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A B S T R A C T 
 

Colon cancer is a leading cause of cancer-related deaths worldwide, and early 
detection is vital to reduce mortality rates. While Deep Learning (DL) models 
are commonly used for colon cancer detection, they often require large datasets 
and are time-consuming. To address these challenges, a new model, Parallel 
Neural Architecture Search Forward Harmonic Network (PNASFH-Net), has 
been developed. PNASFH-Net begins by preprocessing colon images through 
Adaptive Median Filtering (AMF) to remove noise. It then segments the affected 
colon region using Pyramid Non-local U-Net (PNU-Net), optimized by the 
Remora Shuffled Shepherd Optimization Algorithm (RSSOA)—a hybrid 
algorithm combining the Remora Optimization Algorithm (ROA) and Shuffled 
Shepherd Optimization Algorithm (SSOA) for improved segmentation accuracy. 
Next, features from the segmented images are extracted and analyzed by 
PNASFH-Net, which combines Harmonic Analysis, Neural Architecture Search 
Network (NASNet), and Parallel Convolutional Neural Network (PCNN) for 
accurate detection. Experimental results show that PNASFH-Net achieves 
98.345% accuracy, 98.512% specificity, and 98.679% sensitivity, 
demonstrating its potential for precise and early colon cancer detection. 

1. Introduction 

Colon cancer remains one of the leading causes of cancer-
related deaths worldwide, making early detection crucial for 
improving patient outcomes. While the importance of early 
diagnosis is widely recognized, the challenges associated with 
medical image analysis in this domain are multifaceted and 
complex. The uncontrolled growth of irregular cells from the 
body's organs or tissues causes cancer. Cancer cells may 
develop in various body tissues or organs [1]. Colon cancer is 
the most frequently detected cancer globally and the second 
largest source of cancer-related death in men [2]. Metastatic 
spread is frequently associated with colon cancer, which is an 
extremely common cancer [3]. Cancer may spread to the 
colon, which is the longest and largest portion of the large 
intestine, and the rectum, the shortest portion. There are four 
sections of the colon, and they include the descending colon, 
sigmoid colon, rectum, and transverse colon. Growths called 
polyps can develop in the rectum or colon. Often, these 
tumors are the first signs of colon cancer. A vital first step in 
reducing the risk of colon cancer is the recognition and 

elimination of polyps. Carcinogenic cells develop in the colon 
or rectum as a result of colon cancer. More lives could have 
been saved and diseases could have been identified earlier 
with the use of screening and improved treatment options [4]. 
The colon cancer cell line HT-29 has an epithelial-like 
appearance. These cells can be effectively eliminated by the 
colon cancer chemotherapy medicines 50-fluorouracil and 
oxaliplatin [5]. Peritoneal carcinosis (PC) is more likely to 
develop later in life and significantly reduces patient survival 
times [6]. The survivability of patients with colon cancer can 
be enhanced by detecting the cancerous lesions in the initial 
stage, and hence, accurate, reliable diagnosis methods are 
required [7]. Muscle aches, fatigue, coughing, and other 
symptoms are common, and these are followed by a variety of 
syndromes. For the purpose of identifying cancer, 
radiographic imaging models, including Computed 
Tomography (CT), Magnetic Resonance Imaging (MRI), 
Positron Emission Tomography (PET), mammography, 
histopathological imaging, and ultrasound are often 
employed. In the event of initial identification, it is also more 
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difficult to recognize cases because the symptoms are vague 
and hard to determine [8].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Colon cancer detection has been aided by two-

dimensional imaging technologies like CT. The detection 
through CT scan images acquired through radiology methods 
results in a 20% reduction in the death rate from colon cancer. 
It has been demonstrated that MRI results produce more 
accurate results than CT-scanned images; however, the cost 
of a CT scan is nearly four times lower than that of a Magnetic 
Resonance Imaging (MRI) [9]. As a result, CT scan images are 
now more useful for developing countries [10]. Both 
segmentation and classification are important approaches in 
the automatic identification of colon cancer. Based on the 
spatial distribution of tissues in the images, segmentation 
divides heterogeneous colon samples into homogeneous 
regions [11]. The use of Machine Learning (ML) in this field 
has resulted in recent works performing well in detecting 
colon cancer. Nevertheless, these approaches increase the 
complexity and time consumption of ML-based cancer 
detection systems because they require manual feature 
detection and separate classifiers for detection [12, 13]. 

The disadvantages of earlier Machine Learning (ML) 
techniques are addressed mainly by Deep Learning (DL) 
approaches. These methods use a deep model to integrate the 
classification and feature extraction phases into a single stage. 
Typically, the investigators using systems-based DL 
methodologies established their own deep model or used pre-
trained models along with Transfer Learning (TL) methods 
[14]. Data from videos, high-dimensional images, and 
anatomical representations can all be analyzed using DL 
techniques. Likewise, DL techniques use features and hidden 
attributes from medical images that are not visible to the 
human eye to help identify cancers early on and differentiate 
between different stages of the disease [8]. Using DL, 
researchers improve early detection efforts and acquire 
insights into development patterns and progression 
dynamics. The development of algorithms also has the 
potential for use in medical applications, supporting medical 
professionals in diagnosing and monitoring cancer [15]. 
Convolutional Neural Networks (CNNs) achieved high 
accuracy in the detection of colon cancer [5]. Moreover, CNN 
techniques have the ability to categorize various varieties of 
colon cancer with high reliability [16]. Further, pre-trained 

and pre-designed CNN approaches are often used because of 
their high performance and accessibility. Besides, various 
models, namely SqueezeNet, MobileNet, VGGNet (Visual 
Geometry Group), AlexNet, and so on, have been employed for 
analyzing medical images, diagnosing various diseases, like 
brain disorders, lung anomalies, heart abnormalities, and 
genetic facial diseases [17]. The traditional diagnosis of colon 
cancer relies heavily on radiologists who manually review 
imaging studies like CT scans. This approach has several 
limitations: Radiologists may interpret images differently due 
to personal experience and biases, leading to inconsistent 
diagnoses, missed detections, or false positives that can 
adversely affect patient care. The demanding workload in 
radiology can cause fatigue, especially when reviewing large 
volumes of images, which can impair cognitive function and 
increase the likelihood of diagnostic errors. Tight schedules 
limit radiologists' time on each case, resulting in rushed 
evaluations and potential oversight of critical details. 

Artificial Intelligence (AI) presents a promising solution 
by offering consistent, scalable, and objective analysis of 
medical images, allowing for rapid and accurate data 
processing that alleviates the burden on radiologists. 
However, colon cancer poses specific challenges for machine 
learning models: 
• High Intra-Class Variability: The diverse appearances of 

colon cancer tumours complicate model training, as 
algorithms must learn to recognize a wide range of 
cancerous features. 

• Ambiguous Boundaries: The difficulty in distinguishing 
between cancerous and non-cancerous tissues arises 
from ambiguous boundaries, making accurate 
segmentation and classification challenging. 

• Variability in Image Acquisition Settings: Differences in 
imaging protocols, equipment, and patient positioning 
can lead to inconsistencies in image quality, hindering 
the generalization of machine learning models across 
diverse datasets. 
This work intends to present PNASFH-Net for colon 

cancer detection based on CT images. Firstly, the input colon 
image is passed to the AMF in the image pre-processing stage 
to eliminate the noise. After that, the affected colon region is 
segmented from the pre-processed image by PNU-Net, which 
is tuned by the RSSOA model. Here, RSSOA is produced by the 
integration of ROA and SSOA. Then, feature extraction is 
performed, and lastly, colon cancer detection is accomplished 
using PNASFH-Net, which is established by the incorporation 
of PCNN, NASNet, and Harmonic analysis. The integration of 
NASNet, PCNN, and Harmonic analysis creates a robust 
framework for colon cancer detection that leverages the 
strengths of each component. NASNet's architecture 
optimization capabilities ensure that the model is well-suited 
to the complexities of medical imaging, while PCNN enhances 
feature extraction through parallel processing. Harmonic 
analysis further enriches the model's ability to detect 
intricate patterns and textures, ultimately leading to 
improved diagnostic accuracy. This synergistic approach 
addresses the unique challenges posed by medical imaging 
and positions the model to deliver reliable and effective colon 
cancer detection. The burden associated with treatment 
approaches, like chemotherapy and/or radiation therapy is 
reduced when colon cancer is detected early, which also 
lowers mortality. Finding an anomaly in the tissue becomes a 
difficult task for pathologists, and hence, to help the 
pathologist identify the abnormal or normal regions in the 
colon tissues faster, accurately, and constantly, it is required 
to develop an imperative and intelligent automated 
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technique. Hence, this article presents an efficient method for 
detecting colon cancer called PNASFH-Net. Further, the 
advantages and disadvantages of several conventional 
methods for detecting colon cancer. 

1.1 Literature review 
A method based on K-means was developed for the 

purpose of detecting colon cancer by Saroja, B., and Selwin 

Mich Priyadharson, A. [1]. This approach provided better 

performance and obtained satisfactory results compared to 

other traditional techniques. But this technique obtained a 

low accuracy rate. A Deep transfer learning model was 

developed by Gessert, N., et al. [2] for the classification of 

colon cancer. Although this technique offered excellent 

accuracy, the transferability of features was insufficient, and 

no optimal learning approaches for CLM images were 

included. Gessert, N., et al. [3] introduced CNN for colon 

cancer detection. This approach enhanced the performance 

for the variability of medical learning issues and examined 

the possibility of identifying malignant tissues. 

Nevertheless, the identification of malicious tissue in the 

colon region was not investigated, and this method did not 

gather additional data. Gupta, P., et al. [4] devised the IR-v2 

Type 5 technique for colon tissue classification. This method 

was faster, robust, and also required less time. Nevertheless, 

this technique failed to deliberate multi-institutional 

training and was not evaluated to enhance the robustness of 

the developed framework.  

Sakr, A.S., et al. [5] developed a Lightweight CNN model 

for colon cancer detection. This technique was more reliable 

and computationally efficient during the detection process. 

However, this model did not incorporate any optimization 

techniques, such as genetic algorithms, for choosing the best 

features from the deep features that were extracted. 

Akilandeswari, A., et al. [6] introduced DNN+ResNet 50 for 

the segmentation and detection of colorectal cancer. This 

method effectively reduced the amount of manual 

interaction required and minimized the classification error, 

which benefited the clinicians. Training a DNN+ResNet-50 

model can take a while because of its complicated nature 

and depth.  However, there were overfitting problems with 

this method. Haq, I., et al. [7] established ResNet-50 for 

detecting colon cancer. Better performance and faster 

convergence were the key benefits of this technique, and it 

also decreased the need for initial training. This technique 

did not consider additional variations of ML and DL 

approaches, and it did attain high accuracy. Obayya, M., et al. 

[8] developed a Biomedical Image Analysis for Colon and 

Lung Cancer Detection using Tuna Swarm Algorithm with 

Deep Learning (BICLCD-TSADL) model for colon and lung 

cancer detection. This model effectively attained the 

maximum accuracy while demonstrating excellent 

performance. However, this approach neglected feature 

fusion and the ensemble learning process, which could have 

increased the model's effectiveness. 

1.2 Challenges 
The challenges faced by traditional approaches are listed 

as:  

• In Ref [1], the k-means effectively reduced the features 
and obtained less computational complexity. 

Nevertheless, in this technique, a few specific augmented 
and original images affected the model’s reliability. 

• In Ref [2], the deep transfer learning method delivered 
high performance even in small databases. However, this 
approach was not effective in determining the optimal 
technique or single transfer strategy for the classification 
issues.  

• In Ref [3], the CNN model obtained better outcomes than 
various techniques. Nevertheless, this method did not 
examine a diverse and huge dataset of high-quality CT 
images, which was important for validating and training 
DL models.  

• In Ref [4], the AI-based IR-v2 Type 5 approach 
accomplished more accuracy and enhanced 
classification performance. However, in this technique, 
the computational burden was very high. 

• Several DL algorithms were exploited for addressing 
medical applications and problems related to health. 
Nevertheless, these conventional models required a 
feature extraction process to lessen the information loss. 
Further, a massive number of samples was also needed 
for appropriate training, which is considered a 
challenging task. 

2. Proposed PNASF-Net for colon cancer detection 

The novelty of the work lies in developing an innovative 

DL technique named PNASFH-Net, which was developed to 

detect colon cancer at its initial stage in this research. Firstly, 

the input colon image is passed to image pre-processing to 

eradicate the noise. The pre-processing is performed by 

exploiting AMF. Incorporating self-supervised learning 

techniques into PNASFH-Net [19], alongside the use of 

Adaptive Median Filtering (AMF) for noise reduction, can 

significantly enhance the model's performance on colon 

cancer detection tasks. The comparisons with advanced 

methods like Non-Local Means filtering and wavelet-based 

noise reduction demonstrate AMF's superior ability to 

preserve fine details while effectively reducing noise, making 

it particularly well-suited for pre-processing colon cancer CT 

images. Following this, the affected colon region is segmented 

using PNU-Net [10], which is trained using the RSSOA 

algorithm. Moreover, the RSSOA approach is formed by 

integrating ROA [11] and SSOA [12]. After this, feature 

extraction is performed, where several features, namely 

Convolutional Neural Network (CNN) [13], Local Vector 

Pattern (LVP) [14], and Center-Symmetric Local Binary 

Patterns (CSLBP) [15] are mined. At last, colon cancer 

detection is executed using a DL network termed PNASFH-

Net, which is devised by the combination of Parallel 

Convolutional Neural Network (PCNN) [16], NASNet [17], and 

Harmonic analysis [18]. Figure 1 exhibits the structural 

representation of PNASFH-Net for colon cancer detection. 

2.1 Image acquisition 
Assume that the input colon image is taken from a 

dataset [20] for detecting colon cancer, and the dataset is 
formulated as:   

 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑎, . . . , 𝑋𝑦}           (1) 
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Here, y exemplifies the overall quantity of images, and Xa 
epitomizes the ath image, which is utilized for colon cancer 
detection. 

 
Figure1. Structural representation of PNASFH-Net for colon cancer 
detection 

2.2 Image Pre-processing 
Image pre-processing is measured as an important task 

in increasing the image quality, which is employed to enhance 
the performance, accuracy, and reliability of outcomes in 
several areas, namely remote sensing, medical imaging, and 
so on. The major aim is to maximize the overall performance 
by enhancing the quality of the image. Here, AMF [9] is 
employed for pre-processing the input image Xa. AMF is more 
applicable for images with high levels of salt-and-pepper 
noise. When the salt-and-pepper noise in the image is high, it 
is essential to improve the filtering template’s size, and the 
window size can be adaptively adjusted by the AMF process. 
AMF is used for identifying the points of noise and has the 
ability to correct the size of the template by determining the 
finest template. Further, the outcome from image pre-
processing is exemplified as ℏt. 

2.3 Affected colon region segmentation 
In medical imaging, affected colon region segmentation 

plays a crucial role. To precisely identify and describe 
irregular regions in colon images, progressive image analysis 
approaches are required. Moreover, segmenting the affected 
colon region is used to locate the particular area of the colon 
in the image that shows illnesses or abnormalities. Here, the 
affected colon region is segmented from the pre-processed 
image ℏtby utilizing PNU-Net [10], described below.  

2.3.1 Architecture of PNU-Net 
The PNU-Net technique is utilized for segmenting the 

affected colon region, which is done by taking the pre-
processed image ℏt as input. At first, convolutional (Conv) 

layers are exploited for mining the local features and then, the 
cancer-affected region detection is converted into the 
segmentation of the affected region's local neighborhood for 
addressing the challenges in affected colon region 
segmentation. Moreover, U-Net is introduced, which is a 
robust and simple baseline network for learning local 
morphological features and for segmenting the local 
neighborhood. Next, global structural features are captured 
for the estimation of the better local neighborhood, which is 
performed using a non-local module.  Further, in order to 
minimize the consumption and computation problems, a 
Pyramid Non-local (PN) with pyramid sampling is employed. 
Pyramid sampling involves creating multiple scales of the 
input image, allowing the network to process features at 
different resolutions. By analyzing the image at various scales, 
PNU-Net can capture both fine details and broader contextual 
information without significantly increasing the 
computational burden. This approach reduces the number of 
parameters and computations required compared to fully 
convolutional networks that operate at a single scale, thus 
enhancing efficiency while maintaining the ability to discern 
important features across different spatial hierarchies. By 
incorporating non-local operations, PNU-Net can effectively 
capture long-range dependencies, which is crucial for 
identifying abnormal regions in medical images. This 
capability allows the model to consider the broader context 
when making segmentation decisions, leading to more 
accurate delineation of affected areas. The ability to integrate 
information from distant pixels enhances the model's 
understanding of the overall structure and context of the 
image. This is particularly important in complex medical 
images where the presence of noise or artifacts can obscure 
local details. Non-local operations help mitigate these issues 
by providing a more holistic view of the image. 
a) Task conversion: Even with pathological deformity and 
temporal diversity, the affected region holds global structural 
and local morphological features. Hence, local neighborhoods 
all over the affected colon region may be regarded as a robust 
identification of the affected region. Here, a circular image 
patch positioned at the affected region with radius g is 
extracted, where g is adequately huge for visually identifying 
the cancerous region. In the training process, the network is 
trained for segmenting the affected regions' local 
neighborhood area D. Thus, colon detection is converted into 
segmentation of the cancer-affected region’s local 
neighborhood area D, and it is modeled as:  

D={m}(||m-W||≤g)           (2) 

Consequently, the cancer-affected region W' is to be identified 
at the centroid of the segmentation mask D', expressed as:  

W'=R[D']=(∑umu )/k           (3) 

Moreover, the local neighborhood area D with a large g value 
produces local features, which can be more robust for 
segmenting the cancerous region with abnormalities, k 
implies a number of pixels. 
b) Local-Global feature learning: Here, cancer-affected 
region detection is converted into an affected area 
segmentation task, and then U-Net, which is a strong 
segmentation network, is employed for learning the local 
features and for segmenting the local neighborhood. U-Net 
comprises a skip connection, decoder, and encoder for 
performing segmentation. Further, PN is utilized for learning 
long-range features, which is done by calculating the response 
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at a location as the weighted quantity of features at each 
location is expressed as:  

𝜎𝑢 =
1

𝑉(𝑗)
∑ ℎ(𝑗𝑢 , 𝑗𝑑)𝑛(𝑗𝑑)∀𝑑           (4) 

where the output and input feature is symbolized as σ and j, 
the output index is epitomized as u, the index that computes 
every possible location is specified as d, h, and n indicates 
pairwise and unary functions. Here, the representation is 
computed by a unary function and then normalized by V(j).  

In order to convert the input feature G∈𝑅𝑒𝐸×𝛽×𝐽 to value 
branch l, key branch ϕ, and query branch φ, with size E ×̂β×J, 
three 1×1 convolutions (Conv) are employed. Here, the input 
feature map’s width and height are symbolized as  and, and 
the channel number of the input feature is represented as E ̂. 
After this, a similarity matrix 𝑆 ∈ 𝑅𝑒𝜁×𝜁 is obtained by matrix 
multiplication of the query branch ϕ , and it is signified as: 

𝑆 = 𝜑𝑇 × 𝜙                   (5) 

Here, ζ characterizes the number of nodes. In value branch l, 
for each position, the outcome from the attention layer is 
attained using matrix multiplication based on the similarity 
matrix, and it is represented as: 

𝐴 = 𝑆 × ℓ𝑇
                 (6) 

Here, A∈𝑅𝑒𝜁×�̂�  , the pixel-level pairwise relationship among 
every location conveys memory and excessive computation 
for the non-local component is written as O(E ̂ς^2)=O(E β̂2 J2). 
In order to solve excessive computation of the non-local 
module, PN with pyramid sampling is implemented to reduce 
consumption and computation issues. Moreover, limited 
representative points from ϕ and l are sampled using 
pyramid sampling. Here, the time complexity of the PN model 
is O(E ̂ςα), where the quantity of sampled anchor points is 
signified as α. Further, to optimize the segmentation of mask 
D, the dice coefficient is utilized, and the segmented output is 
designated as ξ. Figure 2 portrays the architecture of PNU-
Net. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of PNU-Net 

 

2.3.2 Training PNU-Net using RSSOA 
The PNU-Net is tuned by employing the RSSOA 

technique, which is engineered by the incorporation of ROA 
[11] and SSOA [12]. Here, ROA [11] is stimulated based on the 
parasitic behavior of remora, which is a species of marine fish. 
The exploitation and exploration are categorized into two 
processes, namely eat thoughtfully and free travel, which is 
performed by inspiring the entire process of predation of the 
remora. Here, the switching among the phases is done in 
terms of Remora’s experience, and it is collected by utilizing 
an experimental attack. Moreover, ROA is more efficient in 
maintaining high experimental ability, and it has the ability to 
solve various engineering and optimization problems. 
Further, SSOA [12] is inspired by the shepherd’s behavior, 
which employs an animal's instinct to determine the optimal 
pasture. This technique is capable of finding the best solution 
with a few evaluations, and it has the capability to obtain a 
high accuracy rate. The main intention of this method is to 
enhance performance by amalgamating SSOA and ROA. The 
updated equation of RSSOA is given as: 

𝐹𝑎′
𝑠+1 = (

(2−𝑟𝑎𝑛𝑑(0,1))

2(𝜌×𝑟𝑎𝑛𝑑−1)+𝑟𝑎𝑛𝑑(0,1)
) (𝐹𝑟𝑎𝑛𝑑

𝑠 × 𝜌 × 𝑟𝑎𝑛𝑑 −

𝐹𝑎′
𝑠(1 − 𝑟𝑎𝑛𝑑 ∘ (𝜌 + 𝜛)) + 𝜛 × 𝑟𝑎𝑛𝑑 ∘ 𝐹𝑛′

𝑠 )                             (7) 

Here, the current solution is specified as 𝐹
𝑎′
𝑠 , the random value 

between [0,1] is designated as rand, the solution vectors of 
sheep and horse selected are symbolized as 𝐹𝑛′element-wise 
multiplication is characterized as ∘, parameters are 
mentioned as ρ and ϖ, Frand denotes random position. 

2.4 Feature extraction 
Feature extraction is employed to identify and extract 

data or features from the segmented image ξ. In image 
analysis, feature extraction is utilized to capture and 
represent the key patterns or features in an image. It is also 
vital to transform the images into the required format, which 
is done for decision-making tasks and subsequent analysis. 
Moreover, the features are mined for improving the 
performance by decreasing the complexity, and this process 
is performed by taking ξ as input. Furthermore, the features, 
including LVP, CNN, and CSLBP, are mined, and these features 
are described below. 

2.4.1 CNN 
CNN [13] is one of the types of Deep and feed-forward 

Artificial Neural Network (ANN). CNN consists of three layers, 
namely pooling, Conv, and Fully connected. Conv is regarded 
as the first layer, which is used for mining several feature 
representations from an input image. Next, the pooling layer 
is exploited to lessen over-fitting issues and computation cost 
by improving the model’s performance. Subsequently, the 
fully connected layer is exploited to combine the features 
from the former layer. Here, the CNN feature is obtained from 
the conv layer and is represented as U1 

2.4.2 LVP 
LVP [14] is used for minimizing the feature length, and 

it is carried out by eliminating the redundant data from the 
segmented image. Here, each pixel’s vector is produced by 
Comparative Space Transform (CST), which is performed by 
identifying the values among adjacent and target pixels. 
Moreover, LVP is employed for providing several pairwise 
directions of the vector of nearest and referenced pixels. To 
obtain a robust micropattern structure, pairwise orientation 
is used, and the expression of LVP is written as, 

𝑈2 = 𝐿𝑉𝑃𝜅,𝜏(𝛿𝑚′) = {𝐿𝑉𝑃𝜅,𝜏,𝑒(𝛿𝑚′)|𝑒 = 0∘, 45∘, 90∘, 135∘|}               (8) 
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where, exemplifies index angle related to orientation 
variations, τdenotes radius, δ(m' )characterizes target pixel,  
k specifies adjacent pixels, and U2 epitomizes the LVP feature 

2.4.3 CSLBP 
CSLBP [15] is a modified version of Local Binary 

Patterns (LBP) employed to solve the overfitting issues. 
CSLBP enhances traditional LBP by addressing overfitting 
issues and improving texture recognition by focusing on 
center-symmetric pixel relationships. This method allows for 
a more robust representation of textures, making it 
particularly effective in medical imaging applications where 
distinguishing subtle differences in tissue textures is crucial 
for accurate diagnosis and treatment planning. By leveraging 
the spatial relationships between pixels, CSLBP provides a 
more comprehensive understanding of the underlying 
texture patterns, leading to improved performance in 
detecting abnormalities in colon tissues. Moreover, CSLBP is 
used to capture gradient information better than LBP, and 
here, gray-level differences among center-symmetric pairs of 
nearest contradictory pixels are associated as an alternative 
to the gray-level of every pixel with a center pixel. This feature 
is employed for improving the discriminatory power of LBP, 
and thus CSLBP captures texture data that is connected to 
spatial and symmetry relations among pixels. The CSLBP 
feature is modeled as, 

𝑈3 = 𝐶𝑆𝐿𝐵𝑃𝜅,𝜏,𝑤(𝑑𝑡 ′
′ , 𝑔𝑡 ′

′ ) = ∑ 𝜁 (𝜆𝜄 − 𝜆𝜄+(
𝜒

2
))

2𝜄𝜒

2
−1

𝜄=0       (9) 

𝜆(𝑑′) = {
1, 𝑑′ > 𝑤
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (10) 

 

Here, the amount of nearest pixels is signified as κ, the radius 

is implied as τ, the nearest pixel’s value is denoted as λι, 
and mentions the small value employed for enhancing the 
robustness of CSLBP, and the CSLBP feature is epitomized as 
U3. 
Furthermore, the entire feature vector Uis generated by 
considering the above-mentioned features and is expressed 
as, 

U={U1,U2,U3}          (11) 

2.5 Colon cancer detection 
The colon is considered the largest organ in the large 

intestine, and this cancer leads to death. This cancer is also 
regarded as the most commonly occurring cancer all over the 
world. Moreover, colon cancer occurs due to various reasons, 
such as a lack of fruit intake, chain-smoking, and heavy intake 
of fats and meat. Therefore, this cancer must be treated early 
by identifying it at the initial stage to reduce the burden and 
mortality rate. While modern transfer learning approaches 
like Efficient Net offer valuable capabilities, their limitations 
in fine-tuning on small, specific datasets, potential domain 
shifts, and the complexity of medical data make them less 
suitable for colon cancer detection. The need for a tailored 
approach that can adaptively learn from the unique 
characteristics of colon cancer CT images led to the selection 
of a more specialized framework, combining NASNet, PCNN, 
and Harmonic analysis, which collectively address the specific 
challenges of this domain. Thus, PNASFH-Net is used for colon 
cancer detection, where PNASFH-Net is formed by the fusion 
of PCNN [16], NASNet [17], and harmonic analysis [18]. 
Moreover, PNASFH-Net includes three modules, such as 
PCNN, NASNet, and PNASFH-Net layer. The multiplication of 
pre-processed image ℏt with weight Q1 is executed initially, 

and the resultant output B1 is normalized. At the same time, 
pre-processed image ℏt is passed to NASNet, and the obtained 
outcome is multiplied by the normalized output ∑Q1ℏt to 
attain 𝐵1Alternatively, the extracted feature U is fed to 
NASNet, and the output produced is multiplied by a weight Q2 
and then by the NASNet output B1 to obtain the outcome B2. 
Lastly, the outcomes B1 and B2 are combined by Harmonic 
analysis [24] to obtain the final colon cancer detection 
outcome B3. Figure 3 signifies the general outline of the 
PNASFH-Net for colon cancer detection. 

 

Figure 3. General outline of PNASFH-Net for colon cancer detection 

2.5.1 PCNN model 
In PCNN [16], the pre-processed image ℏtis taken as 

input, and here CNN methods are parallelized by utilizing the 
concept of data parallelism. Furthermore, parallel tuning is 
utilized for creating similar outcomes as sequential tuning, 
and Stochastic Gradient Descent (SGD) is used to tune the 
CNN. Moreover, PCNN can efficiently lessen the scaling 
problems, and it has two significant features, such as first, 
gradient parameters are pooled, and then they are lessened 
across every node by means of asynchronous 
communications. Next, gradient computations are simulated 
in a few fully connected layers. Here, a set of variables is 
employed to represent the data. Here, the depth of the feature 
maps at output/input are implied as p2/p1, the total images is 
mentioned as Z, and the count of row/column filters is 

typified as 𝛺3/𝑂3The quantity of output/input neuron 
columns is symbolized as L2/L1, the total neurons in the 
bottom/current layers is specified as Gbot',Gcur', and the 
measure of output/input neuron rows is designated as Ω2/Ω1. 
Additionally, fully connected and Conv layers are regarded as 
two varieties of widespread layers in CNN. Here, in 
Conv,image2Col is utilized for reallocating the input data, and 
it is done by changing the computation pattern to matrix 
multiplication. Next, in the fully connected layer, the 
computation pattern is also similar to matrix multiplication, 
and the computation workload is considered as a group of 
data transformations and matrix multiplication. The 
functions used for data transformation are represented as 
Col2image and image2Col, which are used in open-source 
structures. The filter’s size is stimulated using image2col into 
columns, and they are incorporated to produce a two-
dimensional matrix. To transfer the column to blocks of the 
original data layout, col2image is used. Besides, PCNN is 
employed for changing a massive volume of data in input 
activation to the single large matrix. 
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In the feed forward, the Conv layer’s input is obtained from 
the input saved in a row. All mini-batches of Zimages are 
produced into a dimensional matrix Z×p1 Ω1 L1, and then 
converted by image2col into G1' Ω3 L3×ZΩ2 L2 matrix. After 
this, the weight matrix p2×p1 Ω3 Ω2 is multiplied and the bias 
vector p2 is added to the matrix, and the outcome of the 
activation matrix p2×p2 Ω2 Ω2 is modelled as:   

𝑀𝑣−1 = 𝑖𝑚𝑎𝑔𝑒2𝑐𝑜𝑙(𝑅′𝑣−1)         (12) 

The output in PCNN is expressed as: 

𝐶 = 𝑅′𝑣 = 𝐹′(𝐸′𝑣ℏ𝑡 + 𝜂𝑣)         (13) 

Here, F' epitomizes activation function, Q1 symbolizes weight, 
bias is quantified as η, M indicates matrix designed by 
image2col, output from PCNN is embodied as C, γ×p1Ω1L1 and 
p1×γΩ1L1 typifies generation of image2col, R'v designates 
activation matrix at vth layer. Figure 4 illustrates the 
architecture of PCNN. 

Figure 4. Architecture of PCNN 

The output from PCNN is multiplied by the normalized output 
∑Q1 ℏt for attaining B1, and it is signified as: 

𝐵1 = 𝐹′(𝐸′𝑣ℏ𝑡 + 𝜂𝑣) ∗ ∑ ∑(𝑄1ℏ𝑡)           (14) 

2.5.2 NASNet model 
The NASNet approach [17] is a new framework 

formulated by the integration of Auto ML and Neural 
Architectural Search (NAS). Here, the network’s efficiency is 
enhanced by executing several modifications in terms of the 
regularization quantity of layers, weights, techniques, and so 
on. Moreover, NASNet has high network capacity and 
generalizability, which is used for enhancing the sensitivity of 
data during the process. Further, NASNet has the capability to 
efficiently overcome the problems that are experienced by 
several networks during the process of large datasets by 
creating building blocks for small to large datasets. This 

approach includes Conv cells, such as reduction and normal 
cells, used for classification tasks. Here, the extracted feature 
U is fed as input to NASNet. Generally, a softmax function is 
employed in NASNet, and it is articulated by the expression 
given as: 

𝑇𝑟 = 𝜔(𝑈)           (15) 

Here, ω(U)is mentioned as, 

                                  (16) 

where exp specifies the standard exponential function, vector 
activation component is implied as Tr, the overall quantity of 
classes is typified as Y, and ∑U epitomizes probability 
distribution. Further, two metric spaces, namely L'and A'are 
considered, and here the target function μ:L'→A' postulates a 
limited aggregate of points μ(L'1 ),μ(L'2 ),μ(L'3 ),...,μ(L'8 ) for 
identified labelsε1,ε2,ε3,...,ε8. Besides, metric space L' is 
alienated into various modules, and after this, one-hot 
encoding is applied, which is expressed as 

𝜀𝑐[𝜈 ∈ 𝐿′|𝜇(𝜈) = 𝑐] at  𝑐 ∈ {1,2,3, . . . ,8}: 𝐿′ = ⋃ 𝜀𝑐
8
𝑐=1  

    (17) 

In order to describe the process performed in neural network, 
target function discrimination μ:L^'→A^'amongst numerous 
class labels is executed, and it is designated as, 

𝑇
ℎ
′

𝑟 = 𝜔(∑ 𝑃
ℎ
′𝑜

𝑟 𝑇𝑟−1 + 𝑥
ℎ
′

𝑟
𝑜=1 )          (18) 

Here, o and h' exemplify rows and columns of the matrix, P 
and x represent the weight and bias of the rth layer. The 
vectorized form of equation (18) is mentioned as, 

𝛪 = 𝑇𝑟 = 𝜔(∑ 𝑃𝑟𝑈 + 𝑥𝑟
𝑗′ )             (19) 

Here, U indicates extracted feature, Ι characterizes outcome 
from NASNet. Figure 5 embodies the architecture of NASNet. 

 
Figure 5. Architecture of NASNet 

 

𝜔(𝑈) =
𝑒𝑥𝑝𝑈

∑ 𝑒𝑥𝑝𝑈𝑐𝑌
𝑐=1
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The attained outcome is multiplied by weight Q2 and then by 
B1 to obtain outcome B2, which is expressed as 

𝐵2 = 𝜔(∑ 𝑃𝑟𝑈 + 𝑥𝑟
𝑗′ ) ∗ 𝑄2 ∗ [𝐹 ′(𝐸′𝑣ℏ𝑡 + 𝜂𝑣) ∗ ∑ ∑(𝑄1ℏ𝑡)]                          (20) 

2.5.3 PNASFH-Net layer 
 In the PNASFH-Net layer, the outcomes from PCNN 
and NASNet are fused using harmonic analysis to detect colon 
cancer. Harmonic analysis [13] is evaluated by contemplating 
long-term forecasting ability for actual time series, which 
offers complicated functions to be categorized as 
incorporations of modest periodic functions. Furthermore, 
the time series technique is combined with PCNN and NASNet 
for estimating the unidentified deterministic components 
from fusion methods by multiple-test procedures. The 
periodical structure for time series is articulated as:   

𝑞(1), 𝑞(2), . . . , 𝑞(𝑧), . . . , 𝑞(𝑙)            (21) 

Here, length is implied as l, and q(z) characterizes the zth time 
series data considered for observation, and it is expressed as: 

𝑞(𝑧) = 𝜐0 + ∑ (𝜐𝑤′ 𝑐𝑜𝑠(
2𝜋𝑤′𝑧

𝑙
) + 𝑓𝑤′ 𝑠𝑖𝑛(

2𝜋𝑤′𝑧

𝑙
))𝑏′

𝑤′=1            (22) 

where total cycles are represented as w', υ, and f designates 

a preselected constant. Further, assume l=2 and b’=1, then 
equation (22) becomes: 

𝑞(𝑧) = 𝜐0 + 𝜐1 𝑐𝑜𝑠 (
2𝜋𝑧

2
) + 𝑓1 𝑠𝑖𝑛 (

2𝜋𝑧

2
)                                                     (23) 

𝑞(𝑧) = 𝜐0 + 𝜐1 𝑐𝑜𝑠(𝜋𝑧) + 𝑓1 𝑠𝑖𝑛(𝜋𝑧)          (24) 

Where 

𝜐0 =
1

𝑙
∑ 𝑞𝑧

𝑙
𝑧=1             (25) 

𝜐0 =
1

2
[𝑞(1) + 𝑞(2)]           (26) 

𝜐𝑤′ =
2

𝑙
∑ 𝑞𝑧

𝑙
𝑧=1 𝑐𝑜𝑠 (

2𝜋𝑤′𝑧

𝑙
)          (27) 

As we have considered w'=1 and l=2, the above equation 
becomes: 

𝜐1 =
2

2
[𝑞(1) 𝑐𝑜𝑠 (

2𝜋

2
) + 𝑞(2) 𝑐𝑜𝑠 (

2𝜋2

2
)]                         (28) 

𝜐1 = 𝑞(1) 𝑐𝑜𝑠(𝜋) + 𝑞(2) 𝑐𝑜𝑠(2𝜋)        (29) 

𝜐1 = 𝑞(1)(−1) + 𝑞(2)(1)                                              (30) 

Further 

𝑓𝑤′ =
2

𝑙
∑ 𝑞(𝑧) 𝑠𝑖𝑛 (

2𝜋𝑤′𝑧

𝑙
)𝑙

𝑧=1           (31) 

When w'=1 and l=2, we get 

𝑓1 =
2

2
[𝑞(1) 𝑠𝑖𝑛 (

2𝜋

2
) + 𝑞(2) 𝑠𝑖𝑛 (

2𝜋2

2
)]         (32) 

𝑓1 = 𝑞(1) 𝑠𝑖𝑛(𝜋) + 𝑞(2) 𝑠𝑖𝑛(2𝜋)          (33) 

𝑓1 = 𝑞(1)(0) + 𝑞(2)(0)            (34) 

Moreover, the time series model is considered as q(z-1),q(z) 
and q(z-1), thus we get 

𝑞(1) = 𝑞(𝑧 − 1)

𝑞(2) = 𝑞(𝑧)

𝑞(3) = 𝑞(𝑧 + 1)

}           (35) 

Substituting equation (35) in equations (24), (26), (30), and 
(34), we get 

𝑞(𝑧 + 1) = 𝜐0 + 𝜐1 𝑐𝑜𝑠( 𝜋𝑧) + 𝑓1 𝑠𝑖𝑛( 𝜋𝑧)        (36) 

𝜐0 =
1

2
[𝑞(𝑧 − 1) + 𝑞(𝑧)]

𝜐1 = −𝑞(𝑧 − 1) + 𝑞(𝑧)
𝑓1 = 0

}           (37) 

By substituting equation (37) in equation (36), we get 

𝑞(𝑧 + 1) =
1

2
[𝑞(𝑧 − 1) + 𝑞(𝑧)] + (−𝑞(𝑧 − 1) +

𝑞(𝑧)) 𝑐𝑜𝑠( 𝜋𝑧) + 0          (38) 

𝑞(𝑧 + 1) =
1

2
𝑞(𝑧 − 1) +

1

2
𝑞(𝑧) − 𝑞(𝑧 − 1) 𝑐𝑜𝑠( 𝜋𝑧) +

𝑞(𝑧) 𝑐𝑜𝑠( 𝜋𝑧) + 0          (39) 

𝑞(𝑧 + 1) = 𝑞(𝑧 − 1) [
1−2 𝑐𝑜𝑠(𝜋𝑧)

2
] + 𝑞(𝑧) [

1+2 𝑐𝑜𝑠(𝜋𝑧)

2
]      (40) 

Consider q(z-1)=B1, q(z)=B2, and q(z+1)=B3. By applying 
these values in equation (40), we get 

𝐵3 = 𝐵1 [
1−2 𝑐𝑜𝑠(𝜋𝑧)

2
] + 𝐵2 [

1+2 𝑐𝑜𝑠(𝜋𝑧)

2
]        (41) 

Furthermore, by substituting the values of B1 and B2, equation 
(41) becomes 

𝐵3 = (𝐹′(𝐸′𝑣ℏ𝑡 + 𝜂𝑣) ∗ ∑ ∑(𝑄1ℏ𝑡)) [
1−2 𝑐𝑜𝑠(𝜋𝑧)

2
] +

(𝜔(∑ 𝑃𝑟𝑈 + 𝑥𝑟
𝑗′ ) ∗ 𝑄2) [

1+2 𝑐𝑜𝑠(𝜋𝑧)

2
] ∗ [𝐹′(𝐸′𝑣ℏ𝑡 + 𝜂𝑣) ∗

∑ ∑(𝑄1ℏ𝑡)]              (42) 

Here, 𝐸 ′𝑣and 𝜂𝑠′represents the weight and bias of vthlayer 
from PCNN, xr and Pr exemplify the bias and weight of rthlayer 
from NASNet, U indicates extracted feature, ℏt epitomizes the 
preprocessed image, and B3 denotes the detected output 
attained by the PNASFH-Net. 

3. Results and discussion 

The outcomes acquired from the experiment by 
PNASFH-Net employed for colon cancer detection and the 
discussions done to assess the efficiency of PNASFH-Net are 
elucidated below: 

3.1 Experimental setup 
The execution of PNASFH-Net for colon cancer detection 

is performed employing the Python tool using CT 
colonography databases [20]. 

3.2 Dataset description 
CT Colonography [20] is the dataset that was used in the 

experimentation. There are 941,771 images in the dataset 
that were obtained using CT modalities from 825 individuals. 
Besides, XLS sheets including data on the polyps, including a 
description and locations within the colon segments, are also 
present. Three XLS sheets, one for each size polyp (larger than 
10 mm), smaller polyps, and no polyps, are contained in the 
dataset.  The dataset contains the supine and prone DICOM 
images. 

3.3 Performance metrics 
Several performance metrics are used to assess 

PNASFH-Net's efficacy in detecting colon cancer. These 
metrics are elucidated below. 

a) Accuracy 
The ratio of images that the PNASFH-Net correctly classifies 
to the overall images applied is known as the accuracy, and it 
is signified by, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐻𝑡𝑝+𝐻𝑡𝑛

𝐻𝑡𝑝+𝐻𝑡𝑛+𝐻𝑓𝑝+𝐻𝑓𝑛
               (43) 
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wherein, 𝐻𝑡𝑛 indicates true negative, false negative is 

specified by 𝐻𝑓𝑛 ,𝐻𝑡𝑝epitomizes true positive and 

𝐻𝑓𝑝postulates a false positive. 

b) Sensitivity 
Sensitivity is the measure of positivity and is represented by 
the true positivity rate (TPR). Moreover, the computation for 
sensitivity is stated below, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐻𝑡𝑝

𝐻𝑡𝑝+𝐻𝑓𝑛
           (44) 

c) Specificity 
Specificity is measured by the True Negative Rate (TNR), 
which can be found by applying the expression below: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐻𝑡𝑛

𝐻𝑡𝑛+𝐻𝑓𝑝
          (45) 

d) Confusion matrix 
The actual and predicted classifications generated by any 
classifier are shown in a confusion matrix. The predicted 
labels or classes are represented in the columns of a confusion 
matrix, while the actual labels or classes are represented in 
the rows. 

e) Receiver Operating Characteristic (ROC) curve 
A visual representation of the relation between the TPR and 
FPR is called an ROC curve.  

f) Loss curve 
A neural network's training process is illustrated by a 
graphical plot called a loss curve, which shows the 
relationship between the number of epochs and the training 
loss or error. 

g) Memory usage 
Memory usage is the metric that quantifies the total amount 
of RAM utilized by the model during its execution. It is 
measured in MegaBytes(MB). 

3.4 Image results 
Figure 6 discusses the experimental outcomes of the 

newly introduced PNASFH-Net. In Figures 6a and 6b, the 
input and preprocessed images are indicated. The segmented 
image is shown in Figure 6c. Also shown in Figures 6d and 6e 
are the LVP and CSLBP-feature extracted images. 

 

Figure 6. Image results of PNASFH-Net for colon cancer detection 
concerning, a) Input, b) preprocessed, c) segmented, d) LVP feature 
extracted, and e) CSLBP feature extracted images 

 

3.5 Segmentation methods 
Various methods, like ALTER-ATTUNET [21], UNETR 

network [22], SegChaNet [23] are employed for comparing 
the performance of the proposed PNU-Net_RSSOA used for 
segmenting the affected colon region.  
(i) Segmentation analysis 
The valuation of segmentation accuracy using different 
training sets and k-values is shown in Figure 7.  The 
evaluation of segmentation accuracy with the training set is 
exhibited in Figure 7a. The segmentation accuracy of ALTER-
ATTUNET is 85.009%, UNETR network is 87.788%, 
SegChaNet is 90.998%, and the proposed PNU-Net_RSSOA is 
93.779% when considering the training set is 90%. The 
effectiveness of PNU-Net_RSSOA is enhanced by 9.35%, 
6.39%, and 2.97%. Figure 7b indicates the examination of 
segmentation accuracy by varying k-values. The 
segmentation accuracy acquired by ALTER-ATTUNET, 
UNETR network, SegChaNet, and proposed PNU-Net_RSSOA 
is 87.900%, 89.009%, 91.998%, and 94.179% for k-value is 9. 
The effectiveness of PNU-Net_RSSOA is improved by 6.67%, 
5.49%, and 2.32%. 

 

Figure 7. Assessment of PNU-Net_RSSOA based on segmentation 
accuracy by changing a) the training set and b) the K-value 

3.6 Comparative techniques 
The performance of the PNASFH-Net technique is 

assessed by comparing it with the conventional models, 
including RSSOA-CNN based transfer learning, Vision 
transformer, Dragonfly Water Wave Optimization-based deep 
Recurrent Neural Network (DWWO-based deepRNN), 
Convolutional Neural Network (CNN) [3], Deep transfer 
learning [2], and K-Means [1]. 

3.7 ROC curve 
The ROC curve's goal is to determine the ideal threshold 

value for enhancing the classifier's performance. A prediction 
outcome of a confusion matrix is represented by each point in 
the ROC space. Figure 8 shows the graph between TPR and 
FPR. By considering FPR as 0.8, the TPR computed by K-
Means is 0.920, Deep transfer learning is 0.932, CNN is 0.956, 
DWWO-based deepRNN is 0.967, and RSSOA-CNN-based 
transfer learning is 0.980, while the proposed PNU-
Net_RSSOA attained a TPR of 0.990. 
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Figure 8. Assessment based on the ROC curve 

3.8 Loss curve 
The loss curve for the PNASFH-Net method is shown in 

Figure 9. It is demonstrated that the PNASFH-Net can learn 
quickly, and it yields a substantial reduction in training loss 
when the number of epochs is changed from 0 to 140.   

Figure 9. Loss curve of the PNASFH-Net technique 

3.9 Confusion matrix 
Figure 10 shows the confusion matrix of PNASFH-Net. 

The figure shows that the classifier performs well in detecting 
colon cancer. The classifier correctly predicted 362 outcomes 
out of 400 outcomes. Further, only 6 cases were detected 
wrongly as positives, and 32 samples were detected wrongly 
as colon cancer. Three hundred thirty samples were correctly 
found as cancer cases, and 32 were normal cases. 

3.10 Comparative analysis 
Various evaluation metrics based on the training set 

and k-group are considered when evaluating the PNASFH-Net 
using the CT images obtained from the CT colonography 
database [20]. 

 

 

 

 
Figure 10. Confusion matrix of PNASFH-Net 

3.10.1 Assessment based on training set 
Figure 11 displays the examination of PNASFH-Net 

while evaluating different training set percentages. Figure 
11a) displays accuracy-based valuation of PNASFH-Net. The 
existing methods, such as RSSOA-CNN based transfer 
learning, Vision transformer, DWWO-based deepRNN, CNN, 
Deep transfer learning, K-Means, and PNASFH-Net figured the 
accuracy value of 95.880%, 94.437%, 93.057%, 90.349%, 
87.786%, 85.569%, and 98.167%, respectively, with a 
training set of 90%. The performance enhancement of 
PNASFH-Net is by 12.83%, 10.58%, 7.96%, 5.21%, 3.94%, and 
2.33%. The evaluation of the PNASFH-Net in terms of 
sensitivity is shown in Figure 11b. When considering a 
training set of 90%, the PNASFH-Net attained a sensitivity 
value of 98.349% when compared to sensitivity values 
measured by the value of 95.785% for RSSOA-CNN-based 
transfer learning, 94.234% for Vision transformer, 93.785% 
for DWWO-based deepRNN, 90.786% for CNN, 88.755% for 
Deep transfer learning, and K-Means for 86.085%.  

The performance of PNASFH-Net is improved by 
12.47%, 9.76%, 7.69%, 4.64%, 4.36%, and 2.61%. The 
specificity-based analysis of PNASFH-Net is shown in Figure 
11c. When considering the training set as 90%, PNASFH-Net 
computed a specificity of 98.025%, which is higher than the 
specificity of RSSOA-CNN based transfer learning, Vision 
transformer, DWWO-based deepRNN, CNN, Deep transfer 
learning, and K-Means at 94.182%, 93.079%, 91.567%, 
88.980%, and 85.708%, respectively. The performance 
enhancement of PNASFH-Net is 14.36%, 10.16%, 7.05%, 
5.31%, 4.07%, and 2.28%. The memory usage analysis of 
PNASFH-Net is shown in Figure 11d. When considering the 
training set as 90%, PNASFH-Net computed a memory usage 
of 98.025%, which is less than the memory usage of RSSOA-
CNN based transfer learning, Vision transformer, DWWO-
based deepRNN, CNN, Deep transfer learning, and K-Means at 
58.5 MB, 58.4MB, 58.2MB, 58.1MB, 57.2MB, 56.9MB, and 56.6 
MB, respectively. 
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3.10.2 Assessment based on k-group 
In Figure 12, the investigation of PNASFH-Net assessed using 
the K-group is illustrated. The accuracy-based evaluation of 
PNASFH-Net is demonstrated in Figure 12a. When 
considering the k-group is 9, the accuracy gained by RSSOA-
CNN based transfer learning, Vision transformer, DWWO-
based deepRNN, CNN, Deep transfer learning, K-Means, and 
PNASFH-Net is 96.005%, 95.172%, 93.190%, 92.178%, 
90.789%, 87.988%, and 98.679%. The PNASFH-Net enhanced 
the performance by 10.53%, 7.68%, 6.27%, 5.24%, 3.33%, 
and 2.38%.  

 

 

 

 
The Sensitivity-based assessment of the PNASFH-Net is 
displayed in Figure 12b. By considering K-group as 9, the 
sensitivity figured by PNASFH-Net is 98.679%, which is better 
compared to the sensitivity of RSSOA-CNN based transfer 
learning at 95.890%, Vision transformer at 94.276%, DWWO-
based deepRNN at 93.990%, CNN at 92.199%, Deep transfer 
learning at 90.121%, and K-Means at 88.278%. The 
performance enhancement of PNASFH-Net is 10.54%, 8.67%, 
6.57%, 4.75%, 4.66%, and 2.83%. Figure 12c displays the 
specificity-based investigation of PNASFH-Net. With k-group 
as 9, PNASFH-Net calculated a specificity value of 98.512%, 

Figure 11. Investigation of PNASFH-Net using training set with respect to a) accuracy, b) sensitivity, c) specificity, and d) Memory usage 
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while RSSOA-CNN based transfer learning, Vision 
transformer, DWWO-based deepRNN, CNN, Deep transfer 
learning, K-Means values attained specificity of 95.948%, 
94.276%, 93.540%, 92.089%, 90.399%, and 88.033%, 
correspondingly. The performance of PNASFH-Net is 
improved by 10.64%, 8.24%, 6.52%, 5.05%, 4.49%, and 
2.60%. Figure 12d displays the memory-based investigation 
of PNASFH-Net. With k-group as 9, PNASFH-Net calculated a 
memory value of 56.8MB, while RSSOA-CNN based transfer 
learning, Vision transformer, DWWO-based deepRNN, CNN, 
Deep transfer learning, K-Means values attained memory of 
57.1MB, 57.4MB, 58.2MB, 58.4MB, 58.6MB, and 58.5 MB 
correspondingly. 

3.11 Ablation study 
The ablation study on various evaluation metrics 

based on the training set and k-group is considered when 
evaluating the PNASFH-Net using the CT images obtained 
from the CT colonography database [20].  

3.11.1 Assessment based on training set 
Figure 13 displays the examination of PNASFH-Net 

while evaluating different training set percentages. Figure 13a 
displays the accuracy-based valuation of PNASFH-Net. The 
existing methods, such as CNN-based transfer learning, 
RSSOA-CNN-based transfer learning, NASNet, PCNN, and 
PNASFH-Net, achieved accuracy values of 94.956%, 95.879%, 
96.278%, 97.237%, and 98.167%, respectively, with a 
training set of 90%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The evaluation of the PNASFH-Net in terms of sensitivity is 
shown in Figure 13b. When considering a training set of 90%, 
the PNASFH-Net attained a sensitivity value of 98.348% when 
compared to sensitivity values measured by the value of 
94.534%, for CNN-based transfer learning, 95.785%, for 
RSSOA-CNN-based transfer learning, 96.232% for NASNet, 
and 97.174% for PCNN. The specificity-based analysis of 
PNASFH-Net is shown in Figure 13c. When considering the 
training set as 90%, PNASFH-Net computed a specificity of 
98.024%, which is higher than the specificities of CNN-based 
transfer learning, RSSOA-CNN-based transfer learning, 
NASNet, PCNN at 94.456%, 95.832%, 96.324%, and 97.287%, 
respectively. 

3.11.2 Assessment based on k-group 
Figure 14 displays the examination of PNASFH-Net 

while evaluating different training set percentages. Figure 14a 
displays the accuracy-based valuation of PNASFH-Net. The 
existing methods, such as CNN-based transfer learning, 
RSSOA-CNN-based transfer learning, NASNet, PCNN, and 
PNASFH-Net, achieved accuracy values of 95.287%, 96.005%, 
96.324%, 97.003%, and 98.345%, respectively, with a 
training set of 90%. The evaluation of the PNASFH-Net in 
terms of sensitivity is shown in Figure 14b. When considering 
a training set of 90%, the PNASFH-Net attained a sensitivity 
value of 98.678% when compared to sensitivity values 
measured by the value of 94.474%, for CNN-based transfer 
learning, 95.889%, for RSSOA-CNN-based transfer learning, 
97.178% for NASNet, and 97.993% for PCNN.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

(a) (b) 

  

(c) (d) 

Figure 12. Examination of PNASFH-Net using k-group with respect to a) accuracy, b) sensitivity, c) specificity, and d) Memory usage 
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Figure 14c shows the specificity-based analysis of PNASFH-
Net. When considering the training set as 90%, PNASFH-Net 
computed a specificity of 98.512%, which is higher than the 
specificities of CNN-based transfer learning, RSSOA-CNN-
based transfer learning, NASNet, and PCNN, which are 
94.865%, 95.947%, 96.278%, and 97.454%, respectively. 
 
4.11 Comparative discussion 
The outcomes obtained by PNASFH-Net for colon cancer 
detection, as well as the results obtained by traditional colon 
cancer detection schemes, are depicted in Table 1. Here, 
superior detection performance is recorded by PNASFH-Net 
with a maximum of 98.345% accuracy, 98.679% sensitivity, 
98.678% specificity, and 56.8MB memory usage for K-group 
9. Moreover, the accuracy calculated by the approaches, such 
as RSSOA-CNN based transfer learning, Vision transformer, 
DWWO-based deepRNN, CNN, Deep transfer learning, K-
Means is 96.005%, 95.172%, 93.190%, 92.178%, 90.789%, 
and 87.988%.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, the sensitivity attained by these conventional 
models is 95.890%, 94.276%, 93.990%, 92.199%, 90.121%, 
and 88.278%. Besides, specificity values of 95.889%, 
94.276%, 93.989%, 92.198%, 90.120%, and 88.277% are 
attained by existing techniques, like RSSOA-CNN based 
transfer learning, Vision transformer, DWWO-based 
deepRNN, CNN, Deep transfer learning, K-Means. Moreover, 
memory values of 58.8MB, 58.6MB, 58.4MB, 58.2MB, 57.4MB, 
and 57.1MB are attained by existing techniques, like RSSOA-
CNN-based transfer learning, Vision transformer, DWWO-
based deepRNN, CNN, Deep transfer learning, K-Means. The 
PNASFH-Net, formed by combining PCNN with NASNet, 
obtained optimum outcomes. PCNN enhanced the 
computational power, while NASNet attained better 
generalizability and Harmonic analysis, and reduced the time 
complexity. 
 
 
 
 
 
 

 

 

(a) (b) 

 

(c) 

 
Figure 13. Ablation study analysis of PNASFH-Net using the training set with respect to a) accuracy, b) sensitivity, and c) specificity 
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Figure 14. Ablation study analysis of PNASFH-Net using K-group with respect to a) accuracy, b) sensitivity, and c) specificity 

Table 1. Comparative discussion of the PNASFH-Net model 

Detection 
approaches 

Performance metrics 

Training set  K-group 
 

Accuracy 
(%) 

Sensitivity 
(%)  

Specificity 
(%) 

Memory 
usage (MB) Accuracy 

(%) 
Sensitivity 

(%)  
Specificity 

(%) 

Memory 
usage 
(MB) 

K-means 85.569 86.085 85.708 
58.5 

87.988 88.278 88.033 
58.8 

Deep transfer 
learning 

87.786 88.755 88.980 
 

58.4 90.789 90.121 90.399 
58.6 

CNN 90.349 90.786 91.567 
58.2 

92.178 92.199 92.089 
58.4 

DWWO-based 
transfer 
learning 

93.057 93.785 93.079 
58.1 

93.190 93.990 93.540 
58.2 

Vision 
transformer 

94.437 94.234 94.182 
57.2 

95.172 94.276 94.276 
57.4 

RSSOA-CNN-
based transfer 

learning 
95.880 95.785 95.833 

56.9 
96.005 95.890 95.948 

57.1 

Proposed 
PNASFH-Net 

98.167 98.349 98.025 
 

56.6 98.345 98.679 98.512 
 

56.8 
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5. Conclusion 
DL techniques have been implemented for achieving high 
performance in identifying colon cancer when compared with 
other traditional ML approaches. Various approaches are 
exploited for detecting colon cancer but they are not efficient. 
Therefore, a new model termed as PNASFH-Net is formulated 
to detect colon cancer in its initial stage. For that, firstly, input 
colon image is pre-processed by employing AMF for 
eliminating the noise from the raw image. After that, the 
affected colon region is segmented by exploiting PNU-Net, 
which is tuned by using RSSOA. This RSSOA method is 
formulated by the amalgamation of SSOA and ROA. Following 
this, the features from the segmented image are mined, and 
finally, colon cancer detection is executed by using PNASFH-
Net. Here, PNASFH-Net is engineered by the fusion of three 
techniques, such as Harmonic analysis, NASNet, and PCNN. 
Furthermore, the experimental outcomes of PNASFH-Net 
show that it computed an accuracy of 98.345%, specificity of 
98.512%, sensitivity of 98.679%, and memory usage of 
56.8MB correspondingly. The deployment of PNASFH-Net in 
clinical settings presents both challenges and opportunities. 
By addressing issues related to data integration, 
computational infrastructure, and clinician interpretability, 
and by considering ethical concerns surrounding patient 
privacy and accountability, healthcare providers can leverage 
AI to enhance diagnostic accuracy and improve patient 
outcomes. Future work should focus on developing robust 
frameworks for integrating AI into clinical workflows while 
ensuring that ethical standards are upheld. Also, to introduce 
feature selection methods for improving the accuracy rate by 
minimizing information loss and complexity. 
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