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A B S T R A C T 
 

The demand for better energy technologies has sparked research and 
development of electric and hybrid vehicles. Due to their clean, sustainable, and 
high energy density, fuel cell vehicles have begun to stand out above the rest. 
Therefore, fuel cell hybrid vehicles can compete with internal combustion 
engine-powered vehicles in the future. However, fuel cells face obstacles, 
including slow dynamics that necessitate managing their operation together 
favorably. To reduce an HEV's operational costs, this study analyzes the HEV 
energy management issue utilizing machine learning approaches, particularly 
reinforcement learning. This paper aims to comprehensively review the 
existing work on a couple of machine-learning-based energy management 
systems for an electric vehicle run by hydrogen fuel cell, it can be concluded that 
progress was evident when the Q-learning-based algorithm was utilized 
towards lowering the SOC battery variation of about 0.7 per unit which was the 

primary task, while a Deep Deterministic Policy Gradient (DDPG) based energy 
management system (EMS) starts operating the fuel cell at a higher efficiency 
rate comparatively while using the battery. 

 

1. Introduction 

Diverse industrial areas have been acting internationally 
to lower CO2 emissions. In response, the transportation and 
communications sectors concentrated on further electrifying 
what are referred to as new energy vehicles. This is especially 
true of on-road transportation, a significant pollution source 
[1]. In the prior studies [2,3], specifics about the difficulties, 
technology, and legislation related to these endeavors were 
covered. The accelerated electrification of light and heavy-
duty vehicles is necessary to transition current powertrain 
technology to climate-neutral new energy automobiles 
quickly. Overall, electrification in the context of movement, 
automobiles, and logistics refers to the greater utilization of 
electric power and the incorporation of a wide range of 
blended technologies to aid in successful power generation 
and transmission in addition to leading to a sustainable 
vehicle movement. The entirety of the electric powered 
transportation systems used in the automotive industry [3], 
including battery electric vehicles (BEVs), fuel cell electric 
vehicles (FCEVs), and fuel cell hybrid electric vehicles 
(FCHEVs) [4,5], need a form of energy that is guided by certain 
power conversion, or transformation, first before frictional 
force arises. The origin of the energy source determines the 
battery-powered car's lifespan pollutants and its contribution 

to the reduction of rising temperatures. As a result, the 
mobility and transport sectors have been directed towards 
fusing electrification governed by clean energy sources [5]; 
therefore, a power-to-vehicle pathway was considered in the 
current study. This kind of global view enables a smooth 
linking among the energy, climate, and transport sectors. 
Including hydrogen generation, distribution, and utilization 
stages is a useful baseline for understanding the complex 
strategic interactions among sectors and various technologies 
while performing engineering studies. If the concept is solely 
applied to a power-to-vehicle chain assuming that the end-
user vehicle is a fuel cell electric vehicle (FCEV or FCV), the 
landscape can be demonstrated as illustrated in Figure 1. 

The primary form of energy for hydrogen is thought to 
come from renewable or alternatives like solar and wind. The 
electricity produced can be electrolyzed to produce the 
needed CO2-neutral green hydrogen after processing using 
network technology. Additionally, the produced hydrogen can 
be condensed into a liquid form for storage or transformed 
chemically into certain fluid states [6]. The transportation of 
hydrogen is sought using techniques like flowlines or current 
natural gas connectivity, or it is forced to move in big trailers 
with maritime transportation before being inevitably 
conveyed in limited volumes as well as native trailers to the  
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geographic recharging stations. A pressure valve lowers the 
hydrogen's captured pressure from strong to half-court prior 
to it being launched into the car, and a gas pressure decreases 
it even further to a level that fuel cells can handle. The 
complicated structure powering the electric fuel cell car is 
multi-physics dynamics. The motor, fuel cell system, battery, 
and the actual automobile are all subject to a variety of energy 
needs and model parameters because of various driving 
behaviors and ambient factors. Every control system 
transmits and gets data to produce a system that performs 
smoothly overall [7]. In complement to the piled devices, the 
fuel cell within the car also includes auxiliary modules, such 
as those shown in Figure 2. 

Figure 2. The standard fuel cell electric vehicle's layout 

 

 

With the advent of artificial intelligence (AI), the need for 
quickly running algorithms that convert digital data has also 
advanced to a critical phase. The revolution of multi-physics 
modeling is developing because of advanced technological AI 
[8]. The large customer skill necessary for conventional 
approaches like the Finite Element Method (FEM) or 
Computational Fluid Dynamics (CFD) was a limitation, and it 
was also challenging to arrive at profitable remedies without 
establishing the knowledge acquired. But since complicated 
multi-physics investigations' enormous amount of high-end 
data and the updated AI skills have worked together, a more 
potent type of expedited forecasting and optimization 
capacity has been made available. The abstracted digitization 
process of the real issue turns bulk data sets that may be 
saved and analyzed relatively easily. Emulating the findings 
allows for other projection possibilities to be enabled. A 
significant shift in the simulation and modeling mentality was 
achieved via understanding the new data and enhancing the 
techniques built into AI-based devices. Aspects of AI have 
been employed in a variety of fields, including power, 
communication, healthcare, and several other scientific 
knowledge [9]. 

 

 

Figure 1. The transition from renewable energy to an electric fuel cell car 
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2. Summary of fuel cell–battery HEV 

In the last five years, there has been an average rise in 
solar PV-based energy output of 27% and a 13% growth in 
wind energy [10-11]. Renewable energy sources (RES) are 
complex, unpredictable, and limited in capacity because of 
weather conditions. These features contribute to several 
problems and difficulties in traditional energy systems, 
including significant active and reactive power losses, voltage 
profile equalization, and network dependability [12-13]. An 
effective energy management system (EMS) can be put 
together for hybrid-electric propulsion systems using rule-
based, improvement, and knowledge-based methodologies 
[14]. A rule-based EMS was promoted by Hofman et al. [15] to 
restrict similar consumptions for hybrid vehicles. A mixed 
rule-based EMS for a module hybrid electric vehicle was 
suggested by Padmarajan et al. [16]. Peng et al. [17] presented 
an EMS adjustable by robust scripting to implement perfectly 
for a typical load characteristic. Although developing a rule-
based EMS is reasonably straightforward and may be done 
with ease to operate an electric hybrid network's internet 
microcontroller, the technique has a limited scope, which 
makes it challenging to develop the criteria for immensely 
complicated data sets. Disengaged and virtual techniques are 
used to uptick EMS; detached streamlining-based EMS 
typically wants data extrapolated from typical stress periods. 
They can communicate the appropriate layout inside the load 
patterns that are utilized to synchronize the EMS in this way. 
Regardless, detached streamlined EMS can serve as a 
standard to evaluate the practicality of alternative digital 
EMS, if knowledge of the overall load profile was known 
beforehand [18].  

A method requiring the internet, such as Equivalent 
Consumption Minimization Strategies (ECMS) and Model 
Predictive Control (MPC), in contrast, does not require 
inferred details on the piled portfolio and is typically 
scheduled like an instant rate of success for operation with 
limited computational resources [19]. For a hybrid boat 
impulsion technology, Kalikatzarakis et al. [20] promoted an 
ECMS-based EMS with the aid of the web. According to their 
numerical simulations, ECMS can save an additional 6% on 
gasoline for a handful of parameters. An MPC-based EMS for 
a hybrid-electric-powered automobile was suggested by 
Wang et al. [21] and achieved a 6% increase in fuel efficiency 
overrule-based EMS for a few given load scenarios. EMS that 
requires the internet is related to growth, such as ECMS and 
MPC, which appears to achieve close-to-ideal completion 
when used on a particular set number of load categories. 
However, their actual prolonged endurance is still unclear, 
especially for instances like vessels with extremely high 
scholastic load profiles [22]. With a large amount of factual 
evidence, a model can be created for a training EMS that will 
allow for continuing forecasting of energy pleas in the future. 
Several additional unrelated methodologies, such as 
nonlinear optimization, that are computationally expensive 
for repeated procedures [22-23], can be used to assess 
complex logic options. Even if a process is acceptable, the 
suited regulation capacity obtained through vibrant 
authoring computer software is expensive and constrained by 
the complexity [24], rendering it inappropriate for entities 
with highly multilayered or theoretically continuous phase 
and activity fields. It is noteworthy to observe that a 
Reinforcement Learning (RL) expert acquires a perfect or 
almost perfect power conduct approach by persistently 
interacting in accordance with the conditions. To address the 
problem of competence beyond evaluations in highly 
educated environments, Wu et al. [24] developed their RL 

expert using a broad range of reliable observational data. 
While the vector representation is still defined, Wu et al. [25] 
extended the subspace to be endless. The fact that each of the 
RL-based EMS clearly stated was designed to manage a 
unique source of power is crucial. It is clear from the analysis 
above that equally conventional and cutting-edge knowledge-
based EMS can deliver optimum or almost optimal energy 
management performance for hybrid-electric systems with 
simple load levels. However, some operations, like sends, 
demand large levels of explicit repetition from inside their 
power units and use a variety of sources of energy; these 
applications typically have extremely intricate and variable 
demand profiles. An EMS still needs to be tested to see if it can 
provide concurrent control for devices, such as the ones 
found in ships, that manage multiple forms of energy 
operating amid extremely demanding workload patterns. 
Reddy et al. [26] suggested a PEMS for FCHEVs that fosters an 
aged Q-learning-based related PEMS that can autonomously 
get acquainted with the best technique continually by 
collaboration with reproduction designs of the existing 
hybrid energy system and teach the Q-learning estimation 
[27]. 

3. Machine Learning (ML) and Reinforcement Learning 

(RL) 

AI created by humans intends to connect humans and 
machines so that the combined level of intellect rises [28]. 
According to prevailing consensus, ML, an effective approach 
that uses computers to benefit from meticulously obtained 
and extant data, is one of the main man-made intelligence 
strategies currently in use. The study of ML is directly 
connected to how learners behave; as a result, it aims to 
understand and analyze data profoundly, equates, and 
reasons. The goal is to compile the methods used by the core 
components of human learning. To produce computational 
assemblages, reasoning, deduction, backpropagation, coding, 
observations, statistical inference, and building relationships, 
whereas a human developer is not required to create tasks 
when studying from a data framework, which is a benefit. 
Unlike traditional programming with immediate instruction 
and obtaining a solution, the relationship between the 
computer programmer and the computer is so strong that 
they operate separately. This is since the learning procedure 
of the machine is making decisions given the data presented, 
i.e., past, and is thereby mimicking rational decisions. By 
providing models that demonstrate how the system should 
function, these are implied. The ability to synthesize 
additional material is increased as the knowledge source 
becomes more complex, but more customer data is also 
needed. Thus, careful planning serves as the driving force 
behind the teaching method; the lifecycle is incredibly 
dependent on the supplied and shaped facts [29-30]. 
Reinforcement learning is the final and most advanced ML 
computation framework. A cluster of events, not a single 
response, is the outcome of a well-researched foundation. The 
applied strategy involves arranging clever actions to reach a 
particular goal. In the unlikely event that it is crucial to a 
purported goal, an act is proper. This kind of layout is 
produced by the system of education based on appropriate 
prior experiences. The RL strategy, in contrast to supervised 
and unsupervised instructional techniques, continuously 
improves its theory by gathering feedback from prior focus in 
a cycle. This prevents it from continuing indefinitely after the 
model has been created from data collected during 
preparation and testing, as shown in Figure 3. There are three 
characteristics that define RL. The first characteristic is how 
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exploration and exploitation are balanced and coordinated. 
After gathering information about the environment during 
the exploration phase, the agent moves on to the exploitation 
phase, which entails initiating control action based on 
knowledge already at hand. Through its encounters with the 
environment, the agent may determine the status of the 
surroundings and act accordingly to modify it if necessary. 
This capacity to adapt measures without the need for external 
control is crucial in situations when the environment is hazy 
or uncertain. The final characteristic is that it is Markovian, 
which means that the conditional probability distribution of 
potential environmental states relies only on the present 
state condition and not on the previous occurrences [31]. 

 
Figure 3. Reinforcement Learning principle 

 
4. Energy Storage and Conversion Systems in FCHEV 

As every automobile is devoted to moving for a certain 
amount of time with essentially no other energy resources, 
power capacity in transport is undoubtedly an important 
topic. In the past, people had energy stored as gasoline in gas 
tanks, which limited on how far they could go. The most 
prevalent energy converters now are combustion motors, 
which run on gasoline, diesel, or lamp oil. However, these 
automobiles use batteries more as a focus for decoration than 
as a source of power for locomotion. However, as the problem 
with these vehicles' emissions became more widespread, 
ignition engines started to use alternative sources of energy 
instead of the traditional oil-based fuels they previously used. 
However, the switch from internal combustion engines (ICE) 
to battery electric vehicles (BEV) has not been seamless 
because previous batteries' energy and power capacity did 
not allow for long-range driving and necessitated frequent 
recharging [32]. Optimizing several cost functions, including 
fuel consumption, battery life, emissions, and driving control, 
by balancing the distribution of power among various energy 
sources and the power source is the primary goal of an energy 
management system. This problem is typically constructed as 
a control optimization problem with clear accountability 
targets and limitations, including exhaust temperature, 
pollution, gas mileage, and battery state of charge (SOC). The 
energy management issue for a typical HEV is shown in Figure 
4. 

4.1 Battery 
Battery technology developments have made it feasible 

for them to be used in both BEV and HEV in addition to PHEV. 
To replace Nickel Metal Hydride (NiMH), Nickel Cadmium 
(NiCd), and Lead Corrosive batteries, a type of battery known 
as lithium-ion battery has started to be used widely in a 

variety of electric cars. The three key advantages that lithium-
ion batteries have over other types of batteries are their 
increased charge storing competency, ability to store large 
quantities of energy, and ineffective self-release [33]. As 
shown in Figure 3, in comparison to their predecessors, 
lithium-ion batteries encompass an area with a larger power 
and energy density area and even offer additional likelihood 
from this perspective due to the choice of different materials 
for the cathode. There are several cells in lithium-ion 
batteries. Battery packs are created by joining the cells 
collectively. Battery packs are made at the facility that is used 
in automobiles. The cells can then be created to satisfy a 
converter's requirements for the highest possible voltage and 
current, hence extending the range of possible applications. 

4.2 Fuel Cell 
The innovative fuel cell is another alternative energy 

source. It converts hydrogen-based chemical energy stored in 
electricity. Fuel cells are an excellent option to replace 
traditional advancements since the processes that take place 
inside them produce both energy and water as their final 
products. Figure 4 shows a variety of fuel cell types that are 
used in diverse sectors and emphasize different attributes. 
PEM fuel cells are popular in transportation infrastructure 
due to their advantages, such as increased efficacy, operating 
in low temperatures, and reduced susceptibility to rust [34]. 
Table 1 depicts a few parameters of the two energy sources. 

5. Multiple Energy Management Strategies 

A large variety of factors must be verified upon every 
occurrence when using rule-based techniques. Because they 
were developed abstractly, they cannot guarantee a perfect 
functioning area. Nevertheless, it is widely used now since it 
is economical, easy to just use, and works quickly. The 
controller decides how to divide the car's energy demand 
across the sources of energy depending on such principles. An 
FCHEV is also treated using a comparative idea [37], and the 
modification will be used for comparison in this evaluation. 
Approaches for real-time optimization (RTO) anticipate the 
optimal outcome within a procedure and keep analyzing the 
recent data. Therefore, a few efficiency difficulties are 
designed to be addressed in every sampling interval rather 
than trying to identify a global equilibrium position. The 
technique was designed to combat the susceptibility of the 
controller's actual climate interface. Due to the existence of a 
disturbing impact, gold is unable to respond effectively. The 
method provides knowledge from the history, current, and 
tomorrow with a framework that can be employed. Model 
predictive control (MPC) and equal cost minimization 
strategy (ECMS) are two of the most well-known RTO 
strategies. Using a variety of data that are most typically 
generating phases in our circumstance, Global Optimization 
(GO) procedures try to find the optimum point of a particular 
objective function. The concept often includes a mix of several 
drive cycles, and the finest possible options are chosen to 
enhance the provided performance. On this basis, Dynamic 
Programming (DP), a tactic that makes use of the Bellman 
equation's criterion of optimality, is widely used [37]. 
However, DP remains the most popular strategy since it 
almost ensures that the global optimum is obtained. Direct 
coding and enhanced refinement are also used for this 
rationale. The computational complexity of the control signal, 
which can be avoided to a significant degree at the expense of 
the sampling period, is the primary drawback in terms of 
accuracy [38]. These tactics establish the highest achievable 
aim for the main functionality, making them unquestionably  
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fantastic for distinguishing the display of another strategy. To 
get closer to the best outcome, the effects of various 
optimization algorithms or maybe even rule-based 
procedures might be updated [38-39]. Furthermore, 
stochastic optimization methods are available, some of which 
are only concerned with the decoupled evaluation and the 
search for the target function's optimal global threshold. The 
Bellman equation is combined with those approaches using a 
Markov Decision Process (MDP). Phase, deed, probability of 
switching period, reward, and technique are the fundamental 
concepts to understand an MDP. In a framework that may be 
used to observe how the components interact, phases are 
variables. The elements that interact with the model or 
environment and lead to a switching cycle are actions. There 
is a possibility for every shift, and the activity is given a 
reward [39-40]. To sum up, the approach serves as a manual 
for every state's activity aspect, and the intention is to 
consider it as a tool for increasing reward chances. Due to 
advancements in the sans model's predicted values that can 
be used in any setting classified as an MDP, reinforcement 
learning calculations have just started to emerge as a viable 

 

 

 

 

 

 

 

 

 

 

 

 

 

approach and are currently being utilized to power- 
management concerns. In tests focusing on HEV or PHEV, 
which are like FCHEV, Q learning, and Deep Q learning (DQN) 
are commonly used without prototype computations. Q 
learning, also known as Q table learning, involves selecting an 
erratic activity that results in a switching period and a reward 
[40]. The Q table, which includes status and action data, 
collects the total number of upcoming and immediate awards. 
The table showing the value of the incentive in comparison to 
that state and action regard is updated for each iteration 
presuming that the current reward is more substantial than 
the previous compensation. Applying the Q learning 
computation to an FCHEV is described in [40-42] as a smart 
plan, and the results are compared to those of traditional 
control methods. Studies on adapting a DQN subordinate, a 
tactic like Q learning but utilizing a deep structure for 
scheduling, for FCHEV are also being conducted. The focus is 
on how the initial concentration situation affects 
performance, and they show how reinforcement learning 
estimates are beneficial. Besides the energy reduction using 
DQN, another key feature that is highlighted is fuel cell 

Figure 4. Types of traditional energy storage systems 

 

Table 1. A comparison between a Li-battery and fuel cell [35-36] 

Energy 
storage 
system 

Power  
consumption  
rate (MW) 

Discharge 
time 

Power  
density 

Energy  
density 

Self  
discharge 
rate 
(%/day) 

Response  
time 

Efficiency  
(%) 

Life 
span 
(years) 

Cycle life  
(cycles) 

Lithium-
ion 
batteries 

0–0.1 minutes-h  200–340  130–250 0.1–0.3  ms  65–95  5–8  600–1200 

Fuel cell 0–50  s-days >500 
(W/L)  

500–
3000 

0.5–2 ms-minutes  20–66  5–30  103 − 104 
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deterioration [41-42]. By juxtaposing the display and the 
outcomes obtained by linear DP while also connecting them 
to Q Learning-based EMS, [42] further highlights the 
importance of selecting the proper target function. The 
converter is typically only depicted as a competency atlas or 
as a single performance rating in these tests. In comparison to 
simulation studies that are thought to last lengthier, DQN is 
suggested as a computational approach that performs better 
and employs neural activity instead of a database. Barriers 
within the institution are updated in lieu of the criteria on the 
table. As a method for maximizing the merits of such 
strategies, instantaneous and global refinement mergers have 
also been developed [43]. Only little encouraged research to 
alter the calculations to enhance the union rate since velocity 
in the computation pretreatment procedure is crucial; for 
greater consistency, a different computation dubbed DynaH is 
suggested [44]. Another RL computation that was created 
from the DQN calculations is Deep Deterministic Policy 
Gradient (DDPG). The primary advantage of the DDPG 
analysis over DQN is the ability to generate a continuous 
motion field as opposed to DQN, which requires that the 
activity field be partitioned. A hybrid electric vehicle (HEV) 
and a hybrid electric transport (HEB) [45] both use the DDPG 
computation to illustrate that they are able to achieve 
superior energy usage. 

6. RL-Based Energy Management Strategy 

By distributing the energy demand among several 
resources whilst continuing to meet that requirement, energy 
management systems in HEV aim to maintain SOC within 
predetermined threshold limits and reduce actual electricity 
usage. Whenever a battery is used to supply electricity [46], it 
needs to be recharged, and the only options are a fuel cell or 
regenerative braking system because distant charging is not 
an option. Fuel cells could not be used for energy in areas 
where their efficiency is close to the highest, according to a 
primary strategy for this problem. The fuel cell runs perhaps 
low efficiently as the need for power increases, but the battery 
can still be of service in power production up to a limit that is 
constrained by its SOC. Because the main requirement is to 
ensure that the transport follows the speed outline, there is 
little of choice for having fuel cells operate forward with poor 
efficiency, supposing the energy requirement significantly 
increases higher. Maintaining SOC within a period is another 
issue. It must be ensured that SOC level is maintained within 
the defined limit by the fuel cell or regenerative decelerating 
throughout normal driving when outside recharging is 
unthinkable in an HEV, unlike a PHEV [47]. Rule-based and 
performance-tuning strategies are frequently used to 
accomplish these goals. Stochastic and deterministic iterative 
methods are two further categories under which the 
improvement methodologies can be divided. Collaboration 
with AI-based tools for machine learning has also improved 
the usage and application of conventional simulations [48]. 
The present part gives a quick overview of the latest machine 
learning techniques that can be applied to transdisciplinary 
fuel cell electric vehicle studies to speed up modeled 
workflows, enhance comprehension, enhance evaluations, 
and generate current queries and hypotheses. This will build 
a structure of information sharing and implement an effective 
human-computer interaction (HCI) strategy [48-49] and must 
give a clear and succinct explanation of the empirical 
evidence, their analysis, and any possible design inferences 
[50]. A rapidly developing science, AI now helps people make 
forecasts regarding a variety of diverse scientific disciplines. 
For instance, AI strives to link computers and people in a way 

that raises the combined level of intellect. Machine learning 
(ML), a methodical strategy that enables devices to gain 
knowledge from properly gathered and pre-processed 
information, is universally recognized as one of the 
fundamental AI technologies employed [51]. Since ML is 
closely related to how students remember, its primary goal is 
to comprehend and analyze the data, strategies, and 
philosophy that make up this area. The objective is to group 
the approaches used by the fundamental components of ML. 
Hence producing computational answers using reasoning, 
coding, statistics, probabilistic assessment and 
backpropagation, and parallelism. The benefit of gaining 
knowledge from information gathering is that assignments do 
not need to be established by a skilled developer. In contrast 
to conventional computer science, where commands are 
given directly and answers are received, the coder and the 
machinery act autonomously from one another. This is to 
ensure that the ML steps could emulate human judgment by 
creating choices based on the information provided, or 
familiarity. These are created by giving samples that 
demonstrate how the technology ought to operate. Additional 
facts are accessed but ample consumer expertise is needed 
the further complicated the data stream is [51-52].  As a 
result, thorough coaching is what propels the educational 
experience. The provided and molded facts are important to 
the procedure. At interacting using organized sets of data, 
comprising tables of qualitative and numerical parameters, it 
provides an incredible tool. It appears to coincide with the 
phrase data mining, despite the differences between the two 
terms. ML is primarily focused on learning by self from data 
and creating models that serve as the basis for projections for 
multiple situations, whilst data analysis aims to recognize as 
well as recognize trends from huge amounts of information to 
gain knowledge from the previous era [53]. Table 2 indicates 
the comparison of HESSs's use of RL algorithms.  

7. Simulation Results 

The simulations, therefore in research are concentrated 

on adjusting various Q learning control variables to reach a 

resolution with the aim of reducing SOC battery variance. To 

obtain this, the methodology training is broken up into 1000 

events, each of which lasts for 2000 seconds. Every episode is 

broken down into 500 iterations, with a sampling interval of 

4 seconds in every cycle [63]. The outcomes of simulations 

from both the beginning and the end of training are shown in 

Figure 5. The findings are shown for three various 

SOC battery starting values, including a minimum value of 0.3 

per unit, a desirable value of 0.7 per unit, and the highest 

value that can be achieved, which is 1 per unit. The three 

sections (a), (b), and (c) of the simulation results for each 

episode exhibit distinct onboard hybrid power system and 

controller parameters (Figure 6) [64]. The NEDC load profile, 

the power provided by the fuel cell (PFC), and the power 

provided or absorbed by the battery are all displayed in part 

(a) of the episodic parameters "P" _"battery"). The battery's 

state of charge (SOC) and whether the controller activity is 

exploitation or exploration are both displayed in part (b) of 

the episodic parameters. When an orange bar is present, it 

means that the controller is engaging in exploitation, while 

when it is absent, it means that the controller is engaging in 

exploration. The SOC values of 0.6 and 0.8 per unit, which are 

closer to the intended value of 0.7 per unit, are also shown by 

two lines in section (b). These lines are incorporated into the 

graph to make the confluence more obvious.  
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Figure 5. Simulation parameters during episode-1 

for SOC initial= 0.3 per unit 

Part (c) displays the per-unit value of the incentive 

received following every series repetition. The simulation 

findings demonstrate that the controller's activities at the 

start of training are driven by curiosity and are chosen at 

random [63-64]. According to the numerical simulations, the 

controller's basic training actions are driven by discovery and 

are random in nature. This means that the SOC battery and 

incentive are not compatible with the object's goal. In 

comparison, as the course progresses, the controller's 

activities are governed by exploitative and are selected to 

enhance compensation. As a result, the SOC battery and 

compensation are inching relative to the individual's goal. 

Despitef the SOC battery for show's base value, similar are 

observed. Nevertheless, SOC battery's value is frequently 

greater than the desired level of 0.7 per unit. This happens as 

the methodology may regulate how the battery fills, whilst the 

load demand affects how the battery empties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total energy consumption, average fuel cell efficiency, 

and SOC deviation will all be compared [64-65]. The agents 

programmed with DDPG and DQN methods can keep the SOC 

level within certain constraints during the Urban 

Dynamometer Driving Schedule (UDDS) cycle, and the 

difference from the target, which is set at 50%, is not 

noteworthy [66]. Total energy consumption, average fuel cell 

efficiency, and SOC deviation will all be compared. The agents 

programmed with DDPG and DQN methods can keep the SOC 

level within certain constraints during the Urban 

Dynamometer Driving Schedule (UDDS) cycle, and the 

difference from the target, which is set at 50%, is not 

noteworthy. As illustrated in Figure 7, it still has a suitable 

result at the end of the cycle, and restarting the loop from that 

point onward will not dramatically change SOC performance 

[66-67]. Considering that it is evident that there is an 

exchange between such two effects, Figure 8 illustrate 

correlation of the reduced energy area showings of the 

controller established with Rule-Based EMS and RL-Based 

EMS educated with DDP SOC levels and performance of the 

fuel cell under distinct EMS should be mentioned together. To 

assess how well the EMS is performing, multiple cases are 

evaluated. The battery is used in lieu of the fuel cell in DDPG-

based EMS in the area where the SOC drops below 50%, as 

has been mentioned previously [59-60]. The scenario where 

the SOC level is just a little bit above the target is depicted in 

Figure 8. While rule-based EMS underperforms and starts the 

fuel cell slightly later, causing the SOC to fall more sharply, 

DDPG-based EMS starts operating the fuel cell almost where 

it is most efficient and attempts to keep running the fuel cell 

on higher efficiency region while using the battery [67]. 

 

 

 

Table 2. Comparison of HESSs's use of RL algorithms [31] 

Reference Drawbacks Advantages Power transmission system Algorithm 

Hsu et al. [54] Simplification of 
complex models 

Adaptive to riding 
conditions 

Electric bike Q-learning 

Qi and Wu [55], Liu and 
Murphey [56] 

Dependence on driving 
data 

High accuracy Hybrid electric vehicle Temporal-difference 
(TD) learning 

Liu et al. [57] Sporadic local 
optimization 

Ability to run online Plug-in hybrid electric vehicle Q-learning 

Hu et al. [58] Computational load Multiple control 
objectives 

Hybrid electric vehicle Q-learning 

Kamet et al. [59] Design complexity Robust against 
variability 

Hydraulic hybrid vehicle Deep reinforcement 
learning and dynamic 
neural programming 

Zhao et al. [60], Xiong et 
al. [34] 

Complex mathematics Real-time control Hybrid truck Dynamic learning 

Kamet et al. [59] Zhao et 
al. [60] 

Needs specific training Data-driven model Plug-in hybrid electric vehicle Deep learning 

Liu et al. [57], Hu et al. 
[58] 

Sensitivity to driving 
cycle 

Fast computation Electric vehicle Online reinforcement 
learning 

Hay et al. [61], Lin et al. 
[62] 

Data requirements Improved battery life Hybrid electric vehicle and plug-in 
hybrid electric vehicle 

Reinforcement 
learning and Markov 
decision system 
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Figure 7. Performance comparison of the controllers created 

using Rule-Based EMS and RL-Based EMS trained with DDPG 

in the low power zone 

 

 

(b) 

 

 

(d) 

 

 

 

Figure 8. Performances of the controllers generated with 

Rule-Based EMS and RL-Based EMS trained with DDPG are 

compared in the mid power area 

 

 

Figure 6. Simulation results with variable for SOCinitial values during different episodes: (a) Episode-2 for SOCinitial = 0.7 per unit, 

(b) Episode-999 for SOCinitial = 0.7 per unit, (c) Episode-3 for SOCinitial = 1 per unit, (d) Episode-1000 for SOCinitial = 1 per unit 
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8. Conclusion 

This study's main driving factor was to review the 

implemented works of reinforcement learning calculations in 

an energy management strategy. For hybrid energy storage 

systems (HESSs) of hybrid electric vehicles, this research 

offered an overview of reinforcement learning-based energy 

management techniques (HEVs). The study began by 

introducing the issue of energy management in this industry 

and the approaches that can be taken to address it. The 

current energy management plans with various control goals 

were then discussed. Finally, as indicated, the future of 

reinforcement learning-based energy management systems 

looks promising. The development of more effective AI 

energy management methods represents a potentially fruitful 

research topic in this field. Through real-world experiments, 

applications, and simulations, it is also crucial to assess the 

suggested method's theoretical and practical viability. For 

FCHEV supported by fuel cells and batteries, an intelligent 

PEMS based on conventional reinforcement learning (Q-

learning) has been created. The simulation model of the 

onboard hybrid power system was used to evaluate the Q 

learning based PEMS algorithm, which was implemented as a 

MATLAB script. Consequently, a comparison of the existing 

energy management systems employing machine learning 

has been made. According to simulated data, the algorithm 

can progress towards the primary goal of lowering SOC battery 

variation of about 0.7 per unit. Consequently, the algorithm 

can be changed beyond to achieve various goals like 

minimizing fuel usage and prolonging the life of elements.  

The DQN algorithm, which was later replaced by the DDPG 

method, emerged as the widely used model-free RL algorithm 

after Q-learning. The SOC of the battery, fuel cell efficacy, and 

overall energy usage were the determining factors. The UDDS 

cycles were chosen as they consider multiple driver behavior 

types. Energy management solutions based on DDPG and 

DQN were discovered to have the ability to utilize lower 

energy than the rule-based technique in all these drive cycles 

whilst attaining a comparable SOC behavior and minor SOC 

variance. Even while DQN, is extremely like DDPG and only 

slightly poorer than DDPG in the UDDS cycle. The best 

solution, whose active learning can persist in real-time 

applications, may be reached using the DDPG algorithm, it can 

be inferred. 
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