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A B S T R A C T 
 

High entropy alloys (HEAs) are distinguished by their enhanced 

physicochemical properties, attributed to the formation of various phases such 

as solid solution (SS), intermetallic (IM), or a combination (SS + IM). These 

phases contribute distinctively to the microstructure of the alloys. A critical 

aspect of alloy design revolves around accurately predicting these phases, 

which has led to the integration of sophisticated data vetting methods and 

Machine Learning (ML) algorithms in recent research. This review paper aims 

to provide a comprehensive analysis of the advancements in phase prediction 

accuracy within HEAs, an essential component in the development of these 

alloys. HEAs are known for their intricate compositions, offering a wide 

spectrum of material properties, making them particularly relevant for 

applications aimed at future sustainability. Phase engineering in HEAs unlocks 

the potential for creating materials tailored to eco-friendly technologies and 

energy-efficient solutions. The challenge in predicting phase selection in HEAs 

is accentuated by the limited data available on these complex materials. This 

review delves into how advanced data vetting techniques and ML algorithms 

are being employed to overcome these challenges, thus contributing 

significantly to sustainable material design. The paper examines various 

algorithms used in HEA phase prediction, including KNN (K-Nearest 

Neighbors), SVM (Support Vector Machines), ANN (Artificial Neural Networks), 

GNB (Gaussian Naive Bayes), and RF (Random Forest). It discusses the testing 

accuracy of these algorithms in classifying HEA phases, revealing variations in 

their effectiveness. The review highlights the superior accuracy of ANNs, 

followed closely by KNN and SVM, while noting the comparatively lower 

accuracy of GNB. This comprehensive review synthesizes current research 

efforts in utilizing computational methods to design HEAs, underlining their 

broader implications in expediting the discovery and development of diverse 

metal alloys. These efforts are pivotal in meeting the evolving demands of 

modern engineering applications, thereby contributing to the advancement of 

materials science. 

 

1. Introduction 

Machine Learning (ML) represents a comprehensive 

category of data-driven algorithms designed for the purpose 

of deriving inferences and making classifications based on 

meticulously observed data. These algorithms demonstrate a 

unique capacity for iterative refinement, allowing them to 

glean concealed insights from heterogeneous, complex, and 

high-dimensional datasets, all achieved without the 

requirement for explicit programming [1]. Machine Learning 

(ML) has evolved into an essential technology underpinning a 

myriad of real-world applications, with its pervasive impact 

extending notably into domains such as material informatics 

[1, 2]. The efficacy of machine learning extends to achieving 

superlative outcomes across diverse domains, including 
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strategic applications like board game mastery (e.g., Go [3]), 

autonomous vehicular navigation [4], and image classification 

[5]. Consequently, substantial segments of our daily lives, 

encompassing pivotal domains such as visual and auditory 

recognition [6], online searches [7], email/spam filtration [8], 

credit scoring [9], and more, rely significantly on the 

sophisticated capabilities inherent in machine learning 

algorithms (Figure 1). Metal alloys have been instrumental 

throughout world history, with their significance dating from 

the historical period known as the Bronze Age. In the modern 

era, these alloys assume critical roles in diverse applications 

within automotive and aerospace engineering industries [11], 

as well as serving as fundamental materials in nuclear and 

biomedical contexts [12]. High entropy alloys (HEAs), 

commonly known as Multi-Principal Element Alloys (MPEAs), 

are alloys characterized by the inclusion of a minimum of five 

principal elements. Each principal element is distinguished by 

a composition surpassing the threshold of 5% [13]. The initial 

characterization provided represents the foundational 

definition of High Entropy Alloys (HEAs). However, an 

alternate viewpoint has been put forth by certain researchers, 

suggesting that HEAs may be constituted by four equi-atomic 

elements [14-17]. HEAs (Figure 2) have attracted 

considerable attention owing to their elevated strength, 

superior mechanical properties, and unexplored possibilities 

within alloy compositions, rendering them a subject of broad 

scholarly interest [18-28]. High-entropy alloys (HEAs) have 

garnered substantial attention owing to their distinctive 

properties, a phenomenon largely contingent upon the 

deliberate selection among three discernible phases: solid 

solution (SS), intermetallic compound (IM), and the 

coexistence of solid solution and intermetallic compound (SS 

& IM) [29]. 

 

 

 

The surge in machine learning applications within the domain 

of material science is experiencing exponential growth. The 

ensuing discussion highlights notable recent contributions in 

employing machine learning methodologies for the study of 

High-Entropy Alloys (HEAs). Islam et al. [31] categorized 

High-Entropy Alloys (HEAs) into Solid Solution, Amorphous, 

and Intermetallic categories utilizing a Neural Network 

algorithm, incorporating five features as input variables. The 

reported results include a training accuracy of 99% and an 

average cross-validation accuracy (4-fold) of 83%. Huang et 

al. [29] performed phase classification on Miracle et al.'s [32] 

High-Entropy Alloy (HEA) dataset employing three distinct 

algorithms: Support Vector Machine (SVM), Artificial Neural 

Network (ANN) and K-Nearest Neighbor (KNN). In these 

investigations, a set of five input features was employed for 

the three-phase classification. The most favorable outcomes 

were documented as 64.3%, 74.3%, and 68.6% for SVM, ANN, 

and KNN, respectively, underscoring the superiority of ANN 

as the optimal classification algorithm. Agarwal et al. [33] 

employed an Adaptive Neuro-Fuzzy Interface System (ANFIS) 

machine learning algorithm to classify High-Entropy Alloy 

(HEA) phases, including FCC, BCC, and Other Multiphases. The 

study conducted a comparative assessment between two 

models: one predicated on the composition of elements as 

inputs and the other based on thermodynamic parameters. 

Results revealed that the composition-based model exhibited 

a notable accuracy of 84.1%, surpassing the parameter-based 

approach, which achieved an accuracy of 80%. Consequently, 

the investigation concluded that, in this context, the input 

derived from compositional elements proved to be more 

effective for the classification of HEAs. 

 

 

 

 

 

Figure 1. ML modeling framework for phase classification developed specifically for this study [10] 



T. Amin & WB. Noor /Future Sustainability                                                                                  May 2024| Volume 02 | Issue 02 | Pages 08-19 

10 

 

 
Figure 2. Pressing demand for high entropy alloys [30] 

 

Zhou et al. [34] applied three distinct machine learning 

algorithms— Convolutional Neural Network (CNN), Support 

Vector Machines (SVM) and Artificial Neural Network 

(ANN)—to predict phases (SS, IM, and AM) in High-Entropy 

Alloys (HEAs). The feature set comprised 13 parameters, 

encompassing Atomic Size Difference, Average and SD of Bulk 

Modulus, Average and SD of Electronegativity, Average and 

SD of Mixing Enthalpy, Mean Atomic Radius, Average and SD 

of Valence Electron Concentration (VEC), Ideal Mixing 

Entropy and Average and Standard Deviation (SD) of Melting 

Temperatures. The study also implemented a feature 

reduction technique, revealing that the model with reduced 

features performed sub-optimally compared to the one 

utilizing the complete feature set. R. Machaka [10] conducted 

an evaluation of two machine learning algorithms, namely 

Random Forest and Decision Tree, for the classification of 

phases in High-Entropy Alloys (HEAs)—specifically BCC SS, 

FCC SS, FCC + BCC SS, and IM. The input feature set 

encompassed five features. The results demonstrate that 

Random Forest outperformed Decision Tree in phase 

classification, achieving a noteworthy test accuracy of 82.3%. 

It is essential to recognize that each algorithm exhibits unique 

features and distinctive advantages. In the context of this 

research, prioritizing parameter independence, three widely 

recognized machine learning algorithms—namely, (1) 

Support Vector Machines (SVM), (2) Artificial Neural Network 

(ANN), and (3) K-nearest neighbors (KNN)—have been 

implemented to anticipate phase selection within High-

Entropy Alloys (HEAs), encompassing the IM, SS, and SS + IM 

phases. The overarching aim is to discern the most 

appropriate machine learning model for the prospective 

design and discovery of new HEAs [29]. 

 

 

 

 

2. Literature review 

2.1 Current state of research in high-entropy alloys 

The field of High-Entropy Alloys (HEAs) has been an 

active area of research, and it's essential to note that 

advancements may have occurred since then. The current 

state of research in high-energy alloys (HEAs) is 

characterized by a dynamic exploration of novel 

compositions and advanced processing techniques. 

Researchers are broadening the applications of HEAs across 

industries, focusing on tailoring properties for specific needs. 

The field emphasizes understanding phase stability, 

employing computational modeling for predictive design, and 

optimizing multifunctional capabilities. Collaborative efforts 

on an international scale drive knowledge exchange, while 

challenges, including processing scalability and 

environmental considerations, present opportunities for 

innovation. Ongoing research aims to unlock the full potential 

of HEAs by addressing these challenges and further advancing 

their applications in diverse and sustainable materials 

science domains. 

2.2 Machine learning in material science 

Machine learning (ML) is assuming a growing role within 

our society, particularly in the domains of materials science 

and engineering [35]. Machine Learning (ML) has emerged as 

a transformative force in the realm of Material Science, 

fundamentally altering the landscape of material discovery, 

design, and characterization. ML methodologies facilitate 

precise prediction and optimization of material properties, 

offering high-throughput screening capabilities for extensive 

databases and contributing significantly to the burgeoning 

field of materials informatics. Its application spans crystal 

structure prediction, the acceleration of simulation and 

modeling processes, and the automated analysis of material 

microstructures through advanced image analysis. ML plays a 
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pivotal role in predicting material failure modes, evaluating 

durability, and optimizing experimental design strategies. 

Beyond these applications, ML aids in the discovery of novel 

materials classes, guiding researchers towards unexplored 

compositions with unique properties. The integration of ML 

with quantum computing further refines the accuracy of 

simulations at the quantum level. The symbiosis between ML 

and Material Science stands as a driving force, enhancing 

research efficiency and fostering innovation in the pursuit of 

materials with unprecedented and tailored properties. 

3. Methodology 

3.1 KNN 

The algorithm named K-Nearest Neighbors (KNN) is a 

machine learning approach employed in high entropy alloy 

(HEA) phase prediction. In the context of HEAs, KNN operates 

by identifying the phases of interest based on the similarity of 

their composition to neighboring data points in a feature 

space. The K-nearest neighbors (KNN) algorithm is a widely 

adopted non-parametric supervised learning approach 

employed to address both regression and classification 

problems [25- 27]. In the realm of classification problems, the 

training dataset, characterized by vectors within an n-

dimensional space (where n is set to 5, reflecting the five input 

features), is systematically assigned distinct labels. In the 

subsequent testing phase, a testing data vector is introduced 

into the space, and the Euclidean distance algorithm is applied 

to determine the distances between this testing vector and 

the training vectors [39]. 

𝑑(𝒑, 𝒒) = 𝑑(𝒒, 𝒑) = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑛
𝑖=1           (1) 

Where 𝒑 = (𝑝1, 𝑝2, … … , 𝑝𝑛) represents the testing vectors 

and 𝒒 = (𝑞1, 𝑞2, … … , 𝑞𝑛) is one of the KNN training vectors. 

The algorithm classifies an unknown alloy phase by assessing 

the classes of its k-nearest neighbors in the training dataset, 

where "k" is a predefined number of neighboring data points. 

The distance metric, often Euclidean distance, is employed to 

quantify the resemblance between the unknown alloy and its 

neighbors. KNN is particularly effective when the underlying 

structure of the dataset exhibits distinct clusters or regions 

corresponding to different phases. This algorithm is versatile 

and straightforward to implement, making it a valuable tool 

for phase prediction in high entropy alloy research. 

3.2 SVM 

Support Vector Machines (SVM) is a potent machine 

learning algorithm applicable to diverse tasks, including high 

entropy phase prediction in materials science. Utilizing a 

labeled dataset comprising samples with known phase labels, 

SVM operates through feature extraction, identifying relevant 

properties such as atomic compositions or lattice parameters 

indicative of a material's phase. Trained on this dataset, the 

algorithm seeks the optimal hyperplane in feature space to 

separate different classes, maximizing the margin while 

minimizing errors. The trained SVM model can then predict 

the phase of new, unseen high-entropy materials by assigning 

class labels based on their positions relative to the learned 

hyperplane. The hyperparameters employed in Support 

Vector Machines (SVM) encompass kernel function,  kernel 

coefficient (𝛾) and the penalty parameter (𝐶). The parameter 

C functions as a regularization factor, governing the 

classifier's propensity to avoid misclassification of training 

examples. A higher C value facilitates a more inclusive 

classification of training set examples; nevertheless, an 

excessively elevated C may induce overfitting, compromising 

the model's capacity to generalize to new data. Conversely, a 

diminutive C may result in inadequate accommodation of 

outliers, leading to substantial errors in the training set. The 

kernel function plays a pivotal role in defining the feature 

domain for classification, with the SVM method utilizing it to 

calculate the distance between feature vectors [40]. 

Nonlinear training samples (Figure 3) within an input space 

can be transformed into a feature domain using algorithm 𝚯. 

This algorithm constructs a hyperplane Ӷ, typically in a 

dimension denoted as 𝑅𝑁−1, utilizes an optimal margin for 

effective classification between two distinct categories [41]. 

𝚯 (𝑥𝑖) then replaces each training pattern 𝑥𝑖  and executes the 

optimal hyperplane algorithm within the feature space. The 

definition of a kernel function is as follows: 

𝑘(𝒙, 𝒚) = (𝚯(𝐱). 𝚯(𝐲))            (2) 

From Equation, it is evident that a higher dimension in the 

feature domain corresponds to a more intricate kernel 

function. The choice of different kernel functions results in 

distinct algorithms, including Gaussian, polynomial and radial 

basis function [42]. 

The Gaussian kernel, a frequently employed kernel method, is 

recognized for its ability to achieve a nuanced and precise 

balance between fitting and smoothing data. Consequently, in 

the context of this study, we have chosen to utilize the 

Gaussian kernel. In spaces of one, two, and N dimensions, the 

Gaussian kernel function is formally defined as [43]: 

𝐺1𝐷(𝑥, 𝜎) =
1

𝜎√2𝜋
 𝑒𝑥𝑝 (−

𝑥2

2𝜎2
)           (3) 

𝐺2𝐷(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
 𝑒𝑥𝑝 (−

𝑥2+𝑦2

2𝜎2
)           (4) 

𝐺𝑁𝐷(𝒙, 𝜎) =
1

(𝜎√2𝜋)
𝑁  𝑒𝑥𝑝 (−

‖𝑥‖2

2𝜎2
)           (5) 

respectively where 𝜎, the standard deviation, sets the scale 

parameter of the Gaussian function and 𝜎2 is known as the 

variance. 

 

 
Figure 3. A diagram illustrating the nonlinearity inherent in a 

classification problem with support vector machines is converted 

into a linear problem by employing a kernel function 𝚯. This 

transformation results in the definition of a plane Ӷ, referred to as a 

hyperplane, within the feature space [29] 
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3.3 ANN 

Artificial Neural Networks (ANN) are a powerful 

machine learning algorithm employed for high entropy phase 

prediction, particularly in fields like materials science. 

Modeled after the human brain, ANNs comprise 

interconnected nodes arranged in layers. The Artificial Neural 

Network (ANN) is formulated as a network of interconnected 

artificial neurons, strategically structured to simulate the 

cognitive functions observed in a biological learning system, 

specifically mirroring aspects of the human brain [44]. The 

input layer receives features like atomic compositions, while 

intermediate hidden layers, with weighted connections 

between neurons, enable the network to capture intricate 

relationships. The output layer produces predictions for 

material phases, learning to assign probabilities to each 

phase. In the context of this study, two primary types of 

Artificial Neural Network (ANN) models are utilized: the 

supervised Multi-Layer Feed-Forward Neural Network 

(MLFFNN) and the unsupervised Self-Organizing Maps 

(SOMs). 

3.3.1 SOM 

The Kohonen Self-Organizing Map (SOM) method 

represents a conventional unsupervised machine learning 

neural network approach. In this method, the network 

autonomously learns to differentiate between groups without 

requiring prior knowledge of their labels [45]. The Self-

Organizing Map (SOM) algorithm, employed for high entropy 

phase prediction, stands out as an unsupervised learning 

technique that excels in uncovering inherent patterns within 

complex datasets. Particularly valuable in materials science, 

the SOM algorithm organizes high entropy phases into a 

topological map, providing a visual representation of their 

relationships and similarities. By autonomously clustering 

and mapping the input data, SOMs offer insights into the 

intrinsic organization of materials without the need for 

labeled training data. This proves advantageous when dealing 

with intricate structures of high entropy phases, as the 

algorithm reveals emergent patterns that may not be 

immediately apparent. The SOM's ability to capture and 

visualize the underlying structure of multi-elemental 

compositions makes it a valuable tool for researchers seeking 

a holistic understanding of high entropy materials without 

relying on pre-defined labels (Figure 4). 

3.3.2 MLFFNN 

The algorithm known as Multi-Layer Feed-Forward 

Neural Network (MLFFNN) is applied for high entropy alloy 

(HEA) phase prediction in a supervised learning framework. 

In the framework of a Multi-Layer Feed-Forward Neural 

Network (MLFFNN) [46], the neurons are compelled to 

establish connections in the onward direction. The 

architectural configuration of the neural network constitutes 

the foundational step in the construction of the Multi-Layer 

Feed-Forward Neural Network (MLFFNN). The critical 

decision involves defining the number of hidden layers, 

wherein an augmentation of hidden layers is conventionally 

associated with heightened processing time and an expanded 

storage demand for learning parameters. It has been 

discerned that a neural network architecture featuring 

merely two hidden layers proves inadequate for resolving 

intricate ternary classification problems, manifesting in an 

anticipated reduction in testing accuracy. Furthermore, we 

evaluate Neural network models employing four or more 

hidden layers in an MLFFNN architecture, revealing 

comparable accuracy levels albeit with a notable increase in 

computational demands. In order to strike a balance between 

testing accuracy and computational cost, our focus is directed 

towards utilizing three hidden layers in this work. The 

MLFFNN architecture, delineated in Figure 5, comprises an 

input layer, three hidden layers, and one output layer. The 

input layer serves as a conduit for external information, 

necessitating no further processing. The linear operation of 

the input feature vector is facilitated by a weight matrix, 

producing a new vector combined with a bias vector. 

Subsequently, an activation function assigned to each neuron 

in the initial hidden layer processes this resultant vector, and 

this iterative the procedure persists until the activation of the 

ultimate hidden layer, culminating in the formation of the 

output layer. The significance of the hidden layers lies in their 

capacity to learn the nonlinearity inherent in a problem and 

contribute decisively to its resolution, rendering them 

integral components of the overall network [29]. 

 

Figure 4. Three distinct groups exhibit well-defined spatial 

boundaries, and the "map" is designed to allocate groups of neurons 

for the explicit representation of each category. Simultaneously, 

residual neurons delineate an isolation band among the three groups 

 

3.4 GNB 

Gaussian Naive Bayes (GNB) is employed as a 

classification model for the purpose of estimating the phases 

within High Entropy Alloys (HEAs). The method operates 

under the assumption that each characteristic is assumed to 

be independent and follow a Gaussian distribution, employing 

Bayes’ theorem [47]. The GNB classifier, using this Equation 

and a Gaussian probability density function, computes the 

posterior probability 𝑃(𝑋|𝑌) of each class when given a 

feature vector.  

𝑃(𝑋𝑖|𝑌) =
1

√2𝜋𝜎2
𝑌,𝑖

 𝑒𝑥𝑝 (−
(𝑋𝑖−𝜇𝑌,𝑖)

2

2𝜎2
𝑌,𝑖

)          (6) 

where 𝑋𝑖  is the 𝑖𝑡ℎ of the sample, 𝜇𝑌,𝑖  is the mean of the 𝑖𝑡ℎ 

attribute for class 𝑌, 𝜎𝑌,𝑖  is the standard deviation of the 𝑖𝑡ℎ 

attribute for class 𝑌, and 𝑃(𝑋𝑖|𝑌) is the probability of 

observing the 𝑖𝑡ℎ attribute given class 𝑌. 
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Figure 5. The architecture illustrates a multi-layer feed-forward 

artificial neural network, comprising an input layer, three hidden 

layers, and one output layer. The depiction includes the 

representation of five input features and three bias nodes. 

 

During training, the algorithm estimates the mean and 

variance of features for each phase class, utilizing the 

independence assumption to simplify computations. When a 

new sample with feature values is presented, GNB calculates 

the probability of belonging to each phase class based on the 

learned parameters. The predicted outcome is then 

determined by selecting the class with the highest probability, 

serving as the anticipated high entropy phase. It is essential 

to recognize potential limitations, such as the sensitivity to 

the Gaussian assumption and the simplistic feature 

independence assumption, which may necessitate 

consideration of alternative models or more sophisticated 

approaches for complex high entropy systems [48]. 

3.5 RF 

The Random Forest Classifier (RF) utilizes an ensemble 

of decision tree predictors, with each tree dependent on 

values from a randomly sampled vector. This vector is 

sampled independently and shares the same distribution 

across all trees within the forest, assuming the formation of n 

trees [39, 40]. The resultant prediction is computed by 

averaging the predictions of the individual trees. In 

classification, the predicted class is determined by the 

majority vote from the decision trees in the forest [51], as 

illustrated in Figure 6. 
Let T represent the total number of trees in the forest and let 

𝑓𝑖(𝑥) express the 𝑖-th tree's prediction for the input vector 𝐱. 

The RF model's prediction is subsequently furnished by.: 

�̂�𝑖 =
1

𝑇
∑ 𝑡 = 1𝑇𝑓𝑡(𝑥𝑖), 𝑥𝑖 ∈ 𝒳           (7) 

where 𝑥𝑖  represents the forecasted category for the sample, 

and 𝒳 represents the entirety of input samples. 

4. Result and Discussion  

The assessment includes a detailed classification report 

table, a confusion matrix for a nuanced performance 

breakdown, and a receiver operating characteristic (ROC) 

analysis, providing insights into the model's discrimination 

capabilities. The KNN model, detailed in Table 1, 

demonstrates an overall accuracy of 0.81, excelling in 

precision for the IM and AM phases and recall for the SS and 

AM phases. Challenges arise in accurately identifying the 

SS+IM phase, reflected in the lowest F1-score. Despite 

comparable performance to other models, the KNN 

algorithm's computational demands may limit its practicality 

for extensive datasets. Additional insights into its 

performance are elucidated through the succinct 

presentation of the confusion matrix and ROC curve are 

mentioned in Figure 7(a) and Figure 7(b) respectively. 

 

Figure 6. Operating principle of the Random Forest algorithm [52] 

 

Table 1. Performance evaluation summary of the KNN model 

 

 
Figure 7. Assessment of the KNN classifier utilizing (a) Confusion 

matrix, and (b) Receiver Operating Characteristic (ROC) curve for 

multi-scale data [53] 

 

Class Precision F1-
Score 

Recall Support 

SS 0.83 0.83 0.83 75 

IM 0.93 0.83 0.74 77 

AM 0.86 0.91 0.98 44 

SS+IM 0.51 0.60 0.72 25 

Accuracy 0.81 

Weighted 
Avg 

0.84 0.82 0.81 221 

Macro Avg 0.78 0.79 0.82 221 
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The SVM model, outlined in Table 2, attains 81% overall 

accuracy, excelling with 98% recall and 86% precision for 

class AM but showing lower recall (56%) and precision (50%) 

for SS+IM phase. The macro-average F1 score of 0.77 

indicates moderate overall performance, suggesting the SVM 

model's potential for dataset classification with performance 

variations across classes. Further analysis is necessary to 

assess robustness and generalizability, while visual aids such 

as the confusion matrix (Figure 8 (a)) and ROC curve (Figure 

8 (b)) offer additional insights into the SVM model's 

performance. 

Table 2. Performance evaluation summary of the SVM model 

Class Precision F1-
Score 

Recall Support 

SS 0.83 0.81 0.79 75 

IM 0.88 0.85 0.82 77 

AM 0.86 0.91 0.98 44 

SS+IM 0.50 0.53 0.56 25 

Accuracy 0.81 

Weighted 
Avg 

0.81 0.81 0.81 221 

Macro Avg 0.77 0.77 0.79 221 

 

 

 

Figure 8. Assessment of the SVM classifier utilizing (a) Confusion 

matrix, and (b) Receiver Operating Characteristic (ROC) curve for 

multi-scale data [53] 

 

We can see in Figure 9, In contrast to some studies that 

predominantly emphasize overall accuracy, it is equally 

imperative to underscore phase-wise accuracy for a 

comprehensive illustration of the model's competence in 

effectively predicting various phases. The results underscore 

the model's proficiency in accurately predicting distinct 

phases, with notable phase-wise accuracy levels: 81.25% for 

SS, 82.35% for IM and 86.67% for AM. These findings 

exemplify the effectiveness of the ANN model in predictive 

performance, particularly when trained on a balanced dataset 

for each phase. Employing Micro-F1 to assess the prediction 

outcomes, the test set is utilized to rigorously assess the 

effectiveness of the ANN model [54]. In the evaluation of the 

ANN model's predictive capabilities for each class of high-

entropy alloys (HEA) within the dataset, a comprehensive 

examination was conducted. This involved the generation of 

a confusion matrix utilizing a testing dataset comprising 48 

samples, as illustrated in Figure 10. 

 

Figure 9. Evaluating phase-wise accuracy and overall average 

accuracy observed in the final test set [54] 

 

 

Figure 10. Confusion matrices depicting. The efficiency of the ANN 

model in predicting amorphous, solid solution, and intermetallic 

phases on the final test set [54] 

 

The GNB model, detailed in Table 3, achieves an accuracy 

of 57% and a weighted F1 score of 0.59. Notably, it exhibits 

proficiency in estimating the SS and AM phases with precision 

scores of 0.79 and 0.82, respectively. However, challenges are 

observed in predicting the IM phase (moderate precision 

score of 0.71) and the SS+IM phase (precision score of 0.22), 

as outlined in the performance evaluation summary (Table 3). 

A concise evaluation is presented through a confusion matrix 

(Figure 11 (a)), depicting correct and incorrect classifications 

for each class, and a Receiver Operating Characteristic (ROC) 

curve (Figure 11 (b)), providing visual insights into the 

model's sensitivity and specificity. 

The performance evaluation summary (Table 4) for the 

Random Forest (RF) model reveals an overall accuracy of 

0.82, a marginal improvement over preceding model. The 

model performs exceptionally well in forecasting the IM and 

AM phases, demonstrating recall and precision scores of, 0.83 

and 0.86 for IM and 0.95 and 0.91 for AM respectively. 

Similarly, commendable performance is noted in the SS phase 

with recall and precision scores of 0.83and 0.84. However, 
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challenges surface in predicting the SS+IM phase, evident in 

lower recall, F1 score and precision (0.52, 0.50, 0.48). The 

model's macro-average F1-score is 0.78, slightly below the 

SVM model, yet the weighted-average F1-score of 0.82 

underscores its overall commendable performance. 

Complementary visual aids, comprising the confusion matrix 

(Figure 12 (a)) and ROC curve (Figure 12 (b)), offer additional 

insights into the subtle performance dynamics of the RF 

model. 

Table 3. Performance evaluation summary of the GNB model 

 

 

Figure 11. Assessment of the GNB classifier utilizing (a) Confusion 

matrix, and (b) Receiver Operating Characteristic (ROC) curve for 

multi-scale data [53] 

 

Table 4. Performance evaluation summary of the RF model 

 

For hyperparameter optimization, various metrics were 

utilized to the validation dataset to assess the efficacy of 

machine learning models. Accuracy, Precision, F1 score, 

Recall, Zero-One loss, Log loss, hemming loss, Matthews 

Correlation Coefficient and Cohen-Kappa score were 

computed for each machine learning algorithm across 

different datasets. Table 5 presents the optimal results for 

each algorithm. Notably, all algorithms achieved results 

(Accuracy, F1 score, Recall, and Precision) exceeding 90%. 

KNN and RF emerged as the most effective algorithms for 

High Entropy Alloy (HEA) phase classification, boasting 

accuracies of 92.31% and 91.21%, respectively. Additionally, 

metrics such as F1 score, Recall, and Precision, as well as 

Cohen-Kappa score and Matthews Correlation Coefficient, 

recorded their highest values for KNN and RF classifiers, 

respectively. Furthermore, the losses (excluding Log loss) for 

KNN and RF were minimized compared to other algorithms 

[52]. 

 
Figure 12. Assessment of the RF classifier utilizing (a) Confusion 

matrix, and (b) Receiver Operating Characteristic (ROC) curve for 

multi-scale data [53] 

 

Multiclass classification in this study is conducted on a 

dataset comprising 36 features ranked in terms of 

significance. The primary aim of employing feature selection 

methodologies in this context is to reduce dataset 

dimensionality, enhance usability, and pinpoint the feature 

subset that yields optimal performance in overall 

classification [10]. The experimental procedure in this 

investigation encompasses five steps. Initially, the initial 

feature subset encompasses all 36 features of the dataset, 

serving as a control experiment. This subset is juxtaposed 

with elemental composition and other empirical parameter 

sets previously employed by Agarwal and Rao [33], Zhou et al. 

[34], and Wu et al. [55]. Subsequently, in the second stage, 

four feature-reduced ensembles are constructed through the 

implementation of LVQ, RF-RFE, SVM-RFE and Boruta 

algorithms for selecting features. In the third stage, features 

are systematically ranked based on their declining 

importance, with superior outcomes observed. Tables 6 and 

Table 7 reveal that the, SVM, ANN, KNN and RF classifiers 

have demonstrated superior performance compared to other 

utilized algorithms. Their rates of accuracy stand at 95.79%, 

94.01%, 94.35%, and 97.48%, respectively. This dominance 

of SVM, ANN, KNN and RF, classifiers remain consistent across 

all feature ensembles. As noted by Ho and Tsai [56], “The 

overall accuracy of M1 will be notably high in scenarios where 

the test alloys exclusively pertain to [solid solution] alloys.” In 

contrast, the NB and LDA classifiers exhibited lower 

performance, with accuracies ranging from 83% to 88%. Qu 

et al. [57] devised a method for phase identification in high-

entropy alloys (HEAs) based on composition using machine 

learning tools. They employed the implementation of the 

Support Vector Machine (SVM) approach in forecast phase 

development in HEAs.  

 

Class Precision F1-
Score 

Recall Support 

SS 0.79 0.50 0.36 75 

IM 0.71 0.68 0.66 77 

AM 0.82 0.76 0.70 44 

SS+IM 0.22 0.33 0.68 25 

Accuracy 0.57 

Weighted 
Avg 

0.70 0.59 0.57 221 

Macro Avg 0.63 0.57 0.60 221 

Class Precision F1-
Score 

Recall Support 

SS 0.84 0.83 0.83 75 

IM 0.86 0.85 0.83 77 

AM 0.91 0.98 0.95 44 

SS+IM 0.48 0.50 0.52 25 

Accuracy 0.82 

Weighted 
Avg 

0.82 0.82 0.82 221 

Macro Avg 0.77 0.78 0.78 221 
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Utilizing both the thermodynamic and composition 

parameters of HEAs, the researchers developed two SVM 

models. Both models demonstrated reliability exceeding 

85%. Huang et al. [29] employed three distinct machine 

learning algorithms, namely Support Vector Machine (SVM), 

Artificial Neural Network (ANN) and K-Nearest Neighbor 

(KNN) to predict phases in high-entropy alloys (HEAs). The 

machine learning model effectively derived phase selection 

rules using an extensive empirical dataset encompassing 401 

distinct HEAs, including 54 intermetallic compounds,174 

solid solutions and 173 solid solutions with intermetallic 

phases. The architecture of the Multi-Layer Feed Forward 

Neural Network (MLFFNN) is depicted in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The accuracy rates for the, SVM, ANN and KNN models 

were 64.3%, 74.3% and 68.6%, respectively. Subsequently, 

the focus shifted to the categorization of two out of the three 

phases using ANN and SVM. Scatter plots depicting the 

average testing accuracy for various configurations of 

neurons within the three hidden layers revealed that ANN, in 

particular, achieved high accuracy values. For the 

classification of pairs of the three phases—intermetallic 

phases (IM), solid solution (SS), solid solution + intermetallic 

phases (SS+IM)—the testing accuracy values were 94.3%, 

86.7%, and 78.9%, respectively. Consequently, the educated 

ANN model outperformed the other two machine learning 

models and proved advantageous for forecasting the phase of 

novel High-Entropy Alloys (HEAs). 

Table 5. Best performance of different ML algorithms on the oversampled dataset 

ML 
Algorithms 

Mean CV 
Accuracy (%) 

Test 
Accuracy 

(%) 

Precision 
(%) 

F1 
Score 
(%) 

Recall 
(%) 

Zero 
one 
loss 
(%) 

Log loss Hem 
loss 
(%) 

Math 
Corr. 
(%) 

CK 
Score 
(%) 

SVM 84.40(±3.14) 90.11 90.11 90.08 90.11 9.9 0 9.9 85.2 85.1 

RF 83.70(±2.24) 91.21 92.13 91.17 91.21 8.8 0.296 8.8 87.3 86.8 

KNN 83.98(±2.20) 92.31 92.61 92.29 92.31 7.7 1.96 7.7 88.6 88.4 

MLFFNN 85.91(±4.11) 90.66 91.46 90.57 90.66 9.3 0.291 9.3 86.5 86.0 

 

Table 6. The accuracy of classification for various algorithms of machine learning in relation to diverse feature ensembles 

ML 
Algorithms 

Top 4 
Ranked 

Features 

Top 6 
Ranked 

Features 

Top 10 
Ranked 

Features 

Top 13 
Ranked 

Features 

Top 16 
Ranked 

Features 

Top 20 
Ranked 

Features 

Top 25 
Ranked 

Features 

All 36 
Dataset 

Features 

SVM 0.9376 0.9584 0.95843 0.9579 0.9574 0.9559 0.9499 0.9421 

ANN 0.88759 0.90649 0.9347 0.9401 0.9278 0.9400 0.9273 0.9307 

KNN 0.9300 0.8905 0.9431 0.9435 0.9138 0.9074 0.8732 0.889564 

RF 0.96045 0.9678 0.9702 0.9748 0.9693 0.9718 0.9718 0.9693 

 

 

Table 7. Kappa scores of various models corresponding to the number of selected features 

ML 
Algorithms 

Top 4 
Ranked 

Features 

Top 6 
Ranked 

Features 

Top 10 
Ranked 

Features 

Top 13 
Ranked 

Features 

Top 16 
Ranked 

Features 

Top 20 
Ranked 

Features 

Top 25 
Ranked 

Features 

All 36 
Dataset 

Features 

SVM 0.9465 0.9658 0.9703 0.9629 0.9688 0.9614 0.9554 0.9193 

ANN 0.8655 0.9148 0.9283 0.9372 0.9462 0.9417 0.9327 0.9238 

KNN 0.9495 0.9599 0.9539 0.9584 0.9316 0.9227 0.9287 0.9148 

RF 0.9372  0.9552 0.9552 0.9896 0.9896 0.9896 0.9811 0.9552 
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5. Conclusions 

This review paper provides an in-depth analysis of 

various methodologies employing machine learning (ML) 

techniques for accurately identifying phases in High Entropy 

Alloys (HEAs). It synthesizes research findings that highlight 

the efficacy of ML models in phase prediction, drawing 

attention to studies where models have achieved high 

accuracy levels, some validating their reliability with 

accuracy rates around 84%. A notable advancement 

discussed is the use of a voting ensemble, which combines 

several top-performing algorithms, resulting in improved 

prediction accuracies. The review emphasizes the importance 

of feature analysis in understanding the impact of different 

parameters on HEA phase determination. This analytical 

approach is not only instrumental in enhancing phase 

detection accuracy but also in advancing the broader 

understanding of material properties, aiding in the design of 

innovative materials for various applications. The paper also 

examines the utilization of alternative ML methods like K-

Nearest Neighbor and Random Forest Classifier, which in 

some studies have achieved test accuracies exceeding 90%. 

These findings offer valuable contributions to the field of HEA 

phase prediction. Another critical aspect highlighted in this 

review is the importance of balanced datasets in model 

training. The studies reviewed demonstrate that well-curated 

datasets can significantly improve the accuracy of phase 

predictions, an essential factor considering the challenges 

and data scarcity inherent in the HEA domain. Looking ahead, 

the paper discusses future research directions, emphasizing 

the need for optimizing ML models for phase prediction in 

HEAs and the importance of collecting and generating 

comprehensive HEA datasets. These efforts are aimed at 

further enhancing the precision and reliability of predictive 

models. In conclusion, the review underscores the significant 

contributions of these studies to the design and predictive 

modeling of phases in novel High Entropy Alloys (HEAs) using 

advanced ML methods. The insights gathered from this 

comprehensive review are expected to guide future research 

and development in this rapidly evolving field of materials 

science. 
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