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A B S T R A C T 
 

Cardiac arrhythmias are critical conditions requiring accurate classification for 
effective diagnosis as well as treatment. In this investigation, we provide a novel 
approach for cardiac arrhythmia classification that integrates two advanced 
techniques for feature extraction from ECG signals: “Ensemble Empirical Mode 
Decomposition” (EEMD) and “Heart Rate Variability” (HRV) analysis. The 
proposed approach employs EEMD to decompose ECG signals into intrinsic 
mode functions, capturing signal features, while HRV analysis provides 
additional physiological insights into heart rate fluctuations. Combining two 
strategies, our approach leverages a comprehensive set of features to improve 
the accuracy and resilience of arrhythmia classification. The system's 
effectiveness is explained via simulated tests utilizing the MIT-BIH arrhythmia 
database, with performance evaluated based on recall, accuracy, and precision 
metrics. Our results indicate that integrating EEMD and HRV features provides 
a more reliable and detailed classification of cardiac arrhythmias, offering a 
holistic perspective on heart rhythm dynamics. 

1. Introduction 

In recent years, cardiovascular diseases (CVDs) have 
been found to be the leading cause of death both globally and 
in India. Worldwide, CVDs were accountable for roughly 17.9 
million deaths in 2019, constituting 32% of all deaths, with 
85% resulting from heart attacks and strokes [1]. The burden 
of ischemic heart disease alone accounted for 8.9 million 
deaths in the same year, with a significant 70% increase in 
CVD-related deaths since 1990, particularly affecting low- 
and middle-income countries [2]. In India, CVDs were 
responsible for 28.1% of total deaths in 2020, a leading cause 
of mortality, with annual deaths rising from 1.3 million in 
1990 to 1.7 million in 2016. The age-standardized death rate 
for CVDs in India was 272 per 100,000 population in 2019, 
higher than the global rate of 243 per 100,000 [3]. 
Contributing factors in India include increasing rates of 
hypertension, diabetes, smoking, and obesity, with 
concerning rises in CVD incidents among younger 
populations. Accurate diagnosis and early detection are 
essential for reducing their impact and improving patient 
outcomes.  “Electrocardiography” (ECG), a non-invasive and 
widely accessible tool, is essential to initial diagnosis and 
ongoing management of several cardiac illnesses. ECG has 
become one of the crucial tools for investigating the heart’s 

structure and function because of its affordability, simplicity, 
efficiency, and non-invasive nature. ECG captures 
electrophysiological activity related to repolarization and 
depolarization of heart muscles throughout every heartbeat, 
providing critical insights into cardiac health. "Arrhythmia" 
describes deviations from the normal sequence of electrical 
impulses in the heart, resulting in irregular heart rhythms [4]. 
These may range from benign to life-threatening, potentially 
leading to conditions like tachycardia or even sudden cardiac 
arrest. In arrhythmia investigation, ECG-based heartbeat 
classification has emerged as a potential technique for early 
detection and warning of arrhythmias. Traditional ECG 
interpretation [5, 6], however, relies heavily on the expertise 
of trained clinicians, leading to variability in diagnostic 
accuracy and delayed clinical decision-making. In addition, 
ECG signals can exhibit significant variability across different 
individuals. Morphologies and rhythms associated with 
similar arrhythmic symptoms can vary under different 
circumstances. Experienced cardiologists might readily 
distinguish abnormal heartbeats from normal sinus rhythms 
by examining ECG, but this remains a difficult task for 
automated systems due to variability in ECG signals and 
differences in recording environments.  
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Even for healthy individuals, ECG morphology and 
rhythm might show substantial variation over short periods. 
Various methods [7-9] were developed for generic heartbeat 
classification utilizing ECG signals on the basis of diverse 
technologies.   Arrhythmia classification using ECG signals 
encompasses various methods, each leveraging distinct 
techniques to enhance diagnostic accuracy. Traditional 
approaches often rely on feature extraction approaches like 
time-domain [10], frequency-domain [11], and morphological 
analysis [12] to identify critical signal characteristics related 
to different types of arrhythmias. These features are then fed 
into ML algorithms, like Support Vector Machines (SVMs) 
[13], Random Forests, and k-Nearest Neighbors (k-NN), 
Neural Networks [14], which classify heartbeats based on 
learned patterns. However, Time domain features can be 
sensitive to noise and artifacts present in ECG signals. In 
addition, Time domain features typically capture basic 
properties such as amplitude, duration, and intervals 
between peaks (e.g., RR intervals). They may not fully capture 
complex temporal patterns or subtle variations in ECG signals 
that are critical for distinguishing certain arrhythmias. On the 
other hand, Frequency domain analysis involves 

transforming the signal, which in turn leads to a loss of 
temporal information. Further, Frequency domain features 
provide information about signal components at different 
frequencies, but interpreting these components in relation to 
specific arrhythmias or cardiac conditions can be complex.  

Recent advancements have observed the adoption of DL 
models [15], including Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs), which can 
automatically recognize and identify characteristics in 
unprocessed ECG data without manual intervention [16-18]. 
These models have demonstrated superior performance in 
capturing complex temporal and spatial relationships within 
the ECG signals, making them highly effective for detecting 
various arrhythmias. Additionally, hybrid models combining 
traditional feature extraction with deep learning techniques 
offer a balanced approach, enhancing classification accuracy 
and robustness. Integrating these methodologies with real-
time monitoring systems holds promise for improving early 
detection and management of cardiac arrhythmias, thereby 
advancing patient care. Nevertheless, DL models frequently 
need much annotated data for training to achieve optimal 
performance. In the context of ECG signals, obtaining 
annotated datasets with diverse arrhythmia types and 
sufficient variability can be challenging. Limited or biased 
datasets may hinder a model's capability for extrapolating 
unseen, new data or for rare arrhythmias not well 
represented in the training set. To sort out the above-
mentioned problems in the classification of cardiac 
arrhythmias, this paper proposes a novel methodology that 
integrates EEMD and HRV for feature extraction from ECG 
signals. Major contributions of this paper are outlined as 
follows.  
• Innovative Classification Methodology: Developed a novel 

three-fold methodology for cardiac arrhythmias 
classification using ECG signals, which integrates both 
EEMD and HRV analysis. 

• Advanced Feature Extraction Techniques: Utilized EEMD to 
break down ECG signals into IMFs, capturing detailed and 
nuanced features from ECG signals. Complemented this 
with HRV analysis to extract additional features related to 
heart rate fluctuations. 

• Performance Evaluation: Demonstrated efficacy of 
suggested approach through simulation experiments 
utilizing the MIT-BIH arrhythmia database, evaluating 
performance based on recall, accuracy, and precision 
metrics. 

The rest of the paper is organized as follows: Section 1 
presents the importance of cardiac arrhythmias as well as the 
motivation for developing an advanced classification method 
using ECG signals. Section 2 provides a comprehensive 
literature survey, reviewing existing techniques for ECG 
signal analysis and identifying gaps that the proposed method 
aims to fill. Section 3 details the proposed three-fold 
methodology, which combines EEMD and HRV analysis for 
feature extraction and arrhythmia classification, and presents 
the system architecture through a block diagram. Section 4 
reports the simulation results employing the MIT-BIH 
arrhythmia database, evaluating the suggested approach's 
performance based on recall, accuracy, and precision metrics. 
Section 5 sums up the paper by providing a summary of the 
results, talking about the research's significance, and 
outlining possible future research possibilities. 

2. Literature survey   

In the past, a number of techniques were used to 
categorize various cardiovascular disorders using ECG data. 

Abbreviation 
CVD cardiovascular diseases 

ECG Electrocardiography 

SVM Support Vector Machines 

RF Random Forests 

K-NN k-Nearest Neighbors 

CNN Convolutional Neural Networks 

RNN Recurrent Neural Networks 

AS asystole 

VF ventricular fibrillation 

PEA pulseless electrical activity 

VT Ventricular tachycardia 

PR pulse-generating rhythm 

ANN artificial neural networks 

LSTM long short-term memory 

FFT Fast Fourier Transform 

ANFIS Adaptive neuro-fuzzy inference system 

MRR multi-resolution representation 

CIE computer-interpreted ECG 

LSSVM Least Square Support Vector Machine 

BLSTM Bidirectional Long Short-Term Memory neural 

network  

HRV Heart Rate Variability 

SDNNI Standard Deviation of NN Intervals 

RMSSD Root Mean Square of Successive Differences 

SNS Sympathetic Nervous System 

PNS Parasympathetic Nervous System 

LPF Low-Power Frequency 

HPF High-Power Frequency 

AMI Advancement of Medical Instrumentation 

TP True Positives 

FP False Positives 

TN True Negatives 

FN False Negatives 

MSVM Modified SVM  

EMD Empirical Mode Decomposition 

TT Thresholding Technique 

EMLPT Ensemble based Multiscale Local Polynomial 

Transform  
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Rad AB et al. [19] suggested categorizing asystole (AS), 
ventricular fibrillation (VF), pulseless electrical activity 
(PEA), Ventricular tachycardia (VT), and pulse-generating 
rhythm (PR) are the five categories into which cardiac 
rhythms fall. For massive data sets, manually annotating 
rhythms is impractical and time-consuming. They suggested 
taking into account all 47 wavelet- and time-domain-based 
ECG characteristics to carry out this procedure. A feature 
selection architecture based on wrappers was employed to 
choose features. At classification, classifiers based on artificial 
neural networks (ANN), ensembles of k-nearest neighbors, 
decision trees, k-local hyperplane distance nearest neighbor, 
and Bayesian decision theory have been investigated. For 
classification of ECG beats, Huang, J. et al. [20] suggested a 
unique architecture that combines multiple long short-term 
memory (LSTM) RNNs with wavelet transform. A thorough 
approach to ECG sample classification was proposed by Hu Y 
et al. [21]. First, the continuous wavelet transform is 
implemented to retrieve ECG characteristics. They 
subsequently utilized the new lightweight context transform 
blocks to classify arrhythmias. Block has been suggested by 
enhancing the linear content transform block using linear 
transformation and a squeeze-and-excitation network. Lastly, 
the MIT-BIH arrhythmia database has been utilized to 
validate the suggested approach. In order to differentiate 
among four different kinds of arrhythmia illness that had 
been gathered from records, Sharma R. et al. [22] suggest 
using an ECG arrhythmia classification approach on the basis 
of Fast Fourier Transform (FFT) for feature extraction as well 
as an enhanced AlexNet classifier.  

A method to categorize cardiac signals into atrial 
fibrillation, ventricular arrhythmias, atrial flutter, congestive 
heart failure, malignant ventricular arrhythmias, premature 
atrial fibrillation, and normal heartbeats was proposed by 
Qiu, Y. et al. [23]. Cardiac arrhythmias were detected and 
diagnosed using a deep learning algorithm. To improve signal 
classification sensitivity, they put out a novel ECG signal 
classification technique.  They used noise reduction filters to 
smooth the ECG signal. ECG characteristics were extracted 
using a discrete wavelet transform depending on the 
arrhythmic database. Wavelet decomposition energy 
attributes, as well as computed values of PQRS morphological 
characteristics, were utilized to generate feature vectors. 
Adaptive neuro-fuzzy inference system (ANFIS) and artificial 
neural network (ANN) utilize a genetic algorithm to identify 
input layer weights as well as minimize the feature vector.  

An arrhythmia detection technique relying on multi-
resolution representation (MRR) of ECG data is proposed by 
Silva, I. & Henriques J. [24]. In order to learn ECG vector 
representations, this approach uses four distinct, state-of-the-
art deep neural networks as four-channel models. The 
downstream classification technique uses the MRR, which is 
created by combining hand-crafted ECG data with deep 
learning-based representations. NEO-CCNN, a robust method 
for classifying arrhythmias, was proposed by Wu, W., et al. 
[25] for wearables that may seem applied on a basic 
microcontroller. With the aid of the suggested adaptive time-
dependent thresholding technique, the NEO-CCNN algorithm 
not only identifies QRS but also precisely locates the R-peak, 
increasing the sensitivity and accuracy of arrhythmia 
classification. Yang L. et al. [26] suggested a way to identify 
ECG anomalies and health alerts on the basis of 3R-TSH-L 
methodology and ECG Holter of PHIA. Following actions are 
involved in putting 3R-TSH-L approach into practice: (1) 
using LSTM for classification, training, and testing algorithm 
based on MIT-BIH dataset, and obtaining relatively optimal 

features as spliced normalized fusion features, like kurtosis, 
skewness, and RR interval time domain features, STFT-based 
sub-band spectrum features, and harmonic ratio features; (2) 
extracting combination features, like time-domain features, 
frequency domain features, and time-frequency domain 
features; and (3) obtaining 3R ECG samples utilizing Pan-
Tompkins technique and employing volatility to obtain high-
quality raw ECG data. Plesinger, F. et al. [27] created a deep 
learning (DL)-based computer-interpreted ECG (CIE) method 
to find the best 4-lead ECG subset for heart arrhythmia 
classification, with an emphasis on minimizing information 
loss. In order to identify corresponding optimum ECG-lead 
subsets, four common heart arrhythmia types (RBBB, AF, 
LBBB, and I-AVB) were learned utilizing the DL-based CIE 
model. Wang Z. et al. [28] suggest a successful system design 
and implementation for ECG classification utilizing (Faster R-
CNN) approach depending on faster regions. In this 
experiment, certain ECG recordings from the MIT-BIH 
database are included in the original one-dimensional ECG 
signals, along with preprocessed patient ECG signals. In order 
to categorize ECG beats, Li H. et al. [29] suggested an ECG 
recognition system based on multi-domain feature extraction. 
To eliminate noise interference, an enhanced wavelet 
threshold technique has been employed for pre-processing 
ECG signals. A unique multi-domain feature extraction 
technique is introduced, utilizing kernel-independent 
component analysis for nonlinear feature extraction and the 
discrete wavelet transform for frequency domain feature 
extraction. To identify various heartbeat types, it makes use 
of an SVM classifier that has been optimized using a genetic 
approach. A self-adjusting ant colony clustering technique on 
the basis of a corrective system was proposed by Li N. et al. 
[30] for categorization of ECG arrhythmias. To lessen the 
impact of individual variations in ECG signal characteristics 
and increase the model's robustness, this approach does not 
differentiate between subjects when creating the dataset. 
After classification is complete, a correction mechanism is 
added to increase the model's classification accuracy by fixing 
outliers brought on by the accumulation of classification 
errors. Majeed R. R. et al. [31] suggest a new model for ECG 
verification that combines an LS-SVM having multi-domain 
characteristics. To determine the optimal set of features to 
separate from ECG signals, two feature types are examined. 
ECG signals have been processed to extract time as well as 
frequency domain features using an improved Triple Band 
filter bank. To identify the most pertinent traits and eliminate 
the ones that are redundant, the extracted features are 
examined. Three classifiers—K-means, Least Square Support 
Vector Machine (LS-SVM), and K-nearest—have been fed 
chosen features. An intelligent heartbeat classification system 
was proposed by Runchuan Li et al. [32] using an AdaBoost + 
Random Forest model and chosen optimal feature sets. The 
Holter allows this system to obtain ECG data, which is then 
sent to the cloud platform for feature extraction and 
preprocessing. AdaBoost + Random Forest then uses features 
to classify heartbeats. Tang S., et al. [33] presented CSML-Net, 
a unique multi-task network that combines convolutional 
neural networks and compressed sensing. The suggested 
model utilizes two task branches and shared layers to recover 
and classify the ECG signals simultaneously after compressing 
them employing a learning measurement matrix. To enhance 
model performance, the multi-scale feature module was 
created. Additionally, an enhanced classification strategy for 
deep compressed sensing models was proposed by Hua J. et 
al. [34]. Pre-processing, compression, and categorization are 
the four modules that make up the framework. Normalized 
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ECG signals have been initially adaptively compressed in 3 
convolutional layers to obtain findings of four distinct ECG 
signal types. The classification network then receives 
compressed data directly. The Pan-Tompkins technique can 
be utilized by Fang Y. et al. [35] to extract QRS characteristics 
of ECG signals from the MIT-BIH ECG database. Following 
sample extraction, samples are screened utilizing k-means 
clustering, and ECG data was analyzed using an RBF neural 
network. Both the final classification model's classification 
accuracy and electrical signal characteristics are trained by 
the classifier. A new and portable CNN-based automatic ECG 
classification technique has been presented by Liu F. et al. 
[36]. Multi-spatial deep characteristics of heartbeats are 
extracted using a multi-branch network with various 
receptive fields. Redundant ECG characteristics are filtered 
using a Bidirectional Long Short-Term Memory neural 
network (BLSTM) module and a Channel Attention Module 
(CAM). Gao H et al. [37] provide a multi-resolution model that 
can smoothly combine global rhythm patterns with local 
morphological traits. They presented the parameter 
isolation-based ECG continual (ECG-CL) technique, enhancing 
the effectiveness of data utilization and promoting 
information transfer between tasks.  

3. Proposed approach   

The proposed method utilizes ECG signals for Cardiac 
Arrhythmias Classification, encompassing a three-fold 
methodology. The suggested approach uses two different 
approaches for feature extraction from ECG signals. 
Additional ECG data are captured using Heart Rate Variability 
(HRV) analysis, while detailed features have been extracted 
from ECG signals utilizing EEMD. The approach leverages 
extensive physiological data to enhance the robustness of 
cardiac arrhythmia classification by combining these 
sophisticated extraction approaches. Utilizing both EEMD and 
HRV features improves classification accuracy by accounting 
for peripheral physiological changes. Furthermore, the 
method offers a holistic perspective on the dynamics of 
heartbeat by analyzing heart rate variability, leading to more 
reliable and detailed Cardiac Arrhythmias classification. 
Figure 1 illustrates the suggested Comprehensive System 
Architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Feature extraction 
For feature extraction from ECG, we used two distinctive 

techniques, namely EED and Heart Rate Variability. The 
combination of EEMD and HRV analysis ensures a 
comprehensive assessment of ECG signals. EEMD provides a 
detailed frequency-based decomposition of the ECG signal, 
capturing intricate patterns and abnormalities. In contrast, 
HRV analysis offers insights into temporal variations and 
autonomic regulation of the heart. Together, these techniques 
complement each other, providing a robust feature set that 
enhances the classification of cardiac arrhythmias. By 
leveraging both detailed signal decomposition from EEMD 
and the autonomic insights from HRV, the proposed method 
achieves higher accuracy and reliability in identifying various 
arrhythmias, thus improving diagnostic outcomes. 

3.1.1 Empirical mode decomposition (EMD) 
The EMD technique was created to examine time 

series data that is non-stationary as well as non-linear. A set 
of IMFs, which are simpler parts that represent various 
frequency bands in the original signal, is produced when a 
signal is broken down. Each of the iteratively filtered IMFs 
must meet certain requirements to be derived:  
• Number of zero crossings and extremes (maxima and 

minima) must be identical or differ by no more than one. 
• At every given position, envelopes described by local 

maxima and minima have an average value of zero. 
A signal is decomposed by EMD into a residue and an 
assortment of IMFs. The general EMD decomposition formula 
is: 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖
𝑛
𝑖=1 (𝑡) + 𝑟𝑛(𝑡)                                                            (1) 

Where 𝐼𝑀𝐹𝑖(𝑡) are intrinsic mode functions, and 𝑟𝑛(𝑡) is the 
residue after extracting n IMFs. 
The EMD Sifting Process: The steps involved in this process 
are as follows: 
• Identify all local extrema (maxima and minima) of the 

signal x(t). 
• Interpolate between local maxima to form upper envelope 

emax(t). 
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Figure 1. Comprehensive system architecture of the proposed model     
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• Interpolate between local minima to form lower envelope 
emin(t). 

• Compute the mean envelope 𝑚(𝑡) =
𝑒𝑚𝑎𝑥(𝑡)+𝑒𝑚𝑖𝑛(𝑡)

2
 

• Extract detail h(t)=x(t)-m(t). 
• Iterate on h(t) until it satisfies IMF conditions, then treat 

h(t) as the first IMF.           

3.1.2 Ensemble EMD (EEMD) 
The key issue with EMD is mode mixing, where 

different signal components are not well-separated and 
multiple physical modes can exist within a single IMF. This 
can make the interpretation of IMFs difficult and less 
meaningful. EEMD is an improvement over EMD that 
mitigates the issue of mode mixing by introducing a noise-
assisted data analysis method. It operates by first adding 
white noise to the original signal, then repeatedly applying 
EMD to the noisy signal. Major advantages of EEDM are 
several-fold; they are:  
Reducing Mode Mixing: EEMD effectively reduces mode 
mixing, a common issue in traditional EMD where different 
frequency components are not well-separated. By averaging 
multiple noisy decompositions, EEMD ensures that each IMF 
represents a distinct frequency band of the ECG signal, 
leading to clearer and more interpretable components. 
Handling Non-Stationarity and Non-Linearity: ECG signals 
are inherently non-stationary and non-linear. EEMD is well-
suited for such signals because it does not assume linearity or 
stationarity. It adaptively decomposes the signal based on its 
intrinsic characteristics, allowing for accurate feature 
extraction that reflects the dynamic nature of brain activity. 
Improved Signal Representation: By decomposing ECG 
signals into IMFs, EEMD provides multi-scale signal 
representation. Particularly useful in sleep studies, as 
different sleep stages are characterized by specific frequency 
bands (e.g., delta waves in deep sleep, theta waves in light 
sleep). EEMD allows for the isolation and analysis of these 
bands, improving the accuracy of sleep stage classification. 
Noise Robustness: The noise-adding process in EEMD helps 
in spreading the signal's energy across different frequency 
scales uniformly, which enhances the separation of intrinsic 
modes. This makes the decomposition more robust to noise, 
an important consideration in ECG analysis where signal 
noise can be prevalent.  
The procedures associated with EEMD are as follows: 
Add white noise: Add a new realization of white noise to the 
original signal. This aids in evenly dispersing the energy of the 
signal across several frequency ranges. 
𝑥𝑘(𝑡) = 𝑥(𝑡) + 𝑤𝑘(𝑡)                                                                       (2) 

Where k varies from 1 to K, the total number of noise 
realizations.               
Decompose the noisy signal: The noisy signal can be broken 
down into its IMFs by applying the EMD procedure. 

𝑥𝑘(𝑡) = ∑ 𝐼𝑀𝐹𝑖𝑘
𝑛
𝑖=1 (𝑡) + 𝑟𝑛𝑘(𝑡)              (3) 

Where 𝐼𝑀𝐹𝑖𝑘 )(t  are 𝑀𝐹 s of the noisy signal 𝑥𝑘(𝑡). 

Repeat: To generate an ensemble of IMFs for every noisy 
signal, repeat the procedure several times (with varying noise 
realizations). 
Ensemble averaging: Determine the related IMFs' ensemble 
average over all trials. This averaging procedure produces a 
more stable and dependable set of IMFs by eliminating the 
extra noise while keeping the actual signal components. 

𝐼𝑀𝐹𝑖(𝑡) =
1

𝑘
∑ 𝐼𝑀𝐹𝑖𝑘
𝐾
𝐾=1 (𝑡)                                                             (4) 

This averaging process cancels out the added noise, retaining 
the true signal components.  

3.1.3 Variability in heart rate  (HRV)     
The HRV is a crucial metric that is obtained from ECG 

readings and represents the changes in the intervals between 
successive heartbeats. It is frequently used to evaluate heart 
health and autonomic nervous system function. Time and 
frequency domain techniques are two categories for feature 
extraction from ECG signals for HRV study. Because both 
domains contribute significantly to the representation of 
sleep disorders, we took them into account in our experiment.  
A. Time domain HRV: RR intervals are intervals of time in 
the ECG signal between successive R-peaks and are used to 
compute time domain features, which are statistical metrics. 
Time domain HRV features are helpful for basic HRV 
assessments and real-time monitoring since they are easy to 
calculate and comprehend. RRMean, Root Mean Square of 
Successive Data, and SDNN are common time domain HRV 
features. Differences in pNN50 and RMSSD [38]. They are 
described as follows; 
Mean RR Interval (RR mean): mean duration between 
consecutive R-peaks. 

𝑅𝑅𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑅𝑅𝑖
𝑁
𝑖=1             (5)  

Standard Deviation of NN Intervals (SDNN): The SD of all 
NN (normal-to-normal) intervals, describing overall HRV. 

𝑆𝐷𝑁𝑁 = √
1

𝑁−1
∑ (𝑅𝑅𝑖 − 𝑅𝑅𝑀𝑒𝑎𝑛)

2𝑁
𝑖=1              (6) 

Root Mean Square of Successive Differences (RMSSD): 
Short-term HRV is indicated by RMSSD between neighboring 
NN intervals. 

𝑅𝑀𝑆𝐷 = √
1

𝑁−1
∑ (𝑅𝑅𝑖 − 𝑅𝑅𝑖)

2𝑁
𝑖=1               (7) 

pNN50: Proportion of successive RR intervals that differ by < 
50ms. 

𝑝𝑁𝑁50 =
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑤𝑖𝑡ℎ|𝑅𝑅𝑖+1−𝑅𝑅𝑖|>50𝑚𝑠

𝑁
        (8) 

Heart rate reflects the dynamic activities of the 
Parasympathetic Nervous System (PNS) as well as the 
Sympathetic Nervous System (SNS), correlates with RF, and 
offers insights into heart activity while you're asleep.  
B.HRV in the frequency Domain: The power distribution 
across various frequency bands is shown by examining the RR 
intervals' power spectral density, which yields frequency 
domain properties. A deeper understanding of physiological 
processes and autonomic regulation is possible using 
frequency domain features, which is helpful for more 
thorough clinical investigation. The following are typical 
frequency domain HRV features: 
Low-Power Frequency (LF): Low-frequency power, linked 
to parasympathetic & sympathetic activity, falls between 
0.04- 0.15Hz. 
High-Power Frequency (HF): In the high-frequency region 
(0.15- 0.4 Hz), power mostly represents parasympathetic 
activity (“respiratory sinus arrhythmia”). 
LF/HF Ratio: The LF to HF power ratio shows how well 
sympathetic and parasympathetic AC work together. Total 
Power: The entire spectrum's power within the frequency 
range, often up to 0.4 Hz.  
Total Strength: The total strength of the spectrum within the 
frequency range (usually up to 0.4 Hz). 
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Faster periodicities in heart rate patterns are captured by 
Low-Power Frequency(LF)(0.04 to 0.15 Hz) as well as High-
Power Frequency(HF) power (0.15 to 0.4 Hz). LF power (0.04 
to 0.15 Hz) as well as HF power (0.15 to 0.4 Hz) are associated 
with the regulation of SNS as well as PNS, correspondingly 
[39]. During the shift from NREM to REM sleep, the LF/HF 
ratio typically rises with increased SNS activity. Utilized to 
evaluate changes in autonomic function between sleep stages. 
This ratio captures subtle changes in cardiac dynamics across 
different sleep stages [40].  

4. Evaluation of EEMD and HRV for HRV analysis 

This section offers a comprehensive description of the 
experimental assessment conducted on the developed 
heartbeat classification system. The experiments were 
performed using MATLAB 2018, along with the Signal 
Processing Toolbox and Wavelet Toolbox. Initially, the details 
of the dataset settings are discussed, providing insight into 
the data preparation and preprocessing steps. Following this, 
the section delves into the performance analysis, exploring 
the metrics and methodologies used to evaluate the system's 
effectiveness. 

4.1 Simulation setup      
The simulation setup for ECG signal-based heartbeat 

classification is designed to determine as well as confirm the 
performance of suggested classification algorithms utilizing 
the MIT-BIH Arrhythmia Database [41, 42]. The MIT-BIH 
database's collection of annotated ECG recordings is a well-
known and often used resource in the fields of biomedical 
engineering and cardiology. It serves as a standard for 
creating and evaluating heartbeat classification systems. 
Forty-eight half-hour segments of 47 participants' two-
channel ambulatory ECG recordings have been involved in the 
MIT-BIH Arrhythmia Database. Numerous arrhythmias are 
covered in these recordings, which makes the dataset perfect 
for classification model evaluation and training. With a 360Hz 
sample frequency, ECG signals are digitized to produce high-
resolution data for examination. The Organization for 
Advancement of Medical Instrumentation (AAMI) proposed 
the ANSI/AAMI EC57 standard, which was introduced in 
2012, and includes five categories for classifying arrhythmias. 
Non-ectopic beats (N), supraventricular ectopic beats (S), 
ventricular ectopic beats (V), fusion beats (F), as well as 
unknown beats (Q) are some of these classifications, which 
are shown in Figure 2.  
N (Non-ectopic beats): The model has a significant amount 
of data to learn normal heart rhythms because these are the 
most prevalent normal heartbeats in both the training and 
testing sets. 
S (Supraventricular ectopic beats): The ventricles are 
above where these beats begin. They occur less frequently 
than non-ectopic beats, yet they are essential for identifying 
anomalies. 
V (Ventricular ectopic beats): The ventricles are the source 
of these beats, which are essential for spotting severe 
arrhythmias. 
F (Fusion beats): These are caused by the simultaneous 
occurrence of an ectopic and a regular beat. Though 
uncommon, they are crucial for thorough classification. 
Q (Unknown beats): These beats do not fall into the other 
categories and may include artifacts or unclassified rhythms. 

The complete dataset is divided into 70% for training 
and 30% for testing, with no overlap between the two sets to 
ensure unbiased evaluation. Table 1 demonstrates the 
simulation setup of the MIT-BIH dataset with different 

classes. The training set includes 63,413 N beats, 1,946 S 
beats, 5,064 V beats, 561 F beats, & 5,628 Q beats. Testing set 
comprises 27,182 N beats, 835 S beats, 2,171 V beats, 241 F 
beats, and 2,413 Q beats. This distribution ensures a 
comprehensive training process by providing substantial 
data for each class, particularly for normal and abnormal 
heart rhythms. The separate test set allows for accurate 
performance assessment, ensuring the classification system 
is robust and generalizes well to unseen data. 

 

 
Figure 2. Different categories of heartbeats  

Table 1. Simulation setup of the MIT-BIH dataset with different 
classes  

 

4.2 Result observations  
Further, the performance is assessed through four 

performance metrics, namely Recall, Precision, F1-score, and 
Accuracy. For a given True Positives (TPs), False Positives 
(FPs), True Negatives (TNs), and False Negatives (FNs), recall, 
precision, and F1-score are measured as follows: 

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
            (9) 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
          (10) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖 =
2∗𝑅𝑒 𝑐𝑎𝑙𝑙𝑖∗𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑅𝑒 𝑐𝑎𝑙𝑙𝑖+𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
         (11) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
         (12) 

The provided confusion matrix in Table 2 summarizes 
the classification performance of an ECG heartbeat detection 
system across five categories: N, S, V, F, and Q. The Matrix 
shows that the model correctly identified 26,910 N beats, with 
minor misclassifications into other categories. Similarly, S 
beats were accurately classified 651 times but misclassified 
into N, V, and Q categories in a few instances. The V beats were 
correctly classified 2,062 times, with minor errors in other 
categories. F beats were correctly identified 159 times, with 
some misclassified as N or V beats. Lastly, Q beats were mostly 
correctly identified with 2,341 correct classifications, and 
minor misclassifications into other categories. Overall, the 

Class  Training  Testing  Overall 
N 63413 27182 90595 
S 1946 835 2781 
V 5064 2171 7235 
F 561 241 802 
Q 5628 2413 8041 

Total  76612 32842 109454 
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matrix indicates high classification accuracy, with the 
majority of heartbeats being correctly classified, and the total 
classification attempts summed up to 32,842 beats. This 
detailed performance evaluation highlights the robustness 
and reliability of the classification system in distinguishing 
between different types of heartbeats. 

Table 2. Confusion matrix derived from the results 

 N S V F Q Total 

N 26910 71 201 0 0 27182 

S 100 651 10 0 74 835 

V 89 10 2062 10 0 2171 

F 52 0 30 159 0 241 

Q 55 0 17 0 2341 2413 

Total  27206 732 2320 169 2415 32842 

 

Table 3 presents the performance metrics of an ECG 
heartbeat classification system across five heartbeat 
categories. For N beats, the system achieved a high precision 
of 98.9120%, a recall of 98.9993%, as well as an F1-score of 
98.9556%, indicating excellent classification performance. 
For S beats, the recall was 77.9640%, precision 88.9344%, 
and the F1-Score was 83.0887%, showing moderate 
performance with room for improvement. V beats had a recall 
of 94.9792%, precision of 88.8793%, and an F1-score of 
91.8281%, demonstrating strong classification accuracy. F 
beats had a lower recall of 65.9751%, but a high precision of 
94.0828%, and an F1-Score of 77.5609%, reflecting 
challenges in detecting all instances correctly but substantial 
accuracy when identified. Q beats exhibited high performance 
with a recall of 97.0161%, precision 96.9358%, and F1-Score 
96.9759%. Overall, the metrics indicate that the classification 
system performs exceptionally well for N and Q beats, 
robustly for V beats, and has moderate to good performance 
for S and F beats. Figures 3 to 6 show the accuracy, recall, 
precision, and F1-score rates for five heartbeat classes (N, S, 
V, F, Q) across four different test sets. 

 Table 3. Performance assessment of different beats  

 TP FN FP Accuracy  
(%) 

Recall 
(%) 

Precisio
n (%) 

F1-Score 
(%) 

N 26190 272 1016 95.9556 98.9993 98.9120 98.9556 

S 651 184 81 93.0887 77.9640 88.9344 83.0887 

V 2062 109 258 93.8281 94.9792 88.8793 91.8281 

F 159 82 10 92.5609 65.9751 94.0828 77.5609 

Q 2341 72 14 94.9759 97.0161 96.9358 96.9759 

 

Among the five classes, the N class has consistently high 
recall across all sets, while the recall for other classes varies. 
The Q class, represented by red bars, also shows high recall, 
particularly in test sets 2 and 4. The other classes (S, V, F) have 
more variability, with F showing the lowest recall in most 
sets.  Figure 4 shows the precision rates for the same five 
heartbeat classes across the four test sets. The N class (blue 
bars) maintains high precision across all sets, similar to its 
recall performance. The Q class (red bars) also demonstrates 
high precision, especially in test sets 1 and 3. The precision 
for classes S, V, and F fluctuates more, with the F class (yellow 
bars) showing lower precision in several test sets. Finally, 
Figure 5 illustrates F1-scores for the five heartbeat classes 
across the four test sets. The N class (blue bars) achieves 
consistently high F1-scores in all sets. The Q class (red bars) 

follows closely with high scores as well. F1-scores for S, V, as 
well as F classes, are more variable, with the F class again 
showing the lowest scores in multiple test sets (Figure 6).  

 
Figure 3. Accuracy for different classes at different test sets 

 

Figure 4. Recall for different classes at different test sets 

 

Figure 5. Precision for different classes at different test sets 
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Figure 6. F1-Score for different classes at different test sets 

On average, the recall rates are as follows: N class at 
98.9%, S class at 77.96%, V class at 94.98%, F class at 65.98%, 
and Q class at 97.02%. The average precision rates are: N class 
at 98.9%, S class at 88.93%, V class at 88.88%, F class at 
94.08%, and Q class at 96.94%. The average F1-scores are: N 
class at 98.96%, S class at 83.09%, V class at 91.83%, F class 
at 77.56%, and Q class at 96.98%. Across all three figures, the 
N class consistently demonstrates high recall, precision, and 
F1-scores, indicating robust classification performance. The Q 
class also performs well across all metrics, particularly in 
recall and precision. The S, V, and F classes exhibit more 
variability in their performance, with the F class generally 
having the lowest recall, precision, and F1-scores. This 
suggests that while the classification system is highly effective 
for N and Q beats, it has more difficulty accurately classifying 
S, V, and particularly F beats.    

Table 4 compares various methods for ECG heartbeat 
classification, highlighting their features, classifiers, and 
achieved accuracy rates. Silva and Henriques [24] used a 
multi-resolution representation approach with a CNN, 
achieving 92.38% accuracy. However, the drawback of this 
method is that it might not fully represent the spectrum of 
nonlinear dynamics present in ECG signals, limiting its overall 
performance. Bahrami Rad et al. [19] utilized wavelet- and 
time-domain-based features combined with Bayesian 
decision theory, k-NN, and ANN, achieving a lower accuracy 
of 76.90%. This method's significant drawback is its relatively 
low accuracy, which suggests that classifiers as well as feature 
extraction methods used may not be sufficiently robust for 
effective ECG signal classification. Hu et al. [21] employed 
Continuous Wavelet Features with a squeeze-and-excitation 
network and linear transformation, achieving an accuracy of 
87.77%. Despite its innovative approach, the method's lower 
accuracy indicates potential limitations in handling the 
complexities of ECG signal variations, leading to suboptimal 
classification performance. Anam Mustaqeem et al. [41] used 
wrapper-based features with Support Vector Machine (SVM) 
classifiers with different kernels, reaching an accuracy of 
92.07%. Although the accuracy is relatively high, the 
method's reliance on kernel selection and feature wrapping 
can be computationally intensive and may not generalize well 
across different datasets. The suggested approach, which 
employs EEMD and HRV features in combination with an SVM 
classifier, reaches a maximum accuracy of 95.63%.  
Consequently, the achieved results of the developed model 
were outperformed by conventional models in terms of 

various performance metrics such as accuracy, precision, 
recall, and f-measure, which are demonstrated in Table 5.  
Moreover, the existing models are Modified SVM classifier 
(MSVM) [43], Empirical Mode Decomposition (EMD) [44], 
Thresholding Technique (TT) [45], and Ensemble-based 
Multiscale Local Polynomial Transform (E-MLPT) [46]. The 
effective combination of EEMD and HRV features provides a 
more comprehensive representation of ECG signal's 
characteristics, resulting in more precise and robust 
heartbeat classification, which can be attributed to this 
superior performance. 

Table 4. Comparing the ECG beat categorization method with the 
most advanced technique  

 

Table 5. Comparative analysis 

Parameters  Accuracy  

(%) 

Precision  

(%) 

Recall  

(%) 

F-measure  

(%) Techniques  

MSVM  91.22 90.3 90.31 90.0032 

EMD 83.88 90 77 87.5 

TT 93.7 92.81 92 92.45 

E-MLPT 89.21 88.7 88 88.4 

proposed 95. 98.9120 98.9993 98.9556 

 

5. Conclusion  

Serious health concerns are associated with cardiac 
arrhythmias, or abnormal heart rhythms. Timely and 
accurate detection is essential for successful treatment. To 
enhance the categorization of cardiac arrhythmias utilizing 
ECG signals, this study suggested a unique methodology that 
employs HRV analysis and EEMD. Complex ECG signals are 
efficiently broken down into IMFs by EEMD, a reliable signal 
processing method. These IMFs extract useful information 
from the signal by capturing minute details. HRV analysis, 
however, offers complementary information by shedding 
light on the association between heart rate and the autonomic 

Method Features Classifier Accuracy 
(%) 

Silva, I., & 
Henriques, J., 
[24] 

multi-
resolution 
representation 

CNN 92.3800 

Bahrami Rad, 
A., et al. [19] 

wavelet- and 
time-domain-
based features 

Bayesian 
decision 

theory, k-
nearest 

neighbor, ANN 

76.9000 

Hu, Y.,  et al. 
[21] 

Continuous 
Wavelet 
Features 

squeeze-and-
excitation 

network and 
linear 

transformation 

87.7700 

Anam 
Mustaqeem et 
al. [41] 

Wrapper-
Based 
Features 

SVM with 
different 
Kernels 

92.0700 

Proposed: 
Integration of 
EEMD and HRV 
for feature 
extraction 
from ECG 
signals 

 IMF, Time 
Domain, 
Frequency 
Domain, and 
Non-Linear 
HRV features. 

 
SVM 

95.6320 
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nervous system. By combining these two techniques, 
suggested approach extracts comprehensive set of features 
that characterize both the detailed signal information and the 
underlying physiological mechanisms of arrhythmias. The 
renowned arrhythmia database of MIT-BIH was used to run 
thorough simulations to evaluate the efficacy of the suggested 
method. The approach achieved a 95.63% classification 
accuracy, yielding outstanding results. This significant 
improvement over existing techniques is attributed to the 
enhanced feature extraction capabilities and the holistic view 
of heart dynamics provided by the dual-technique approach. 
The proposed method offers a promising solution for reliable 
and detailed cardiac arrhythmia detection. Its potential 
applications extend to clinical diagnostics, patient 
monitoring, and early intervention strategies. Further 
investigations must concentrate on refining the feature 
extraction process, looking into the integration of additional 
physiological signals, and developing real-time 
implementation strategies to maximize the clinical impact of 
this innovative approach. Also, integrating Deep Learning 
(DL) and Machine Learning (ML) models can potentially 
achieve the finest outcomes. Moreover, energy-efficient 
strategies will allow monitoring device processes.   
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