15)

PrecisionjcrotRecallyicro

Here, true positive (TP;) means positive cases correctly
identified as positive cases of the i element, false positive
(FP;) means negative cases is incorrectly identified positive
cases of the i element, true positive (FN;) means positive
cases is incorrectly identified negative cases of the i element
Recall,,;.., measures the accuracy of correctly predicting
actual positive samples within the sample space
Precision,,;.,, quantifies the accuracy of forecasting positive
predictions. Flmicro is the aggregated average that considers
both Precision,,;.., and Recall,,;.., The Micro F1 Score on
final test set is 0.83. To assess the predictive performance of
the ANN model for each of the HEA classes within the dataset,
a confusion matrix was generated using a testing dataset
comprising 48 samples, as illustrated in Figure 11.

7
6 —Training LosS
: —\/alidation Loss
@ 4
o
-3
2
1 —_
0
0 50 100
Epochs
4
—Training LosS
3 —Validation Loss
2 2
|
1
0
0 20 40 60

Epochs

Figure 7. Comparing the training and validation loss of the ANN model fora) Fold 1, b) Fold 2, ¢) Fold 3, and d) Final test set.
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Fold-wise Accuracy
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Figure 8. Comparing (a) fold-wise accuracy and (b) average phase-wise accuracy found for the cross-validation data employing the ANN model.

Comparison of Accuracy: Training Set vs. Validation Set
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Figure 9. Comparing the accuracy of the ANN model between the
training set and final validation set
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Figure 10. Comparing phase-wise accuracy and average accuracy
found for the final test set

The confusion matrix indicates notably high precision
and recall values across all three classes of HEA, affirming the
model'srobustness and generalization. The variance between
the cross-validation accuracy and the confusion matrix
accuracy arises because the former represents the average of
all validation accuracies, while the latter directly reports

accuracy for the testing dataset that has been kept separate
during the model development process. The developed ANN
model aims to predict the phase of previously unseen data,
and its performance was benchmarked against other
alternative methods, as illustrated in Figure 12. Among the
various machine learning algorithms assessed for accuracy,
our developed ANN model demonstrates the highestaccuracy
of 83.33%. Notably, while Islam et al. [1] and Krishna et al
[32] also utilized an ANN model, their datasets exhibit
unequal proportions of data across different HEA phases. In
contrast, our ANN model maintains consistency by employing
the same number of instances for AM, IM, and SS phases, and
this uniformity contributes to the model's robust
performance, allowing it to achieve the noteworthy accuracy
of 83.33%, surpassing the accuracy of other methods
[5,33,50], including those that employed differing dataset
compositions. The developed ANN model aims to predict the
phase of previously unseen data, and its performance was
benchmarked against other alternative methods, as
illustrated in Figure 12. Among the various machine learning
algorithms assessed for accuracy, our developed ANN model
demonstrates the highestaccuracy of 83.33%.

True Phase

14
29.17%

81.25% 81.25% 87.50%

AM SS IM
Predicted Phase

Figure 11. Confusion matrices of ANN model used in amorphous,
solid solution, and intermetallic phase prediction on Final Test Set.
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Figure 12. Evaluating the Precision of Machine Learning Algorithms

Notably, while Islam et al. [1] and Krishna et al. [32] also
utilized an ANN model, their datasets exhibit unequal
proportions of dataacross different HEA phases. In contrast,
our ANN model maintains consistency by employing the same
number of instances for AM, IM, and SS phases, and this
uniformity contributes to the model's robust performance,
allowing it to achieve the noteworthy accuracy of 83.33%,
surpassing the accuracy of other methods [5,33,50], including
those that employed differing dataset compositions.

3.3 Relative feature impact assessment

The ANN architecture was used to assess the relative
significance of the five input features used to train the model
To investigate this, a series of five experiments were carried
out, with each experiment systematically omitting one feature
while keeping the remaining four. This procedure entailed
retraining the model and making predictions in order to
thoroughly investigate the impact on the test set accuracy.
The results of these experiments can be seen in Figure 13,
which depicts the decline in accuracy across the five scenarios
mentioned above. This trend highlights an important
observation: removing any of the five features consistently
resulted in a decrease in the accuracy of the model
highlighting the significant influence that each feature has on
test accuracy [5,25]. When compared to other features,
differences in atomic sizes and the concentration of valence
electrons have a greater influence on the accuracy of the
model. Notably, it has been determined that the key design
parameters derived from the current ANN approach—the
atomic size difference and the valence electron
concentration—align closely with the preexisting parametric
guidelines for HEA phase formation.

Feature

0 5 10 15 20 25 30
Accuracy Degradation (%)

Figure 13. Effect on the test set accuracy upon the removal of
individual features.

This convergence highlights an intriguing correlation,
confirming the developed ANN method's reliability.
Consistent with Hume-Rothery principles, the atomic size
difference plays a crucial role in phase formation of HEA,
especially in case of solid solution (SS) phase [5,38,51,52].
Furthermore, the Hume-Rothery principles show that the
number of valence electrons per atom is critical in
determining the stability of solid solutions in metal binary
systems [5,52-54], and this stability in the mentioned
systems hinges on electron density, specifically where peaks
in the density of states occur, coinciding with the point where
the Fermi sphere intersects the Brillouin zone boundary. As a
result, the structure becomes stable at a specific electron
concentration  level.  While atomic radius and
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electronegativity differences are not always conclusive
predictors of outcomes, they're both highly indicative
parameters in the design of HEA compositions [51-54]
underscoring the significance of considering electronic
structure alongside other material properties when designing
HEAs.

4. Conclusion

In this study, a carefully developed ANN model was
introduced to address the persistent challenge of imbalanced
datasets when predicting phase selection in HEAs. Through a
rigorous optimization process encompassing various
hyperparameters, the ANN model was developed using a
balanced dataset, resulting in excellent predictive
performance. Using a three-fold cross-validation strategy, the
model's effectiveness was carefully evaluated. The results
showed an impressive average validation accuracy of 86.46%
across all three folds and eventually led to a high prediction
rate of nearly 83.33% on the final test set, highlighting the
model's robustness and capacity for generalization. This
study also emphasized the importance of phase-wise
accuracy, with the ANN model achieving remarkable accuracy
levels for the studied HEA phases (86.67% for AM, 81.25% for
SS, and 82.35% for IM). A detailed confusion matrix analysis
also confirmed the model's robustness across all classes,
highlighting its precision and recall balance, while
comparison against alternative methods demonstrated its
superior accuracy, and the Micro-F1 score validated the
model's effectiveness with a score of 0.83 on the final test set
Notably, this was accomplished by maintaining dataset
balance for each phase, which distinguished this approach
from previous studies that frequently used imbalanced
datasets and didn't mention phase-wise accuracy which is
very important to showcase the model's ability for
generalization. Furthermore, the study investigated the
relative importance of input features, identifying that atomic
size difference and valence electron concentration played
critical roles in test accuracy, in line with established
guidelines for HEA phase formation and reinforcing the
developed ANN method's reliability. It should also be noted
that including more data for each phase can contribute to
even higher model performance, providing an exciting
potential for further predictive accuracy improvement
Overall, this study not only provides an effective solution to
an existing issue in materials science, but it also provides
critical insights into the impact of physical parameters on
phase selection, making it invaluable for future alloy design
and engineering efforts.
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