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A B S T R A C T 
 

In Malaysia, rice, ranked as the third most crucial crop, faces challenges due to 
domestic consumption outpacing production, resulting in increased instances 
of rice adulteration. This underscores the imperative of maintaining integrity 
and quality standards across the entire supply chain. This study uses an 
electronic nose, comprising four metal oxide semiconductor (MOS) gas sensors, 
and employing temperature modulation, Principal Component Analysis (PCA) 
and supervised machine learning (classification models) to distinguish rice 
varieties such as Bario, Bajong, Borneo Fragrant, Biris, and Jasmine. The study 
evaluated 30 classifiers based on their classification and validation accuracy. 
Sensor data was first extracted from the transient response of sensors output 
voltage, yielding a 12-dimension dataset with response times of 30 s, 50 s, and 
95 s. Classification models trained from this dataset achieved classification 
(training) accuracy of up to 100% and validation accuracy of up to 96%, where 
the best performing models are subspace discriminant and kernel naïve bayes 
classifiers. An attempt was also made to analyze the sensor data frequency 
response for rice classification. Comparison between the prediction results in 
the transient and frequency domains showed that transient response is better 
suited for the classification of rice. 

 

1. Introduction 

The increasing population and natural factors affecting 

rice production, coupled with the diverse range of rice 

varieties, have created opportunities for dishonest traders to 

profit by adulterating rice. Adulteration methods include 

blending lower-quality rice, adding similar-looking materials, 

and withholding clear information about the rice's origin and 

age. Even small amounts of undesirable substances can make 

it challenging to differentiate between genuine and fake rice. 

Such adulterated products pose serious health risks and can 

lead to harmful consequences. Recent reports have even 

surfaced about the use of plastic rice as an adulterant, 

underscoring the dangers of food adulteration [1-5]. This 

report suggests a swifter, cost-effective, and non-intrusive 

approach for geographically tracking the classification of 

Sarawak Premium Rice (Bajong, Bario, Biris, and Borneo 

Fragrant Rice) by the model, which is metal oxide 

semiconductor (MOS) Gas Sensors or electronic nose, which 

is more cost-effective, rapid, and non-invasive. To identify the 

most dependable classification models for this application, a 

variety of popular classifiers were trained and evaluated in 

this study. These included neural networks, naïve Bayes, 

linear regression, logistic regression, random forests, support 

vector machines (SVM) [6]. Classification accuracy was 

compared across these models to determine their efficacy for 

the task at hand. In a frequency domain representation, the 

emphasis is on illustrating the relationship between the 

signal's amplitude (or power) and frequency, as opposed to 

time. This approach proves especially beneficial for signals 

characterized by the superposition of multiple frequencies 

[7]. Transient and frequency response methods were devised 

to authenticate rice samples from Bario, Bajong, Borneo 

Fragrant, Biris, and Jasmine varieties. In the transient 

response approach, classification model training and 

prediction were iterated using sensor responses at various 

points in the sampling cycle. Conversely, in frequency 

response analysis, dip frequencies were recorded, and 

patterns were compared for identification. These methods 

facilitated the precise classification of rice varieties based on 

their distinct response characteristics. 
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2. Methodology 

2.1 Preparation, storage, and sampling of rice 

To create the training datasets utilized in this study to 

train the classification models, a total of 100 rice samples 

were meticulously prepared as follows: 

• 20 samples of Bario 

• 20 samples of Bajong 

• 20 samples of Borneo Fragrant  

• 20 samples of Biris 

• 20 samples of Jasmine 

To validate the trained classification models, a total of 25 

rice samples were prepared as follows and predicted by the 

trained classification models: 

• 5 samples of Bario 

• 5 samples of Bajong 

• 5 samples of Borneo Fragrant  

• 5 samples of Biris 

• 5 samples of Jasmine 

Figure 1 illustrates the physical appearance of each type 

of rice samples used in this study. Each sample consisted of 8 

grams of rice. These samples encompassed Sarawak Premium 

Rice varieties, including Bario, Bajong, Borneo Fragrant, Biris, 

and a standard rice type, Jasmine. The rice sample was stored 

in a zipper bag and labeled clearly with the name of the rice 

and the number of the rice. 

This study utilized the MOS gas sensors module, 

sampling process, and feature extraction method practiced by 

Lee et al. in their studies [8-11]. Sensor response is defined as 

the change in sensor output voltage (voltage across an 

external load resistor) due to the change in resistance of the 

sensing material in the sensor. The change in sensor output 

voltage is calculated as a percentage change by comparing it 

with the sensor output voltage baseline, which was set to 1.0 

V in this study. 

For the construction of the MOS gas sensor array, four 

Figaro TGS series sensors were employed: TGS2600, 

TGS2602, TGS2620, and TGS2611. These selected MOS gas 

sensors possessed unique selectivity for target gases, as 

outlined in Table 1 [12-15]. 

 

 

 

 

The complete circuit configuration is shown in Figure 2. 

The microcontroller chosen for this purpose is the Arduino 

Uno, which facilitates the collection of sensory data during the 

sampling process and allows the data to be displayed on the 

Arduino software graphical user interface. Figure 3 illustrates 

the sample holder used to contain rice samples for headspace 

sampling. 

Table 1. Sensor models used in this study 

 

Before sampling, the sensors’ output voltages were 

calibrated to a baseline of 1.0 V by adjusting the resistance of 

the digital potentiometers (connected as external load 

resistors). During the sampling process, the sample holder 

containing rice sample was inserted into the sensing 

chamber. The sensing chamber was isolated from other 

pneumatic components using normally closed vacuum 

solenoid valves to prevent air or odor exchange. Upon 

completion of sampling, the solenoid valves were opened to 

introduce carrier gas. The air pump was then activated to 

purge volatile organic compounds (VOCs) from the sample 

and replace it with clean air at a flow rate of 2000 cm³/min. 

This ensured the sensors returned to their baseline output 

voltage (1.0 V) in a chamber filled with clean air. Before 

initiating the rice sampling process, sensor warming was 

performed to enhance sensor stability. This involved placing 

a sample of 6 coffee beans into the sensing chamber and 

applying a heater voltage level of 5.0 V for 20 minutes. A 

cumulative quantity of 8 grams would be collected as sample 

data for Principal Component Analysis (PCA).  

 

 

Sensor 

Model 

Target Gases Sensor Resistance 

TGS2600 Air contaminants 
(hydrogen, ethanol, etc.) 

10 to 90 kΩ in air 

TGS2602 Air contaminants (VOCs, 
ammonia, H2S, etc.) 

10 to 100 kΩ in air 

TGS2620 Alcohol, solvent vapours 0.68 to 6.8 kΩ in 5000 
ppm methane 

TGS2611 Methane, natural gas 1 to 5 kΩ in 300 ppm 
ethanol 

Figure 1. Sample of (a) Bajong, (b) Jasmine, (c) Borneo Fragrant, (d) Bario and (e) Biris 
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Temperature modulation of MOS gas sensors was 

employed by applying three heater voltages (4.6 V, 4.8 V, and 

5.0 V) to produce three configurations of gas sensors 

sensitivity and selectivity. Data collection began at the 10th 

second, with the sensitivity level incrementing by 0.2 V every 

30 seconds until reaching 5.0 V, then remaining constant for 

the subsequent 30 seconds. Following this, it decreased by 0.2 

V every 30 seconds until reaching the threshold of 4.6 V. In 

the detailed sampling procedure shown in Figure 4, the total 

sampling time of 140 seconds (including a 10-second baseline 

period), a maximum purging duration of 20 seconds, and a 

maximum recovery phase of 200 seconds reveal that each 

sampling session required a maximum of approximately 360 

seconds, equivalent to 6 minutes. This was notably faster 

compared to the 30-minute sampling cycle typically 

associated with the conventional GC-MS method. 

 
Figure 2. Complete circuit configuration of the MOS gas sensor array 

 

 
Figure 3. Sample holder 

 

2.2 Sample data analysis 

A total of 100 training samples (20 samples per class) 

and 25 validation samples (5 samples per class) were 

collected for the principal component analysis (PCA), which 

was initially applied to the data matrix as a preprocessing 

step. Subsequently, the preprocessed data matrix was utilized 

for training 33 classification models from broad categories of 

the decision tree, discriminant analysis, logistic regression 

classifier, naïve Bayes classifier, SVM, k-nearest neighbor 

(KNN), ensemble classifier, and neural network. All 33 

classification models underwent evaluation based on their 

classification accuracy on the training datasets and prediction 

accuracy on five test samples. The selected model with the 

highest accuracy was chosen, and if necessary, fine-tuning 

would be conducted. 

2.3 Signal processing on the frequency domain 

Figure 5 outlines the workflow for signal processing on 

the frequency domain. MATLAB was utilized for the signal 

processing method. In the program, the data obtained from 

the sensor response curve would undergo transformation 

into a frequency domain graph for signal processing. It was 

utilized to discern the signal behavior of each rice sample by 

identifying dips in the signal and recording their frequencies. 

𝑓 =
1

𝑇
                                                                                    (1) 

The sample rate was determined to be 1 Hz, as the overall 

sampling process takes approximately 130 seconds with a 1-

second interval between each sample. This calculation was 

derived using the equation (1). This process was conducted 

for every variety of rice, and ultimately, the range of 

frequencies associated with the dips was compared to 

identify patterns.  Dips are the main features extracted from a 

frequency domain graph. Dips in a frequency domain graph 

represent specific frequencies at which the signal's amplitude 

or power decreases significantly compared to neighboring 

frequencies. These dips often correspond to certain features 

or characteristics present in the signal. They serve as an 

important marker that can reveal valuable information about 

the underlying signals and help in interpreting and analyzing 

the data effectively. Based on the example in Figure 6, three 

dips are observed between 320.1 mHz and 386.3 mHz. 

3. Results and discussion 

3.1 Transient response 

Table 2 shows the legend of the rice samples data on the 

principal components (PC) scatter plot generated using the 

processed data of the sensors’ transient responses. Data was 

collected in two dimensions – a 4-dimensional dataset (from 

the response time of 80 s) and a 12-dimensional dataset (from 

the response times of 30, 50, and 95 seconds) – for 

comparison. Classification accuracy was assessed using a 

confusion matrix, employing a Cubic SVM model, as shown in 

Table 3. PC3 vs PC1 graph is shown in Table 3 solely for 

illustration purposes to demonstrate good interclass data 

separation that can even be observed by human eyes, which 

verifies the high accuracy in classification model training. 

Table 2. Legend pf transient response scatter plot 

 

Rice Abbreviation Color of data point on the 

scatter plot 

Bario BR Yellow 

Bajong BJ Orange 

Borneo 

Fragrant 

BH Blue 

Biris BS Purple 

Jasmine JS Green 
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Figure 4. Sampling procedure 

Figure 5. Procedures for frequency response signal processing 
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Figure 6. Example of dips: three dips are observed between 320.1 mHz and 386.3 mHz 

Table 3. Classification model training accuracy: comparison between 4-dimensional and 12-dimensional dataset 

Training Set 

PCA Scatter Plot Confusion Matrix 

D
im

e
n

si
o

n
 

T
im

e
 (

s)
 

4 80 

 

 4 Dimension (80s) 
Model: Cubic SVM (99%) 

T
ru

e
 C

la
ss

 

BR 20     

BJ  20    

BF   19 1  

BS    20  

JS     20 

 BR BJ BF BS JS 
Predicted Class 

 

12 

30, 

50, 

95 

 

 12 Dimension (30s,50s,95s) 
Model: Cubic SVM (100%) 

T
ru

e
 C

la
ss

 

BR 20     

BJ  20    

BF   20   

BS    20  

JS     20 
 BR BJ BF BS JS 

Predicted Class 
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Table 4. Classification model training accuracy: comparison between different sets of response times 

Training Set 

PCA Scatter Plot Confusion Matrix 

D
im

e
n

si
o

n
 

T
im

e
 (

s)
 

12 

30, 

60, 

95 

(set 1) 

 

 
 

 12 Dimension (30,60, 95s) 
Model: Coarse Tree (81%) 

T
ru

e
 C

la
ss

 

BR 11  9   

BJ  19  1  

BF 1  18  1 

BS  1 3 15 1 

JS 2    18 

 BR BJ BF BS JS 
Predicted Class 

 

12 

30, 

50, 

90 

(set 2) 

 

 

 12 Dimension (30,50, 90s) 
Model: Coarse Tree (78%) 

T
ru

e
 C

la
ss

 

BR 19  1   

BJ  20    

BF 2  18   

BS    20  

JS 2  17  1 

 BR BJ BF BS JS 
Predicted Class 

 

12 

30, 

50, 

95 

(set 3) 

 

 12 Dimension (30s,50s,95s) 
Model: Coarse Tree (84%) 

T
ru

e
 C

la
ss

 

BR 20     

BJ  19  1  

BF 1  18  1 

BS  1 4 14 1 

JS 7    13 
 BR BJ BF BS JS 

Predicted Class 
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In the 4-dimensional dataset, the confusion matrix 

indicated a 99% accuracy rate, with one misclassification 

observed: a Borneo Fragrant rice sample incorrectly 

predicted as Biris rice. Conversely, the 12-dimensional 

confusion matrix demonstrated flawless 100% accuracy, with 

all rice samples correctly classified. Consequently, a 12-

dimensional PCA scatter plot, considering the utilization of 

four MOS gas sensors, for comprehensive analysis.  

Three 12-dimensional datasets were generated, each 

with different response times: Set 1 (30, 60, 95 seconds), Set 

2 (30, 50, 90 seconds), and Set 3 (30, 50, 95 seconds). Utilizing 

a Coarse Three classification model, a confusion matrix was 

employed for comparison which shown in Table 4. While Set 

3 allowed the classification of the rice samples with some 

errors, it was selected for further analysis. 

Table 5 displays the best-performing classification 

models achieving a classification (training) accuracy of 100%. 

A comprehensive list of 14 classification models was provided 

for reference. During the classification models’ validation 

stage, three distinct validation sets were selected as well as 

shown in Table 6, each corresponding to datasets generated 

at different response times: Set 1 (30, 60, 95 seconds with PC4 

and PC1), Set 2 (30, 50, 90 seconds with PC1 and PC3), and Set 

3 (30, 50, 95 seconds with PC3 and PC1). The Subspace 

Discriminant classification model was chosen for comparison. 

Set 3 stood out as the best-performing dataset, boasting an 

impressive accuracy of 96%, surpassing the others in 

accuracy among the compared sets. 

Table 5. Classification models that achieved 100% classification 

(training) accuracy 

Classification model 

Classification accuracy of 

training data 

(% out of 100 training 

samples) 

Set 3 

(30s, 50s, 95s) 

Quadratic Discriminant 100 

Quadratic SVM 100 

Cubic SVM 100 

Fine Gaussian SVM 100 

Medium Gaussian SVM 100 

Fine KNN 100 

Weighted KNN 100 

Bagged Trees 100 

Narrow Neural Network 100 

Medium Neural Network 100 

Kernel Naïve Bayes 100 

Subspace KNN 100 

Wide Neural Network 100 

Bilayer Neural Network 100 

 

 

 

 

Table 7 showcases the top 6 classification models 

achieving the highest validation accuracy. Subspace 

Discriminant and Kernel Naïve Bayes both achieved 96% 

accuracy, while Coarse Gaussian SVM, Cosine KNN, Weighted 

KNN, and Bagged Trees attained an accuracy of 92%. 

3.2 Frequency response 

The exclusion method could be employed, which 

involves comparing frequency ranges and eliminating 

incorrect matches to identify the rice sample. Table 8 shows 

the comparison of the range of dips frequency across training 

and validation data for four sensors. It became apparent that 

identifying rice was challenging due to discrepancies in the 

frequency range between the training and validation sets. 

Some fell within the range, while others did not. Moreover, 

there were instances where the frequency ranges from a 

sensor for a specific rice sample overlapped with the range of 

another rice sample, suggesting that it did not exclusively 

pertain to one sample. Hence, it could be concluded that the 

rice sample cannot be identified solely through the 

comparison of the frequency range of dip occurrences. 

Another comparison was conducted on the range of dips 

power spectrum in Table 9 to determine if rice could be 

correctly identified. However, the outcome mirrored that of 

the frequency range comparison, wherein the power 

spectrum range of a sensor for a rice sample did not closely 

match the validation set, and some overlaps occurred with 

other samples. Consequently, this comparison method was 

deemed inappropriate for rice classification analysis. 

The signal processing method in the frequency domain 

may not be suitable for classification when dealing with a 

larger number of sample types, such as the five different types 

of rice in this case. With more types of samples, overlapped 

between frequency responses become more common, leading 

to difficulties in classification. Restricting the classification to 

fewer types, may yield more reliable results as it reduced the 

likelihood of overlaps and enhanced the distinctiveness of 

frequency responses for each type. 

Table 7. Classification models with the highest validation accuracy 

 

 

 

 

Classification model 

Prediction accuracy of 

validation data 

(% out of 25 validation 

samples) 

Set 3 

(30s, 50s, 95s) 

Subspace Discriminant 96 

Kernel Naïve Bayes 96 

Coarse Gaussian SVM 92 

Cosine KNN 92 

Weighted KNN 92 

Bagged Trees 92 
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Table 6. Classification model validation accuracy: comparison between different sets of response times 

Validation 

PCA Scatter Plot Confusion Matrix 

D
im

e
n

si
o

n
 

T
im

e
 (

s)
 

12 

30, 

60, 

95 

(set 1) 

 

 
 

  

12 Dimension (30,60,95s) 

Model: Subspace Discriminant (80%) 

T
ru

e
 C

la
ss

 

BR 5         

BJ   5       

BF     0 5  

BS       5   

JS        5 

  BR BJ BF BS JS 

Predicted Class 
 

12 

30, 

50, 

90 

(set 2) 

 

 

 12 Dimension (30,50, 90s) 
Model: Subspace Discriminant (68%) 

T
ru

e
 C

la
ss

 

BR 4    1 

BJ  5    

BF   5   

BS   4 0 1 

JS 2    3 

 BR BJ BF BS JS 
Predicted Class 

 

12 

30, 

50, 

95 

(set 3) 

 

 12 Dimension (30s,50s,95s) 
Model: Subspace Discriminant (96%) 

T
ru

e
 C

la
ss

 

BR 5     

BJ  5    

BF   5   

BS 1   4  

JS     5 
 BR BJ BF BS JS 

Predicted Class 
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4. Conclusion 

The machine learning method achieves an optimal 

accuracy of 100% by analyzing the transient response within 

the training dataset. Furthermore, when this method is 

applied to the validation dataset, it also yields notably high 

accuracy levels, > 80%. The high accuracy suggests that the 

machine learning model effectively identifies most rice 

samples by recognizing their distinctive characteristics. On 

the contrary, the outcome of the signal processing on the 

frequency response did not meet expectations. It is found that 

this signal processing method is unable to interpret the 

behaviors exhibited by the rice samples. Therefore, the 

analysis of frequency dips did not effectively aid in identifying 

the rice samples as anticipated. In short, a machine learning 

method with transient response is recommended for the 

classification of rice samples. 
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Table 8. Range of sensors dips frequency across training and validation data: comparison between five classes of samples 

 Range of dips frequency (mHz) 
 Bario Bajong Borneo Fragrant Biris Jasmine 

Training(T)/ 
Validation (V) 

T V T V T V T V T V 

TGS2600 
411.1 

- 
483.4 

320.1 
- 

422.2 

358.7 
- 

460.1 
354.3 

329.2 
- 

402.9 

352.1 
- 

417.5 

346.0 
- 

487.3 

370.8 
- 

480.1 

319.5 
- 

469.1 

370.6 
- 

445.9 

TGS2602  419.4   
380.8 

- 
450.9 

383.5 
- 

417.8 

327.8 
- 

484.6 

370.3 
- 

440.9 
473.7 

321.2 
- 

469.6 

TGS2620 
346.0 

- 
377.5 

316.2 
- 

477.4 
448.1 

369.7 
- 

418.9 

311.2 
- 

469.9 

384.2 
- 

483.4 

317.3 
- 

419.6 
314.5 

380.2 
- 

465.2 

406.2 
- 

429.9 

TGS2611 
352.1 - 
385.5 

352.6 
- 

424.4 

351.0 
- 

469.1 

460.3 
- 

483.4 

355.9 
- 

482.7 

358.1 
- 

485.6 

421.6 
- 

485.6 

317.3 
- 

486.5 
456.4 

426.5 
- 

490.1 

 

Table 9. Range of sensors dips power spectrum across training and validation data: comparison between five classes of samples 

 Range of dips power spectrum (dB) 
 Bario Bajong Borneo Fragrant Biris Jasmine 

Training(T)/ 
Validation (V) 

T V T V T V T V T V 

TGS2600 
(-97.1) 

- 
(-77.9) 

(-110.2) 
- 

(-73.1) 

(-100) 
- 

(-71.7) 
-84.7 

(-94.7) 
- 

(-67.5) 

(-91.5) 
- 

(-81.1) 

(-101.1) 
- 

(-76.6) 

(-108.4) 
- 

(-79.8) 

(-94.0) 
- 

(-69.1) 

(-107.6) 
- 

(-82.3) 

TGS2602  -81.3   
(-86.5) 

- 
(-81.3) 

(-87.7) 
- 

(-82.7) 

(-99.9) 
- 

(-79.2) 

(-95.4) 
- 

(-88.0) 
-97.4 

(-103.7) 
- 

(-82.7) 

TGS2620 
(-89.0) 

- 
(-83.9) 

(-89.6) 
- 

(-76.9) 
-74.4 

(-91.5) 
- 

(-74.6) 

(-84.6) 
- 

(-67.2) 

(-87.2) 
- 

(-75.3) 

(-103.2) 
- 

(-74.4) 
-79.3 

(-84.5) 
- 

(-75.4) 

(-94.7) 
- 

(-85.7) 

TGS2611 
(-96.9) 

- 
(-89.4) 

(-77.7) 
- 

(-76.2) 

(-84.5) 
- 

(-77.4) 

(-89.3) 
- 

(-84.1) 

(-
110.4) 

- 
(-72.7) 

(-107.4) 
- 

(-78.9) 

(-90.1) 
- 

(-87.7) 

(-101.9) 
- 

(-84) 
-98.5 

(-96.4) 
- 

(-89.5) 
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