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A B S T R A C T 
 

Effective waste management is a critical global concern, especially in urban 
areas where efficient systems are essential for reducing litter, minimizing 
environmental contamination, and enhancing urban aesthetics. This study 
presents a comprehensive framework for optimizing waste management in 
Kathmandu Municipality, focusing on the spatial allocation of collection points, 
bin requirements, and predictive waste level modeling. This approach is based 
on the primary parameters of the rate at which waste is generated, the capacity 
of a bin, the density of waste, and the frequency of collection. The model also 
accommodates waste segregation-this means effective bin deployment across 
categories of waste to avoid wasting resources. It includes a time-series 
forecasting model, simulating waste accumulation for 7 days with seasonality 
influences, holiday influence, fluctuation of the population, and socio-economic 
influence. Trend of generation waste is reported at an interval of 6 hours in 
order to enhance precision within the schedule of collecting wastes. Lower risk 
of overflow of the bins due to the services before bins overflow. This holistic 
framework shall consequently provide data-driven scalable solutions to 
Kathmandu Municipality in optimizing its routes for collecting wastes, 
enhancing resource efficiency, and adapting the patterns of producing wastes 
on a real-time basis. 

 

1. Introduction 

The growing urbanization and unregulated growth today 
in Kathmandu Valley demand a festering crisis of waste 
management in the city. Inefficiencies such as irregular 
collection, environmental pollution, and strained landfills 
plague the system. Cultural distinctiveness and social 
dynamics are compromised at the critical juncture; it calls for 
better governance strategies for urban management [1]. 
Waste management in the Kathmandu Valley, Nepal, is 
currently faced with a complex and pressing set of problems 
that require immediate action along with innovative 
strategies to ensure both environmental sustainability and 
cost-effectiveness. Waste management is a significant 
challenge, particularly with the inadequate waste collection 
and disposal infrastructure. Semi-landfill sites occur because 
many locations in the Kathmandu Valley lack a structured 
waste collection system, leading people to ruin their place by 
burning out the garbage or dumping it without control [2]. As 
a result, it brings about environmental pollution, posing 
potential risks to human health and wasting recyclable waste 

materials. One of the important barriers is strict safe waste 
disposal methods. The absence of waste segregation at the 
source has hindered recycling and resource recovery efforts, 
resulting in longer and more frequent trips to landfills due to 
increased waste volumes. With household waste consisting of 
approximately 51% organic matter, the lack of composting 
facilities leads to much of this waste unnecessarily ending up 
in landfills [3]. Citing the strain on dump sites across 
Kathmandu Valley, some nearing or at their capacity. 
Therefore, the problem mentioned above has led to improper 
sanitary landfilling, which causes a high risk in terms of 
groundwater pollution and damage to the entire ecosystem. 
The waste collection system in Kathmandu Valley suffers 
from inefficiencies, reflected by unorganized and irregular 
collection schedules of unoptimally routed collection vehicles 
[4]. Operationally, it leads to unnecessary cost escalations and 
increased fuel consumption. This combination of emissions 
and inefficient waste management further aggravates 
environmental degradation and supplements the overall 
carbon footprint of the city's waste management system. The 
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informal waste industry, in which local waste pickers operate 
under harsh conditions- often marginalized and preyed upon- 
is part of a broad system in Nepal that shapes how trash flows 
throughout its cities. The involvement of unorganized sector 
members further results in a sluggish monitoring mechanism 
in the disposal and potential resource (trash) recovery 
options [5]. 

Addressing the waste management crisis in Kathmandu 
Valley demands innovative, data-driven approaches to tackle 
the pressing challenges posed by rapid urbanization and 
unregulated growth. As landfill sites near capacity, 
inefficiencies in waste collection and disposal continue to 
exacerbate environmental degradation and public health 
risks. The absence of proper waste segregation at the source, 
unoptimized collection routes, and the informal waste sector 
further strain the existing system. This study highlights the 
potential for AI-assisted geospatial solutions to optimize 
waste bin placement and streamline collection routes, 
addressing key inefficiencies such as irregular schedules, 
inadequate bin distribution, and operational cost escalations. 
Integrating community feedback and leveraging technologies 
like ArcGIS and VRP can significantly enhance waste 
management efficiency, reducing environmental 
contamination and improving public satisfaction. After 
identifying prominent temporal factors, a novel method has 
been developed to forecast waste generation at bins installed 
across various collection points in the city. This method 
allows municipalities to install bins of varying capacities and 
collect different categories of waste separately, improving 
waste management operations. A resilient formulation 
further anticipates these variations, offering a forward-
looking solution to optimize bin distribution and collection 
strategies. For Kathmandu Valley, adopting such solutions, 
along with stronger governance and formalizing the informal 
waste sector, is crucial for building a sustainable and cost-
effective waste management framework that mitigates 
environmental risks and enhances urban livability. 

2. Related works 

Improper waste disposal causes effects on the 
environment, including polluted air and water sources and 
destroyed ecosystems through the emission of greenhouse 
gases. By putting in place sustainable ways of handling waste, 
the country Nepal will be in a position to minimize all the 
impacts toward promoting environmental health. In addition 
to this, most studies are concerned with creating successful 
strategies for waste management in underdeveloped 
countries in order to contain the deteriorating scenario of 
uncontrolled growth without proper sorting and inferior 
collection methods in such places. Regions are suffering from 
waste generation due to the improperly structured waste 
collection system accompanied by the lack of adequate waste 
sorting at the generating end, as referred by ref [5]. This is 
especially true in Kathmandu, as rapid urban growth has 
overwhelmed the existing infrastructure, resulting in 
unregulated waste disposal practices and strain on landfill 
sites. In a similar study by Hoornweg & Bhada-Tata [6] 
inadequate infrastructure and governance were identified as 
key issues in waste management systems across rapidly 
growing cities, calling for more integrated and data-driven 
solutions to manage municipal solid waste efficiently. 

Geographic Information System (GIS)-based algorithms 
optimize the location and quantity of waste bins, employing a 
p-median model to determine the most productive placement 
based on population density and waste generation patterns  
[7]. In 2015, much effort was put into improving the location-

allocation of collection bins and recycling bins in solid waste 
management [8]. It decreases the number of open dumping 
yards and generates significant profit if recovered items are 
handled appropriately. Bin GPS position, population density, 
bin accessibility, distance, and site availability were 
important factors in determining the best placement.  

Khan and Samadder [9] proposed an appropriate 
location of bin allocation techniques at acceptable locations 
with equal distances and easy access to cut off collection truck 
routes for Dhanbad, India to their minimum. In a proposed 
study, the number of collection bins and their capacity will be 
determined in relation to the per capita rate of solid waste 
generation, the area of service from a solid waste collection 
bin (dumpsters), and the accessibility to the road network. 
Commercial bins, as selected for managing municipal waste, 
improve collection efficiency and avoid a negative effect on 
the environment. Based on several municipalities' unique 
requirements, some methodologies to optimize bins, such as 
analytical hierarchy processes and geographic information 
systems (GIS), have come forward. Analytical hierarchy 
processes and ANN were taken into consideration factors and 
thus created the Suitability Index S.I of the system, which 
considered areas, population density, waste generation rate, 
and bin costs. The study highlighted that the available number 
of bins significantly influences overall waste management 
[10]. GIS algorithms have been effectively employed to 
determine optimal bin locations, traditionally focusing on 
minimizing collection distances and maximizing accessibility. 
While earlier studies, such as those examining placement 
within a 100-meter radius [11], prioritized proximity. This 
would lead to too many collection points, which contributes 
to the chaos within cities, deforms aesthetic visions, and adds 
pressure on maintenance capacities. The optimization of 
functionality, as well as visual integration into the urban 
landscape, should be included within a radius of 300 meters. 
Based upon street network analysis and the distribution of 
the population, the visible and physical footprint from the 
collection points can be minimized along with retaining 
required access. This will correspond to the general 
principles of urban planning: publicly accessible, open, and 
visually appealing grounds that contribute to a better-
organized and cleaner space but accessible to everybody.  

A more accurate and data-driven estimation of the 
number and size of bins to be located at each collection point 
is required for effective waste collection. Though several 
studies indicate benefits in optimizing the allocation of bins, a 
formula that can scale and include key variables such as the 
capacity of the bins, the production rates of waste within a 
coverage area, and population density needs to be developed 
at collection points [12]. Based on the per capita generation 
of waste and the population of the locality, a generic formula 
can be used to estimate the number of bins required for that 
area. This would allow municipalities to tailor their solutions 
to specific urban dynamics, thus having scope to adjust the bin 
capacity more closely in tune with actual waste generation 
and thereby make the solution more efficient and reduce 
unrequired collection trips. Further, this maintains the cost 
and space constraints by committing the bins only to real-
time generation data about waste rather than generalized 
estimation. In this way, the waste collection systems appear 
to be responsive, sustainable, and much better at managing 
operational efficiency and site-specific constraints. However, 
basing solely on per capita waste generation will prove 
inefficient as a basis indicator; it won't adopt dynamic 
influences of complexities in waste dynamics, especially in 
terms of total waste generation in a municipality. A research 
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is thus undertaken separately for the improvement of the 
prediction models incorporating temporal, economic, and 
demographic factors. Accurate waste generation forecasting 
is crucial for effective waste management, and various models 
continue to be developed to improve predictive accuracy. 

3. Methods and material 

The Kathmandu Valley and Nepal's waste management 
problem needs urgent attention with innovative ways. This 
study retrieved data about household waste management 
practices and issues related to practices in the Kathmandu 
Valley (Figure 1) to know the status of present practices, the 
extent of public awareness of such practices, and the 
associated impact on both health as well as the environment. 
Now that pertinent attention is directed toward 
environmental sustainability and human well-being with 
waste management infrastructure that cooperates across the 
state, corporate community, and civil society in further 
improvement - being said, there would be a careful 
introduction to mobile applications for waste collection 
vehicle routing to help improve and modernize management. 
Strategies that focus on sustainability and the optimization of 
cost in procedures for waste management can actually make 
Nepal develop a clean environment, improved public health, 
and economic prosperity. 

 
Figure 1. Population Density Map of Kathmandu Municipality (Ward 
Wise) according to 2021 Census 

3.1 Waste level forecasting considering temporal factors 
This should ease sustainable development for the 

environment, public health, and economic prosperity of Nepal 
with the correct integration of sustainability and cost-
optimizing strategies into the waste management system. It is 
possible to come up with a standard formula, integrating per 
capita generation of waste calculations, with this integration 
with local population data, hence helping the towns put more 
solutions better-tailored to the unique urban dynamics. This 
would ensure that the capacities of the bins are pretty closely 
aligned with the generated wastes, thus making this system 
more efficient and requiring fewer unnecessary collection 
trips. This will further manage both the cost and space due to 
the operation of the bins according to real-time-generated 
waste instead of generalized assumptions. In turn, waste 
collection systems become more responsive and sustainable 
in addressing both efficiency and site-specific limitations in 
their operations. However, this method might be less efficient 
by using per capita waste generation as an indicator since it 
doesn't capture the dynamics of waste more precisely, 
especially in looking at total waste generation in the 
municipality. Another separate study is being conducted to 

improve the forecasting models with time, economic, and 
demographic influences. Accurate forecasting of waste 
generation is significant in waste management, and many 
other models are still being produced to improve resilient 
predictive accuracy. The objective is to gather data on several 
parameters that cause waste generation so that the methods 
of waste management can be evolved. This can be done by 
developing a model that predicts the levels of waste, 
gathering data on time-related factors affecting waste 
generation, and doing an initial study of the waste patterns. 
Information from this model can be fed into a decision 
support system. Our primary goal is to understand how waste 
is generated and see if the digital twin can be improved in 
terms of visualization and analysis for waste management. 
We have also been simulating some time-based variables that 
have an impact on the generation of wastes and their 
variability. This will help develop a good prediction model 
and an effective strategy for waste management. Daily 
seasonal trends, the impact of holidays, weekly variations, 
weather, shifts, economic conditions, legal frameworks & 
cultural impacts are a few examples of these variables. 
Simulations are done by assuming a waste generation model 
and simulated time factors. They predict how much trash will 
be accumulating in bins over time. Simulations enable us to 
understand the ups & downs in the level of trash and what 
causes the change. Along with this, we developed methods of 
visualization so we could depict how trash was piling up over 
time within the different bins. The visualizations give so much 
insight into trash buildup patterns, bin use & ways we might 
make waste systems better. The model considers various 
time-based factors to simulate trash production over three 
days at hourly intervals. This reflects real-world influences on 
how fast waste builds up. Time-based factors include: 
• Seasonality Factor: The curve resembles a sinusoidal, 

considering the fluctuation in seasons of garbage 
generation according to the model of generation due to 
seasonality. This curve adjusts amplitude and frequency 
parameters to reflect a periodic pattern of waste 
generation that might be expected in regular, predictable 
seasonal variations due to consumption patterns in 
producing the waste [13]. 

• Holiday Factor: The impact of holidays on waste 
generation is a binary random variable. In the presence of 
holidays, garbage rates decrease approximately by this 
same amount. This will capture the expected decline of 
waste during holidays mainly because of consumption 
variation among individuals and less business activity [14]. 

• Day of Week Factor:  It has a binary variable that 
simulates the weekdays and weekends to model the 
fluctuations in the rate of trash. The model differentiates 
the weekdays with more industrial and commercial 
activities that produce more garbage volumes and the 
weekends that are less active and hence waste [15]. 

• Weather Factor: A normal distribution is used to model 
random fluctuations in weather. This captures how 
weather conditions such as temperature & humidity affect 
waste rates. This model considers unfavorable (reducing 
trash output) and favorable conditions (increasing waste 
generation) to effectively incorporate weather's influence 
[16]. 

• Population Factor:  The stochastic population fluctuations 
are integrated using a normal distribution. Population 
density directly affects waste production; the more the 
population is, the more waste will be produced. This two-
way relationship ensures that the simulation properly 
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reflects how the size of the population affects waste output 
[17]. 

• Economic Factors:  Economic conditions vary 
stochastically according to a normal distribution to 
illustrate how the economy affects waste generation rates. 
Prosperity typically reflects increased consumption and, 
hence, increased garbage; recessions may decrease waste 
levels. This factor ensures that all the economic changes are 
clearly represented in the trend waste projection of the 
model [18, 19]. 

• Regulatory Factor: A binary random variable represents 
the effect of regulation measures on garbage rates. Some 
parameters define the levels of garbage by considering in 
or not in place the regulation factors. By employing this, the 
above approaches, incorporating recycling incentives & 
trash reduction policies, may be presented in the model 
while showing the community impact evidently it reflects  
[20, 21].   

• Cultural Factors: The normal distribution is used to model 
the cultural norms and practices that affect the patterns of 
waste. Events, traditions & attitudes towards consumption 
and disposal are among the factors that highly influence 
behaviors. Including this variable will ensure an all-
rounded representation of the dynamics of waste within 
cultural contexts [22-25]. 

The first model equates the contribution of all of the temporal 

factors, say, seasonality, holidays, or economic conditions, as 

equally static. This is an immense simplification of the case in 

the real world where sometimes these factors might be 

contributing more than others with respect to the specific 

case, say the impact of the holidays could be much greater due 

to a particular season. To address this, dynamic weights 𝑤𝑖(𝑡) 

were introduced for each factor, allowing the model to learn 

and adapt over time based on historical data or observed 

changes in waste patterns. Dynamic weights can also be 

updated more optimally by using the EWMA or Kalman filter 

for the updates. 

The dynamic temporal effect 𝑇(𝑡) is expressed as: 

𝑇(𝑡) = ∑ 𝑤𝑖(𝑡). 𝐹𝑖(𝑡)
𝑛
𝑖=1                                                                      (1) 

Where, 

𝑤𝑖(𝑡): represents the dynamic weight of each factor I at time 

t 

𝐹𝑖(𝑡): represents the value of factor i at time t. 

The weights are updated using the Kalman filter for optimal 

dynamic weighting as 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝐾(𝑡). (𝐸(𝑡) − 𝑤𝑖(𝑡). 𝐹𝑖(𝑡))                      (2) 

Where 𝐾(𝑡) is the Kalman gain and 𝐸(𝑡) is the error term 

between predicted and actual waste levels.  

Dynamic weights increase flexibility in the model so that it 

responds to new conditions. More directly, this increases the 

accuracy of a prediction in scenarios where some variables 

may not be uniformly influential across periods; perhaps they 

include holidays or extreme weather patterns. The weights 

change, focusing only on the most influentially dominant 

variables at the time. In the primitive version, there is a direct 

proportion for every time factor with respect to waste 

generation. Nevertheless, many factors have interrelations in 

a nonlinear trend. For example, population increase will have 

no huge effect on the production of waste. However, a vast 

increase in population, more often on festivals or public 

holidays, may rise exponentially and cause a rapid increase in 

the levels of waste. 

To capture this, the improved model incorporates nonlinear 

functions 𝑓𝑖(𝐹𝑖(𝑡)), such as exponential, logarithmic, or 

polynomial relationships, for each factor. The nonlinear 

relationship for each factor is modeled as: 

𝑇(𝑡) = ∑ 𝑓𝑖(𝐹𝑖(𝑡))
𝑛
𝑖=1   

Where 𝑓𝑖(𝐹𝑖(𝑡)) represents a nonlinear transformation, for 

example: 

• Exponential: 𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) = 𝑒𝛽𝑃(𝑡), where 𝑃(𝑡) is the 

population factor and 𝛽 controls the growth rate.  
• Logarithmic: 𝑓𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐(𝑡) = log(1 + 𝐹𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐(𝑡)), which 

reflects diminishing returns after a certain point. 
By introducing nonlinear functions, the model can capture 

sudden spikes in waste generation (e.g., during festivals) and 

account for saturation effects, where further increases in 

factors like population or economic activity don't lead to 

proportional waste increases. This enhances the model’s 

responsiveness to real-world scenarios, leading to more 

accurate and robust predictions. An error correction 

mechanism was implemented to ensure that the model learns 

from past errors and improves over time. At each time step, 

the error 𝐸(𝑡), defined as the difference between the 

predicted waste 𝑊𝑝𝑟𝑒𝑑(𝑡) and the actual waste 𝑊𝑎𝑐𝑡𝑢𝑎𝑙(𝑡), is 

used to adjust the factor weights. This feedback loop ensures 

that the model progressively refines its predictions, especially 

when persistent deviations exist between the predicted and 

actual values. The error at each time step is defined as: 

𝐸(𝑡) = 𝑊𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) −𝑊𝑝𝑟𝑒𝑑(𝑡)                                                       (4) 

A Kalman filter can be used to minimize the prediction error 

optimally: 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝐾(𝑡). (𝐸(𝑡) − 𝑤𝑖(𝑡). 𝐹𝑖(𝑡))                         (5) 

Where 𝐾(𝑡) is the Kalman gain that adjusts the weights based 

on error uncertainty. 

The error correction mechanism significantly reduces the 

model’s bias over time, allowing it to self-correct as more data 

becomes available. This improves the long-term accuracy of 

waste predictions, especially when the initial assumptions 

about factor impacts were incorrect. The model can better 

adapt to unforeseen circumstances, such as sudden 

regulatory changes or cultural shifts. Instead of relying on 

simulated or static data for temporal factors like weather, 

population, and economic conditions, real-time data was 

integrated into the model. This enhances its accuracy by 

reflecting current conditions rather than relying on past 

averages or assumed distributions. For example 

• 𝐹𝑊𝑒𝑎𝑡ℎ𝑒𝑟(𝑡) now reflects real-time weather data (e.g. 
temperature, precipitation). 

• 𝐹𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) updated using real-time population mobility 

data from smart city censors or social media activities.  
The temporal effect now incorporates real-time data as 

inputs: 

𝑇(𝑡) = ∑ 𝑤𝑖(𝑡). 𝐹𝑖
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒(𝑡)𝑛

𝑖=1                                                       (6) 

Where 𝐹𝑖
𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒(𝑡)represents real-time data inputs for each 

factor. 

Integrating real-time data improves the model's 

responsiveness to sudden events or changes in conditions 
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(e.g., storms, holidays, or local festivals). This results in 

predictions that are more aligned with the real-time waste 

generation patterns. However, the reliance on real-time data 

also introduces potential challenges related to data 

availability and quality, which should be addressed in future 

work. To account for long-term trends in waste generation 

(e.g., population growth, urbanization), a trend component 

𝐿(𝑡) was introduced. This component accounts for gradual 

increases in waste generation over months or years, 

reflecting ongoing demographic and economic changes. The 

long-term trend L(t) is modeled as: 

𝐿(𝑡) = 𝐿(0). (1 + 𝑟)𝑡                         (7) 

Where L(0) is the initial waste generation level and r is the 
growth rate, which can be learned from long-term data on 
population growth, urbanization, etc. The overall temporal 
effect now includes both short-term factors and long-term 
trends: 

𝑇(𝑡) = 𝑇𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) + 𝐿(𝑡)           (8) 

The introduction of long-term trends ensures that the model 
remains accurate over extended periods. This is particularly 
important in rapidly urbanizing areas where waste 
generation grows steadily over time. The trend component 
allows the model to predict short-term fluctuations and 
steady increases due to population and economic growth, 
improving its utility for long-term planning. In real-world 
scenarios, there are often unpredictable variations in waste 
generation due to random events (e.g., unplanned gatherings 
and sudden regulatory changes). To model this uncertainty, a 
stochastic noise term ϵ(t) is added to the model to simulate 
random variability. The predicted waste generation now 
includes a stochastic noise term: 

𝑊𝑝𝑟𝑒𝑑(𝑡) = 𝑊𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝑡) + 𝜖(𝑡)             (9) 

 

 

Where 𝜖(𝑡)~Ɲ(0, 𝜎2) is a Gaussian noise term with variance 
𝜎2 representing random fluctuations in waste generation. 

Adding stochastic noise enhances the robustness of the 
model against unexpected variations in waste generation 
patterns. The stochastic component will be useful in 
preventing the model from overfitting into historical data and 
makes it more suitable to handle the random fluctuations, thus 
being reliable for operational use, especially in an 
unpredictable environment. The dynamic weights, nonlinear 
relations, real-time data integration, error correction, long-
term trends, and stochastic modeling made the waste 
generation prediction model significantly improved. This 
made the model more adaptable, responsive, and precise. 
Figure 2 describes the architecture of the Waste Level 
Forecasting Model, or WLFM. The Waste Level Monitoring Unit 
provides real-time readings of waste levels, which, besides 
other relevant temporal factors, are included in the state 
representation of the reinforcement learning model. The 
reinforcement learning model picks the actions based on the 
present state, gets rewards based upon its actions, & updates 
its policy through the learning algorithm. Based on the 
feedback from its environment, the model learns and becomes 
better at predicting and managing the waste level. 

4. Result and discussion 

This section summarizes the results of the allocation of 
collection points, including the calculation of the required 
number of bins. It also presents detailed waste level forecasts 
based on temporal factors and outlines the development of a 
route optimization framework for efficient waste collection. 

4.1 Location allocation of collection points 
The Estimated Waste Collection Points within 

Kathmandu Municipality map in Figure 3 depicts the 
estimated waste collection points strategically positioned 
alongside the transportation network in Kathmandu 
Municipality. 

 

 
 

Figure 2. Architecture of the Waste Level Forecasting Model 
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The collection points have been strategically distributed 
to ensure comprehensive coverage across the municipality. 
As illustrated in Figure 4, each collection point serves an 
average of 1,050 residents, ensuring they fall within a 300-
meter service radius. It features 823 collection points spread 
across 32 municipal wards, with a total population of 862,400 
and an area of 49.5 square kilometers. Based on the 
population density and estimated solid waste generation of 
0.54 kg per capita per day, the city generates approximately 
465,696 kg of waste daily. Waste generation varies 
significantly across wards, with Ward 21 having the highest 
population density of 86,592 persons per square kilometer, 
producing 6,079 kg of waste daily, despite having only two 
collection points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, Ward 8, with a lower population density of 
5,380 persons per square kilometer, generates 5,259 kg of 
waste daily and is served by 28 collection points, reflecting a 
more distributed collection system. This variation in waste 
generation and population density emphasizes the need for a 
more tailored approach to bin placement and waste collection 
across wards. While the distribution of collection points 
generally meets the needs of most areas, there are shadow 
zones where coverage is limited, particularly in high-density 
wards such as Wards 17, 18, and 19, which have the fewest 
collection points despite their dense populations. These areas 
could benefit from strategically placing additional small bins 
to ensure more even coverage and improve service efficiency. 
By addressing these gaps, the municipality can enhance its 
waste management system, making it more responsive, 
sustainable, and adaptable to site-specific challenges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Estimated waste collection points within Kathmandu municipality 

Figure 4. Estimated waste collection points covering service area of Kathmandu municipality 
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4.2 Calculation of the number of bins needed at various 
collection points  
The population density across different wards of 

Kathmandu Municipality varies significantly as per the 2021 
National Census (National Population and Housing Census 
2021 Results, n.d.), reflecting the diverse distribution of 
inhabitants within the urban area, as shown in Table 1 and 
also depicted in the map in Figure 1. A comprehensive 
analysis of the provided data reveals notable variations in 
population density metrics, with some wards exhibiting 
substantially higher densities compared to others. The 
highest population densities are observed in wards such as 
Ward 31 and Ward 32, with densities reaching 35,738 and 
19,199 individuals per square KM, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conversely, wards like Ward 18 and Ward 19 
demonstrate relatively lower population densities, with 
figures standing at 39,491 and 58,122 individuals per square 
KM, respectively. These variations underscore the 
importance of tailored solid waste management strategies to 
accommodate the differing population densities across all the 
wards within Kathmandu Municipality. Moreover, the total 
solid waste generation in the respective municipal wards is 
calculated as per the per capita waste generation at the rate 
of 0.54 Kg per day [26]. To calculate the number of waste bins 
required at each collection point, we can consider the total 
amount of waste generated at that collection point, the bin 
capacity, the waste collection frequency, and the density of 
the waste. The steps are discussed in detail below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Kathmandu Municipality Ward Wise Population (2021 Census), area, population density and located waste collection points 

Ward No. Population (2021)* 
Area (Sq. 
Km) 

Population Density  
Waste Generation 
(Kg/day) 

Collection Points 

1 6225 1.38 4511 3362 17 

2 11542 0.84 13740 6233 19 

3 33805 3.20 10564 18255 59 

4 43311 2.86 15144 23388 51 

5 17698 0.71 24927 9557 13 

6 59247 3.40 17426 31993 54 

7 42908 1.55 27683 23170 30 

8 9738 1.81 5380 5259 28 

9 34606 3.76 9204 18687 57 

10 32349 1.57 20604 17468 22 

11 14313 1.74 8226 7729 33 

12 10956 0.49 22359 5916 10 

13 38439 2.14 17962 20757 34 

14 47412 3.20 14816 25602 50 

15 52668 2.92 18037 28441 64 

16 85849 4.11 20888 46358 61 

17 22067 0.36 61297 11916 8 

18 7871 0.20 39355 4250 4 

19 7777 0.13 59823 4200 2 

20 8516 0.16 53225 4599 4 

21 11257 0.13 86592 6079 2 

22 5526 0.37 14935 2984 5 

23 6092 0.12 50767 3290 1 

24 4529 0.20 22645 2446 4 

25 8967 0.13 68977 4842 4 

26 37599 1.94 19381 20303 33 

27 5588 0.23 24296 3018 2 

28 10772 0.94 11460 5817 19 

29 24986 1.30 19220 13492 21 

30 21637 0.92 23518 11684 17 

31 54760 2.33 23502 29570 38 

32 83390 4.34 19214 45031 57 

Total Waste Generation per Day in Kg 
 

           465696 
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Step 1: Total waste generated at each collection point 
The total waste generated at each collection point considering 
per capita waste generation ∂=0.54 kg per day is given by: 

𝑊𝑐𝑝 =
𝑊

𝑁𝑐𝑝
=

𝑃×𝜕

𝑁𝑐𝑝
(𝑖𝑛𝑘𝑔/𝑑𝑎𝑦)                                                    (10) 

Where P is the Population in the ward, W is the total waste 
generated per day in the ward, which is 𝑊 = 𝑃𝑥0.54𝑘𝑔/
𝑑𝑎𝑦and the number of collection points in the ward is 𝑁𝑐𝑝. 

Step 2: Total waste accumulated between collection periods 
Since waste is collected every 𝐷 days, the total amount of 
waste accumulated at a collection point between collections 
𝑊𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑  is: 

𝑊𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑊𝑐𝑝 × 𝐷                                                                 (11) 

Step 3: Volume of waste at each collection point 
To convert the accumulated waste into volume (since bin 
capacity is in liters), we divide by the density 𝑑 of the waste 
(in kg/liter): 

𝑉𝑐𝑝 = 
𝑊𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑑
=

𝑊𝑐𝑝×𝐷

𝑑
(𝑖𝑛𝑙𝑖𝑡𝑒𝑟𝑠)                                       (12) 

Step 4: Number of bins required at each collection point 
The number of bins required at each collection point bins is 
calculated by dividing the total volume of waste by the bin 
capacity (in liters): 

𝑁𝑏𝑖𝑛 =
𝑉𝑐𝑝

𝐶
=

𝑊𝑐𝑝×𝐷

𝑑×𝐶
=

𝑃×𝜕

𝑁𝑐𝑝
×𝐷

𝑑×𝐶
               (13) 

Where  
P: Population of the municipal ward 
𝑁𝑐𝑝: Number of collection points in the municipal ward 

𝐷: Waste collection frequency (in number of days) 
𝑑: Density of waste (Kg/liter) 
𝐶: Capacity of each bin (in liters) 
𝜕: Per capita waste generation rate (kg/person/day)  

Furthermore, to account for waste segregation into two or 
more categories, with each category having a proportion 
𝑃1, 𝑃2, 𝑒𝑡𝑐. the formula can be updated as follows: 
Let's assume the waste is divided into 𝑛 categories, with 
proportions 𝑃1, 𝑃2…𝑃𝑛𝑒𝑡𝑐.Each proportion represents the 
fraction of the total waste allocated to a specific category. 
The number of bins required for the waste category 𝑖 at each 
collection point: 

𝐵𝑖𝑛𝑠𝑖 =
𝑃𝑖×𝑊𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑑×𝐶
         (14) 

Where 
𝑃𝑖: is the proportion of total waste for category 𝑖 
𝑑: Density of waste (Kg/liter) 
𝑊𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑: Volume of waste at each collection point 
𝐶: Capacity of each bin (in liters) 

Above are the formulae that could make possible the proper 
computation of the number of bins per ward in a municipal 
collection area through the factors of per capita generation of 
waste, waste density, capacity of bins, and frequency of 
performing waste collection. With classifications of wastes, 
there can be proportionate requirements of bins based on the 
kind of waste involved (recyclables and non-recyclable 
wastes). This approach makes the system of waste 
management more efficient and sustainable. From the 
formula applied for the data from Kathmandu Municipality, 
this analysis has key findings that include the following: the 
number of bins per collection point is heavily reliant on 
population density, total wastes generated, and the number of 

collection points. More bins are needed in wards with higher 
population density and in those producing more wastes so 
that all the wastes can be collected. For instance, there are 
more bins that have to be categorized for example, recyclables 
and non-recyclables. This is accounted for in the formula by 
proportionately allocating waste according to the percentage 
contribution to total waste generation. For instance, case 
study, Ward No. 12 of Kathmandu Municipality; total 
population is 10,956; therefore, bins are to be provided at the 
collection points. The amount of collections, in that case, is 
about 10 since this will also have an estimated coverage of 
roughly 300 meters. Therefore, for an area covering 300 
meters, with the available number of dwellings by the local 
people, waste generation will occur. Now, let us calculate how 
many bins they will need, assuming this is possible because 
first and foremost, based on the above per capita rate of 
generating waste at roughly 0.54 kg per person per day. This 
assumes an even spread of the generation of waste across 
populations covered by each collection point and an up to 
30% variation in the spread of population to factor relative 
local imbalances into the equation. By taking into account the 
density of the waste varying between categories, being 0.5 
kg/liter for Category 1 and 0.6 kg/liter for Category 2, and the 
receptacle capacity at 660 liters, we may well estimate the 
volume of the waste that will be gathered at each collection 
point based on the frequency of 7 days of collection. This 
would optimize the number of bins to carry the volumes of 
wastes expected and ensure that the bins would fill up to the 
optimum levels, hence making the system of collection highly 
efficient. In this respect, through the bin allocation at Ward 
No. 12, the efforts would target keeping the environment 
clean always while staying within the means of keeping up 
with the waste disposal needs of this community, as shown by 
Table 2.  

It will calculate the number of bins at a collection point 
and bins for every category, thereby ensuring proper 
resource allocation and avoiding operational inefficiency in 
waste collection. Bins are neither over nor underused. This 
formula can be directly applied to other municipalities or 
areas just by changing the parameters involved, such as the 
rate of waste generation, capacity of bins, and collection 
frequency. Thus, it will be a versatile tool for optimization in 
the context of waste management for various types of urban 
settings. Its use will lead municipalities such as Kathmandu to 
better infrastructures of waste collection that would have 
environmental-friendly consequences, fewer instances of 
littering, and better resource utilization. 

4.3 Waste level forecasting considering temporal factors  
Based on the data model analysis in the pattern of waste 

accumulation in Kathmandu Municipality Ward No. 12 with 
10,956 populations, and with an average rate of waste 
generation being 0.54 kg/day, developed a model to simulate 
waste generation for every 6 hours of time periods in a week 
by calculating the corresponding measurements. In a ward, 
there are collection points at 10 centers having 8 bins of size 
660 liters in the capacity of each one, and waste is collected 
one time every 7 days. Waste density had been assumed to 
average at around 0.5kg/liter. Seasonal holidays, days, 
weather conditions, variations within a population, economic 
issues and regulations, and other cultures influence the 
generation as provided by the simulator from one collection 
point. This model incorporates factors that provide the right 
predictions of waste buildup in time. It is beneficial to develop 
effective waste management strategies. 
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Figure 5 Time evolution of waste levels in bins over 7 

days in 6-hourly plots. Each bin is colored to represent the 
population it reflects so one can easily see how waste levels 
change with time in each bin. The Y-axis is linear in waste 
level in liters, and the X-axis is linear with a timestamp 
corresponding to each 6-hour interval. The dotted red line 
indicates the 660-liter capacity of every litter, which is very 
indicative of critical points at/around which the litters are 
full. The collection also comes every 3 days since it is 
indicated by falling slopes of waste levels every certain 
period. This kind of visualization will help the key 
stakeholders to identify trends regarding waste 
accumulation, determine which times are peak and design 
collection schedules so that collections do not overflow, 
especially maintaining hygiene standards. 
The temporal factors influencing waste generation have been 
incorporated into the model to simulate real-world 
conditions: 
• Seasonality effect captures how monthly variations 

influence waste production, with a sinusoidal pattern to 
reflect higher or lower waste levels depending on the 
season. 

• Holiday effect accounts for reduced or increased waste 
generation during holidays, where certain periods might 
experience up to a 50% decrease in waste. 

• Day-of-week effect considers the variation in waste 
generation between weekdays and weekends, with 
weekends generally producing less waste. 

Weather, population, economic, and regulatory effects are 
modeled using normal distributions, allowing the simulation 
to incorporate random but realistic fluctuations in waste 
production. These factors collectively simulate variations in 
waste levels caused by changes in weather patterns, 
population movements, economic activity, and government 
regulations. 

Figure 6 illustrates the variation in these temporal 
factors over time, plotted alongside timestamps. Each factor 
is represented by its influence on waste generation across 6-
hour periods. By visualizing these temporal variations, 
stakeholders can predict when waste generation will likely 
peak, enabling better planning and resource allocation. The 
combined impact of all factors helps refine collection 
schedules and ensures that waste management strategies are 
adapted to real-world fluctuations.  
Figure 7 integrates all these influences, presenting a holistic 
view of how waste generation evolves over a week. By 
observing the interaction of temporal factors, waste 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
management authorities can identify specific days or periods 
when waste levels spike or drop, and adjust collection 
frequencies or deploy additional resources accordingly. The 
graph also highlights the interdependencies between 
different factors, showing how they interact to produce 
fluctuations in waste levels. 

The simulation employs randomized service populations 
for each bin to further individualize the waste generation 
data, providing a representative model of bin utilization. Each 
bin serves a population with a 50% variation around the 
average population per bin, reflecting the heterogeneity in 
waste generation across different ward areas, which can be 
later assigned actual values. This enhanced modelling 
approach facilitates precise waste generation predictions and 
operational planning, with the potential to simulate various 
waste collection frequencies and population dynamics. 
Stakeholders can modify variables such as waste collection 
frequency or bin capacity to optimize resource allocation and 
mitigate the risk of overflow. The incorporation of seasonal 
and temporal factors enhances the accuracy of these 
predictions, ensuring that waste management strategies are 
tailored to the specific conditions of the ward. Visualizations 
generated by the model (e.g., temporal factor graphs and 
waste accumulation plots) provide actionable insights, 
facilitating improved decision-making in managing waste 
levels.  

The comparison of the empirical and model-based 
approaches reveals critical insights regarding waste 
accumulation dynamics. The empirical method provides a 
simplified, consistent estimate of waste generation compared 
to the model-based approach, which fails to account for the 
effects of fluctuating temporal factors such as holidays, 
weather, and socio-economic changes. Since it dynamically 
adapts to temporal effects, this model-based approach offers 
a more realistic representation of actual patterns and 
patterns in Figure 8.  

This adaptability allows for optimizing waste collection 
efficiency, considering the variability of waste generation to 
avoid under or over-scheduling collections. The methods 
improve predictive accuracy but contribute to complexity and 
require having access to relevant temporal data that may not 
be easily available. Therefore, it is a matter of whether to use 
either by balancing simplicity relative to the availability of 
data and the precision required in managing waste systems. 

 
 
 

Table 2. Allocation of waste collection bins by category at designated collection points in ward No. 12, Kathmandu municipality 

Collection 
Point No. 

Population 
Served 

Category (C1) Category (C2) 
Total 
Number 
of Bins 

Max 
Capacity 
(in 
Liters) 

Estimated 
Waste 
Generation 
(in Liters) 

Fill-up 
Level 
% 

Total 
Number 
of Bins 

Max 
Capacity 
(in 
Liters) 

Estimated 
Waste 
Generation 
(in Liters) 

Fill-up 
Level 
% 

1 1195 10 6600 5420 82 6 3960 3011 76 
2 958 8 5280 4345 82 5 3300 2414 73 
3 1539 12 7920 6980 88 7 4620 3878 83 
4 1048 9 5940 4753 80 5 3300 2640 80 
5 896 7 4620 4064 87 4 2640 2257 85 
6 988 8 5280 4481 84 5 3300 2489 75 
7 1369 11 7260 6209 85 6 3960 3449 87 
8 897 7 4620 4068 88 4 2640 2260 85 
9 1084 9 5940 4917 82 5 3300 2731 82 

10 982 8 5280 4454 84 5 3300 2474 74 
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Figure 6. Temporal factor variation (7 days, 6 hourly intervals) 

Figure 5. Combined Temporal factor variation (7 days, 6 hourly intervals) 
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Figure 8. Total Accumulated Waste Comparison: Empirical vs Model-based approach (7 days, 6 hourly intervals) 

Figure 7. Combined Temporal factor variation (7 days, 6 hourly intervals) 
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This model depicts an integrated waste management 
framework with temporal and seasonal factors, population 
dynamics, and economic conditions into a real-time waste 
accumulation forecast. This helps the Kathmandu waste 
management authorities develop efficient and sustainable 
collection strategies, which may also help them time the 
servicing of bins and reduce the risk of overflow. The 
simulation of multiple scenarios can be used for authorities to 
optimize collection routes, alter service frequencies, and 
adapt to periodic or temporal influences caused by holidays, 
festivals, as well as other effects. 

 

5. Conclusion  

Such extreme challenges of waste management, as 
represented by this research work in the Kathmandu Valley, 
are inefficient waste collection services, poor source-based 
segregation of waste, and a lack of public awareness of proper 
practices of waste disposal. Results of a survey show 
requirements to make municipal services more trustworthy, 
develop infrastructure, and contribute to waste reduction and 
environment protection. These have to be solved to help have 
a clean and a healthy environment around the dwellers in the 
valley. There is an immense shortfall of waste bins in this city, 
which causes colossal volumes of garbage not collected and 
eventually lands up scattered either in open places or waters, 
thereby exposing grave public health and environmental 
dangers. This is worsened through inefficient operational 
planning and routing, thus increasing the cost of waste 
management service operations. The study is going to use a 
geospatial-based decision support system based on ward 
population data, road network, household counts, and 
satellite imagery data. This system optimizes waste bin 
locations and the route for the waste collection truck in terms 
of coverage, accessibility, and waste generation patterns. 
Using the ArcGIS location-allocation solver, the optimal places 
for dumpsters were determined and ensured better spatial 
distribution of the bins across all the wards of the city. 
Optimization for vehicle routing was also carried out with the 
assistance of some open-source tools that improve reliability 
while lowering the operational and environmental impact. 
Waste segregation would be integrated in the calculations to 
enhance effectiveness, considering the different types of 
wastes and ensuring collection infrastructure is properly 
sized and located for each category. Research provides a 
practical framework through which Kathmandu Municipality 
can enhance its waste management system by addressing the 
operational inefficiencies in allocating waste bins and 
optimizing routes for collection. These solutions could 
significantly reduce uncollected waste, improve public health, 
and further contribute to a more sustainable urban 
environment. 
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