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A B S T R A C T 
 

Inherent resource constraints within Mobile Ad Hoc Networks (MANETs) 
necessitate resource optimization, specifically power and rate control, as a 
critical focus for enhancing network performance in terms of energy, 
throughput, and delay. Although traditional power and rate control 
mechanisms have successfully improved throughput or energy efficiency, they 
fail to address the complex trade-offs between delay, energy consumption, and 
network stability, particularly in highly dynamic or unpredictable networks. 
Motivated by this, this study introduces a new Dynamic Power-Rate 
Optimization Grey Wolf Algorithm (DPRO-GWA) mechanism derived from a 
game-theoretic framework that balances outage probability and residual 
energy demands to achieve energy efficiency and quality of service (QoS) in 
mobile ad hoc networks (MANETs). The proposed approach formulates power 
and rate allocation as a super-modular game, which ensures both the existence 
and uniqueness of a Nash Equilibrium (NE) as the optimal solution for 
distributed non-cooperative nodes. We subsequently introduce an Adaptive 
Grey Wolf Optimizer (AGWO), which enhances the Grey Wolf Optimizer (GWO) 
by increasing convergence speed through adaptive tuning of the exploration-
exploitation trade-off. Extensive simulation results demonstrate that DPRO-
GWA significantly outperforms existing algorithms, including the Dynamic Rate 
and Power Allocation Algorithm (DRPAA), Energy Conserving Power and Rate 
Control (ECPRC), and Rate-Effective Network Utility Maximization (RENUM) in 
terms of energy consumption, throughput, and delay. Additionally, the 
proposed method maximizes the energy-delay trade-off, leading to 
considerable improvements in the network lifetime and performance, 
particularly in time-variant and fading channel environments. Thus, this study 
creates a promising avenue for refining power and rate control protocols for 
next-generation MANETs. 

1. Introduction 

Mobile Ad Hoc Networks (MANETs) are a type of ad hoc 
network formed by mobile devices that dynamically 
interconnect and communicate with one another without 
relying on a pre-existing infrastructure (such as cellular 
networks). These networks are important to note as they are 
highly flexible and dynamic in nature, as the nodes (such as 
mobile phones, laptops, and sensors) can join and leave at 
will, and the movement of nodes frequently causes changes in 
network topologies. Because of their capacity to function in 
settings where classic infrastructure-based networks are 
impractical or inaccessible, MANETs are utilised in a wide 

range of applications, such as disaster recovery, military 
communication, vehicular networks, and remote sensing [1]. 
Despite the numerous advantages of MANETs, resource 
management issues, such as power consumption, bandwidth 
allocation, and data transmission rate optimisation, remain 
challenging. The limited energy of the nodes, which are often 
battery-powered, and the unreliable and erratic 
characteristics of wireless channels are two sources of 
challenges that affect the longevity and performance of WSNs. 
Hence, optimal power and rate control remain challenges to 
enhance network performance, lifetime, and quality of service 
(QoS) [2]. 
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Power and rate management are major challenges in 

MANETs. Because nodes in MANETs are usually battery-
driven and have limited communication resources, we must 
ensure that any transmission is energy efficient and of good 
quality [3]. Meanwhile, the network must be capable of 
adjusting to changing channel states, network congestion, and 
traffic loads. Dynamic power and rate-control strategies are 
essential for achieving this goal. They are designed to drive 
the network to optimal performance, maximise throughput, 
minimise energy consumption and average delay, and 
maintain system stability in the presence of nonlinearities [4]. 
In MANETs, an explicit conventional method for designing a 
power and rate control system to maximise throughput and 
profit is beneficial. Although such methods are potentially 
feasible for deployment in learning-based systems, they 
largely overlook the relationships between delay, energy 
consumption, and throughput. This oversight results in 
numerous practical cases that lead to unsatisfactory 
performance [5]. 

Specifically, the available power and rate control 
schemes are primarily designed to restore the throughput or 
energy efficiency separately. Throughput-maximising 
approaches overlook energy consumption, whereas energy-
efficient approaches do not adequately address delays. 
Therefore, delay constraints must be integrated into the 
optimisation process for time-sensitive applications, such as 
voice communications or real-time video streaming, where 
delays can severely degrade the quality of service [6]. This is 
due to the fact that previous work on power and rate control 
in MANETs focuses on maximizing throughput or minimizing 
energy consumption, but never both simultaneously. 
However, the literature does not consider the various trade-
offs arising from different solutions concerning energy 
efficiency, throughput, and end-to-end delay in highly 
dynamic and uncertain environments. Such constraints are 
especially evident in applications requiring low latency, such 
as real-time communication or disaster recovery, for which 
delay-sensitive services require fast and effective power and 
rate tuning [1]. In addition, the vast majority of conventional 
methods depend on centralised control or heuristic-based 
algorithms, which do not scale well in large networks and 
typically incur high arithmetic complexity. Although generic 

power control solutions exposed in game theory-based 
approaches exist under non-cooperative conditions, these 
solutions usually ignore delay constraints or do not account 
for outage probability in the sensitive and lossy wireless 
environments of MANETs. Furthermore, there is a lack of 
proper integration of residual energy considerations, which 
can cause the batteries of mobile nodes to become exhausted 
early and lead to network fragmentation [7]. 

Another challenge is the stochastic and time-varying 
features of wireless channels in MANETs. The network 
performance is highly volatile owing to the highly dynamic 
channel conditions, loss, interference, and noise encountered 
by the transmitted signals. Therefore, static power and rate 
allocation solutions may not be suitable for the dynamic 
nature of MANETs. Many traditional algorithms, including 
those based on optimisation techniques such as Lagrangian 
multipliers and convex programming, involve high 
computational complexity and lead to power consumption 
and excessive communication overhead, which are 
particularly problematic in resource-constrained 
environments [8]. 

1.1 Game theory: a promising approach to joint power 
and rate control 
In particular, game theory, which models the interaction 

between a number of players (i.e. nodes) attempting to 
optimise their own objectives, has recently been shown to be 
a promising approach to joint power and rate control in 
MANETs. Game-theoretic models treat each node as an 
independent player in a non-cooperative game and seek a 
Nash equilibrium (NE), in which no player can benefit by 
changing their strategy unilaterally [9]. Different game-
theoretic techniques for joint power and rate control in 
MANETs have been proposed. For instance, a node 
optimisation problem would typically be formulated as a 
noncooperative game, where nodes try to maximise their 
utility (throughput) while minimising their energy 
consumption. However, most of these developments do not 
consider important performance metrics, including delay 
constraints, channel outage probability, and residual energy 
constraints. One clear reason is the lack of delay handling, 
which affects the performance of delay-sensitive applications, 
and ignoring the residual energy of nodes may cause an early 
disconnection of the network [10]. In addition, conventional 
game-theoretic methods are mainly based on centralized 
solutions or algorithms with high computational complexity, 
which are unsuitable for the distributed and resource-limited 
environments of MANETs. Thus, more flexible, scalable, and 
energy-efficient solutions that can accommodate varying 
channel conditions over time and the diverse QoS needs of 
various applications are required [11]. 

These issues highlight the necessity of an adaptive 
mechanism that can appropriately manage the trade-offs 
between power consumption, data rate requirements, and 
delay in a stable, decentralised, and scalable manner. This 
study introduces a new dynamic power-rate optimisation 
grey wolf algorithm (DPRO-GWA) mechanism tailored for 
MANETs, employing a game-theoretic approach to optimise 
power and rate allocation in the context of the critical trade-
offs among throughput, energy consumption, and end-to-end 
delay [12]. Traditional approaches formulate an individual 
node's local knowledge in terms of utility, where the factors 
affecting the utility are either static, such as the energy 
required by the node to serve other nodes, or based on 
unreliable, stale information. This would make the problem of 
power and rate allocation a super-modular non-cooperative 
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game model, and the Nash Equilibrium (NE) ensures that the 
optimal solution exists for the case of distributed self-
interested nodes [13]. We also improve the solution strategy 
by presenting Adaptive Grey Wolf Optimizer (AGWO), a 
modified form of traditional Grey Wolf Optimizer (GWO). This 
acceleration enhances the convergence rate of the 
optimisation algorithm, providing an inherent reduction in 
time complexity at the expense of solution accuracy [14]. The 
primary objectives of this study are: 
• To propose a novel Dynamic Power-Rate Optimization 

Grey Wolf Algorithm (DPRO-GWA) for Mobile Ad Hoc 
Networks (MANETs) that effectively balances the trade-
offs between energy consumption, throughput, and 
delay. 

• To integrate a game-theoretic approach to model power 
and rate control as a non-cooperative game, ensuring the 
existence and uniqueness of the Nash Equilibrium (NE) 
for optimal distributed solutions. 

• To introduce the Adaptive Grey Wolf Optimizer (AGWO) 
to improve the convergence speed and efficiency of the 
optimization process, addressing the challenges of 
dynamic and resource-constrained environments. 

• To evaluate the performance of the proposed method 
through extensive simulations, demonstrating its 
advantages over existing algorithms such as DRPAA, 
ECPRC, and RENUM in terms of energy consumption, 
throughput, delay, and outage probability. 
The remainder of this paper is structured as follows: 

Section 2 provides a review of related work in the area of joint 
power and rate control in MANETs and highlights some of 
their limitations. Section 3 presents the proposed 
methodology. In this section, we introduce the system model 
along with the problem formulation, highlighting the relevant 
variables and constraints related to the power and rate 
control problems. In Section 4, we present the DPRO-GWA 
approach and the AGWO algorithm, along with details about 
each component of the optimisation solution. Section 5 
presents the performance evaluation, demonstrating the 
effectiveness of the proposed approach through extensive 
simulations. Section 6 summarises the study and outlines 
future work. 

2. Related work 

The Grey Wolf Optimizer (GWO), developed by Mirjalili 
et al. [15], is a population-based optimisation algorithm based 
on the social hierarchy and hunting mechanism of grey 
wolves. Since the algorithm's introduction, various variants 
and enhancements have been proposed to overcome its 
shortcomings, resulting in broader applications in various 
fields, including engineering, machine learning, and complex 
system design. In recent years, GWO has undergone several 
enhancements, including the incorporation of adaptive 
strategies that improve its convergence properties and 
mitigate premature convergence to local optima. Alattas K. 
[16] compared their modified GWO with the unmodified one 
and presented their results, indicating that the modified GWO 
has better exploratory and exploitative faithfulness by 
presenting an adaptive search framework of this approach. By 
adjusting the spread of the wolves, this modification helps the 
GWO maintain a rich balance between exploration and 
exploitation, which is often a challenge in multimodal 
optimisation problems. Advanced customisations have 
resulted in the introduction of customised GWO variants in 
the literature. For instance, Wario F, et al. [17] proposed a 
self-adaptive grey wolf optimiser (SAGWO) in which 
parameters are adapted based on the dynamics of the 

optimisation problem. Because existing methods apply a fixed 
parameter setting while searching for the global optimum, 
SAGWO utilises a self-adaptive approach to adaptively update 
the search parameters to further enhance its performance in 
solving highly dimensional optimisation problems. Similarly, 
Liu H, et al. [18] proposed an enhancement of GWO employing 
a hybrid method merging machine learning techniques to 
optimise the search. These developments illustrate the 
versatility of the algorithm for several theoretical and 
practical problems, including structural design optimisation 
and environmental control. However, conventional GWO has 
certain limitations. A frequent criticism is its premature 
convergence, especially when dealing with highly complex, 
nonconvex issues [19]. To address these challenges, 
researchers have sought to hybridise GWO with alternatives 
such as Particle Swarm optimisation (PSO) and Genetic 
Algorithms (GAs) to leverage their strengths. However, these 
hybrid models introduce additional complexity, which 
complicates optimal parameter tuning [20]. 

The GWO algorithm version examines its convergence 
speed and fails to process dynamic environments. It has 
difficulty adapting to real-time systems, where problem 
landscapes evolve over time. Tumula S, et al. [21] have 
addressed this issue by introducing a dynamic version of the 
Grey Wolf Optimizer, the Volitive Grey Wolf Optimizer, which 
adapts its search process during optimization in response to 
variations in the optimization problem. Despite this progress, 
these adjustments should only be optimised without 
extensive retraining and may not be applicable to the broader 
scope of dynamic systems, such as robotics or adaptive 
models of network routing. These studies demonstrate the 
applicability of the GWO algorithm in a wide range of fields, 
such as multi-objective optimisation, engineering design, and 
machine learning. However, as mentioned, challenges persist, 
particularly with respect to convergence speed and the need 
for more robust adaptations in dynamic scenarios. Future 
work in this area will likely develop a better balance between 
exploration and exploitation, improve adaptation during run 
time, and ease the hybridisation of the GWO model to lead to 
more easily applicable versions for real-world problems [22]. 

Mobile Ad Hoc Networks (MANETs) rely on power and 
rate control as key features of the Medium Access Control 
(MAC) and network layers. These mechanisms aim to 
maximise the transmission power and data rate to ensure 
optimal performance in terms of energy consumption, 
throughput, and delay [23]. Power control in classical 
methods seeks to constrain the transmission power of nodes 
to ensure minimum energy use if the Signal-to-Interference-
plus-Noise Ratio (SINR) of the receiver is above the threshold. 
In MANETs, power control is a significant concern because 
nodes have limited battery capacity; thus, many power 
control strategies have been developed to mitigate this 
problem. Centralised power control schemes generally 
involve a central entity that determines the power levels of all 
nodes [24]. Although this method can produce energy-
efficient solutions, it is non-scalable and does not 
accommodate mobile nodes, which is a prominent feature of 
MANETs. The idea behind Decentralised approaches enables 
nodes to make local decisions to adjust their power levels 
according to their immediate surroundings, such as the 
received power or interference levels. These systems provide 
better scalability and resiliency but usually at the cost of 
inefficiencies owing to a lack of global coordination [25]. Rate 
control in mobile ad-hoc networking is concerned with 
adjusting the transmission rate in a way that satisfies 
throughput, application-specific, and/or QoS (Quality of 
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Service) requirements. Many rate control mechanisms use a 
channel-dependent approach by choosing an appropriate 
combination of modulation schemes and error correction 
codes [26]. Various techniques have been proposed, such as 
feedback-based methods and dynamic rate-adjustment 
algorithms. Feedback-based approaches require continuous 
communication between nodes to share information 
regarding channel conditions, whereas dynamic rate control 
methods modify the transmission rate in real time based on 
the detected channel quality. However, the trade-off between 
throughput and energy consumption, which exists in 
distributed systems and is not limited to centralised methods, 
is frequently neglected, even in high-mobility environments, 
where channel conditions vary rapidly [27]. Dynamic Power 
Control (DPC) and Joint Rate and Power Control (JRPC) are 
among the most commonly used power and rate control 
methods in MANETs. DPC adjusts the transmission power of 
the source node based on the SINR received by the receiver to 
prevent interference or packet loss, whereas JRPC can 
combine adjustments to both power and data rate 
simultaneously to maximise throughput and minimise packet 
loss [5]. Other energy-aware rate control strategies that 
consider transmission energy and QoS have also been 
proposed. However, these schemes incur high delays and 
energy consumption and do not address these issues 
simultaneously, particularly in rare case scenarios with 
regular mobility of nodes or the dynamic nature of the 
network model [28]. 

Recently, game theory has emerged as an analytical tool 
for the interactions among different nodes of wireless 
networks (such as MANETs). Game theory is used to form a 
mathematical framework for our case of non-cooperative 
nodes regarding power and rate control, where the nodes 
choose their power and rate levels independently to 
maximise their utility. This means that each node of the 
network is a "player" in the "game”, and the action of one 
player impacts the payoff of others because of the shared 
wireless medium [29]. The initial application of game theory 
in the context of MANETs was the use of noncooperative 
games to address power control, where nodes adjust their 
power levels to minimise interference and energy 
consumption while maintaining communication quality. This 
falls within the realm of potential game theory, in which each 
node chooses a strategy to maximise its utility. The game 
reaches a state known as the Nash Equilibrium (NE), where 
no node can further improve its utility by changing its power 
level without influence from any other node [30]. 

The second proposal, network utility maximisation 
(NUM), formulates the power and rate control problem as a 
utility maximisation problem, where the users have utility 
functions that express either satisfaction or performance 
[31]. Several game-theoretic approaches have been designed 
based on pricing, allowing every node to adjust its 
transmission power via the pricing mechanism to minimise 
its transmission costs while satisfying the network's overall 
demand [32]. Despite the success of game-theoretic solutions, 
there exist computational complexity, scalability, and usage 
limitations in time-varying network scenarios for existing 
proposals. In addition, in time-varying dynamic applications, 
such as video conferencing and emergency communication in 
MANETs, such models often ignore delay requirements and 
outage probabilities, which are important parameters [1]. 
Metaheuristic algorithms have been considered in the 
literature to solve difficult optimisation problems in MANETs, 
such as power and rate control. They developed algorithms 
that can provide flexible, adaptive, and efficient solutions to 

dynamic large-scale optimisation problems for which 
traditional approaches may become prohibitively expensive. 
As an example of a metaheuristic-based algorithm, we can list 
the Grey Wolf Optimiser (GWO), which is inspired by grey 
wolves hunting. The role of GWO as an optimiser in wireless 
networks (e.g. for power control and rate allocation) is 
significant. The merit of GWO is that it has mixed exploration 
and exploitation in the searching process, which can 
effectively search in the high-dimensional searching space 
and converge to the global solution. However, the 
convergence rate of GWO is slow when dealing with large and 
complex networks. To address this limitation, some 
extensions have been proposed, such as the Adaptive Grey 
Wolf Optimiser (AGWO). Based on the classical GWO, the 
trade-off between the exploration and exploitation of the 
AGWO is tuned using a logarithmic function. This change  
leads to a faster convergence rate of the algorithm, which can 
contribute to excellent speed and solution quality [33]. 

Other filtering methods based on metaheuristic 
algorithms are also presented, such as Particle Swarm 
Optimisation (PSO), Genetic Algorithm (GA), and Ant Colony 
Optimisation (ACO). These techniques have been applied to 
joint power and rate control problems for energy efficiency, 
throughput, and network lifetime maximisation. For example, 
we have a PSO approach for joint power and rate allocation 
for a MANET, where the transmit power and rates are jointly 
optimized towards the optimal network performance [26]. 
Despite their success, the scalability and complexity of the 
majority of these algorithms are still open issues. The 
overhead of metaheuristic algorithms, especially in large-
scale networks, is a drawback. More importantly, while these 
algorithms provide near-optimal solutions, they do not 
capture important performance measures, such as the outage 
probability and delay, which are needed for most real-time 
applications. Although much improvement has been made in 
the research on power and rate control in MANETs, some gaps 
remain. Recent approaches either target low-energy designs 
or maximise throughput and do not effectively address the 
trade-off among delay, energy, and throughput in real-time 
and delay-sensitive application systems. Many solutions only 
partially or simply ignore the change in topology and the 
unreliable characteristics of the links. 

This study bridges the above gap by proposing a novel 
game-theoretic approach for integrating the delay-dependent 
energy outage probability and residual energy constraints for 
the power and rate control framework. Using the  adaptive 
grey wolf optimiser (AGWO), we also enhance the speed of 
convergence of the solution via low-complexity and scalable 
optimisation for high-mobility large-scale networks. These 
improvements make the DPRO-GWA scheme more robust and 
practical for MANET deployments. 

3. System model and problem formulation 

In this section, we provide a formal system model for 
joint power and rate control in Mobile Ad Hoc Networks 
(MANETs), which constitutes the basis for the energy-
efficient scheme proposed in this study. In this study, we 
combined and optimised both power and traffic control to 
achieve their performance metrics regarding throughput, 
delay, and energy consumption. We aim for a distributed 
adaptive scheme that runs well in dynamic and resource-
limited MANET environments. The system model specifies 
the network components, utility functions, constraints, and 
optimization problem to be solved. 
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3.1 Network model 
In MANETs, nodes are mobile devices that exchange 

messages with each other without using fixed infrastructure. 
Every node can tune its transmission power, and the network 
topology is subject to change because of the mobility of the 
nodes. A MANET is generally applied in places such as 
emergency relief, military use, and vehicular networks 
without a traditional infrastructure. The network may include 
any number of nodes, where each node may be a transmitter 
or receiver. 

The simulations were performed using NS-3 (Network 
Simulator-3), an open-source discrete-event simulator 
designed to support realistic models of wireless and mobile 
networks. The simulation environment accurately replicates 
real-world conditions, including variations in mobility 
patterns, changes in network topology, and fluctuations in 
traffic load. 
A. Simulation Parameters: 
• Traffic Model: We used the Constant Bit Rate (CBR) traffic 

model, which is widely employed in MANET simulations to 
model real-time data traffic, such as voice and video 
streaming. Each source node generates a fixed-rate data 
stream for the duration of the simulation. 

• Mobility Model: We utilized the Random Waypoint Model 
(RWM) for node mobility. This model is commonly used in 
MANET studies to simulate the random movement of nodes 
within the simulation area. The nodes choose random 
destinations and speeds, and the mobility parameters 
include a maximum speed of 10 m/s, a pause time of 100 
seconds. 

• Number of Simulation Runs: To ensure the robustness of 
the results, we conducted 20 independent simulation runs 
for each scenario, averaging the results to minimize 
statistical bias. 

B. Key Parameters: 
• α (Utility Function Weighting): The weight factor for 

throughput in the utility function is set to 0.4, indicating 
that throughput is a significant but not dominant factor in 
the optimization. 

• β (Utility Function Weighting): The weight factor for 
energy consumption is set to 0.3, reflecting the importance 
of minimizing energy usage in the optimization process. 

• γ (Utility Function Weighting): The weight factor for delay 
is set to 0.3, indicating the need to balance delay sensitivity, 
particularly in real-time applications. 

• p_min/p_max (Transmission Power Range): The minimum 
and maximum transmission power values are set to 0.1 
mW and 100 mW, respectively, to ensure that the nodes 
adaptively adjust their transmission power within a 
reasonable range. 

• ζ_max (Maximum Tolerable Outage Probability): The 
maximum outage probability is set to 0.1, ensuring that the 
system prioritizes reliability while avoiding excessive 
packet loss due to poor channel conditions. 

For simplicity, we consider here that the MANET is working 
in a square area of 100×100 meters. The nodes uniformly 
populated this area. Nodes move based on the Random 
Waypoint Model (RWM), a well-known mobility model in 
MANETs. In RWM, each node chooses a random destination 
within the area and advances rapidly towards the selected 
destination. Upon arrival at a destination, the node halts for a 
predetermined interval, selects a new destination and speed, 
and continues the process. Nodes are mobile, which leads to 
frequent changes in the network topology, presenting a huge 
problem for achieving stable communication. 

The wireless channel model typically governs the 
channel conditions in a MANET. Owing to the dynamic nature 
of MANETs, channels are subject to frequent fading (for 
example, Rayleigh fading), interference, and path loss. The 
received signal strength at a node depends on the distance to 
the transmitter and the environmental factors. The channel 
between any pair of nodes i and j is characterized by a path 
gain Gij and a fading factor Fij, which accounts for the 
randomness in the signal strength due to obstacles and 
mobility. 

The signal-to-interference-plus-noise ratio (SINR) is a 
critical factor in determining communication quality. The 
SINR is influenced by both the transmission power of the 
nodes and interference caused by other nodes. The SINR at 
the receiver of the node i is given by: 

SINR𝑖 =
𝐺𝑖𝑖𝐹𝑖𝑖𝑝𝑖

∑ 𝐺𝑖𝑗𝑗≠𝑖 𝐹𝑖𝑗𝑝𝑗+𝜎2
 )                                                                   (1) 

where: 
• 𝑝𝑖 is the transmission power of the node 𝑖, 
• 𝐺𝑖𝑖  and 𝐹𝑖𝑖  are the path gain and fading factor for the link 

from the node 𝑖 to itself (i.e., the signal strength), 
• 𝐺𝑖𝑗 and 𝐹𝑖𝑗 are the path gain and fading factor for the 

interference between nodes 𝑖 and 𝑗, 
• 𝜎2 denotes the noise power at the receiver. 
The nodes in the network are also subject to battery 
limitations. Because MANETs operate in energy-constrained 
environments, managing energy consumption is critical. The 
energy of each node is limited by the residual energy, which 
decreases as it transmits and receives data. Thus, nodes must 
adapt their transmission power and data rate to prolong their 
operational lifetime while maintaining efficient 
communication. 

The SINR defines the link quality between two nodes and 
is crucial for determining the transmission rate of the link. 
The instantaneous capacity 𝐶𝑖 of a link can be computed using 
Shannon’s capacity formula: 

𝐶𝑖(𝑝𝑖) = 𝐵log2(1 + SINR𝑖(𝑝𝑖))                                                    (2) 

where: 
𝐵 denotes the bandwidth of the channel. 
The transmission rate ri for node i is determined by the 
available capacity 𝐶𝑖(𝑝𝑖), subject to the constraints of the 
channel conditions, the interference, and the power level. 
Additionally, in MANETs, the channel is often lossy owing to 
the nature of wireless communication, and nodes must adapt 
to the varying quality of the channel. This variability is 
accounted for by considering the outage probability rate, 
which models the likelihood that the incoming rate exceeds 
the channel capacity as follows: 

𝑃𝑟(𝑟𝑖 > 𝐶𝑖(𝑝𝑖)) = 𝜁max                                                                    (3) 

where ζ_max is the maximum tolerable outage probability for 
node i. This constraint helps maintain communication 
reliability by preventing data loss owing to channel 
congestion or poor quality. 
The main purpose of this study is to optimize power and rate 
control in a MANET by considering the trade-offs between 
energy consumption, throughput, delay, and stability of the 
network. We can treat this problem as an optimization 
problem, the objectives of which are as follows: 

1. Maximizing network throughput: To obtain a high rate, 
we must switch the nodes' transmissions on and off. 

2. Minimizing energy consumption: Power consumption 
should be minimized at the nodes so that they last a long time 
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before their batteries drain and they are no longer effective in 
communicating. 

3. Minimize Delay: Satisfy the delays of delay-sensitive 
applications (e.g. real-time communications). 

3.2 Optimization objectives and constraints 
Let 𝑁 represent the number of nodes in the network. 

Each node 𝑖 ∈ {1,2, … , 𝑁} has a transmission power 𝑝𝑖 ∈
[𝑝𝑚𝑖𝑛 , 𝑝𝑚𝑎𝑥] and a transmission rate 𝑟𝑖 ∈ [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]. The 
optimization problem can then be formulated as: 

Maximize: ∑ 𝑈𝑖
𝑁
𝑖=1 (𝑟𝑖 , 𝑝𝑖)                                                                (4) 

where 𝑈𝑖(𝑟𝑖 , 𝑝𝑖) is the utility function for the node 𝑖, reflecting 
its throughput and energy consumption, subject to the 
following constraints: 
Power constraint: The transmission power of each node 
must lie within the allowable range 

𝑝𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤ 𝑝𝑚𝑎𝑥 ∀𝑖                                                                     (5) 

Rate constraint: The transmission rate of each node must be 
between the minimum and maximum limits. 

𝑟𝑚𝑖𝑛 ≤ 𝑟𝑖 ≤ 𝑟𝑚𝑎𝑥 ∀𝑖                                                                        (6) 

SINR constraint: The SINR at the receiver must exceed a 
minimum threshold for reliable communication. 

SINR𝑖 ≥ 𝛾min ∀𝑖                                                                               (7) 

where 𝛾min is the minimum required SINR for successful 
transmission. 
Delay constraint: The total average delay must be within 
acceptable limits for delay-sensitive applications: 

𝐷𝑖 ≤ 𝐷max ∀𝑖                                                                                    (8) 

where 𝐷𝑖 is the average delay for the node 𝑖, and 𝐷max is the 
maximum acceptable delay. 
Energy constraint: The residual energy of each node must be 
above a certain threshold to prevent early node failure. 

𝐸residual,𝑖 ≥ 𝐸min ∀𝑖                                                                        (9) 

3.3 Game theory framework 
The problem of joint power and rate control is modelled 

as a noncooperative game, where each node is a player. The 
players (nodes) independently decide on their transmission 
power and rate to maximize utility. In this context, the utility 
function of each node 𝑖 is defined as: 

𝑈𝑖(𝑟𝑖 , 𝑝𝑖) = throughput − 𝛼 ⋅ energy consumption − 𝛽 ⋅ delay                
(10) 

where 𝛼 and 𝛽 are weights determining the trade-off between 
throughput, energy consumption, and delay. 

Each node aims to select its optimal power 𝑝𝑖
∗ and rate 𝑟𝑖

∗ 
that maximizes its utility while considering the actions of 
other nodes in the network. The system reaches Nash 
Equilibrium (NE) when no node can improve its utility by 
changing its strategy, given the strategies of the other nodes. 
The existence and uniqueness of the NE in this game are 
guaranteed under certain conditions, such as the 
supermodularity of the utility function and the convexity of 
the power and rate constraints. 

3.4 Supermodular game and Nash Equilibrium (NE) 
A game is considered supermodular if a player's utility 

increases when other players adopt higher strategies. In the 
context of power and rate control, increasing the 
transmission power or rate of one node may increase the 

utility of neighboring nodes owing to improved signal quality 
or reduced interference. The utility function 𝑈𝑖(𝑟𝑖 , 𝑝𝑖) exhibits 
increasing differences and is therefore supermodular. In the 
context of game theory, supermodularity refers to a condition 
where the utility function of a player exhibits increasing 
differences with respect to the strategies of other players. 
This property plays a crucial role in ensuring the existence of 
a Nash equilibrium, particularly in games where players' 
decisions are interdependent, such as in wireless networks 
and resource allocation scenarios [36]. In our proposed game, 
players (nodes) engage in strategic interactions that affect 
their utilities, which are influenced by the decisions of other 
players. 

To formally prove supermodularity in our game, we aim 
to demonstrate that an increase in one player's strategy (e.g., 
power or rate) leads to a positive change in the utility of other 
players, thus reinforcing the cooperative or competitive 
dynamics in the system. This interaction implies that the 
game satisfies the conditions for supermodularity, which, in 
turn, guarantees the existence of at least one pure strategy 
Nash equilibrium [37]. Furthermore, we establish that the 
supermodularity of the game is key to ensuring the existence 
of a Nash equilibrium. A Nash equilibrium occurs when no 
player can unilaterally improve their utility by changing their 
strategy, given the strategies of the other players. The 
supermodularity property ensures that the game has a 
structure that supports such equilibria, facilitating the 
analysis and prediction of player behaviour in the network. A 
Nash Equilibrium (NE) exists when each node, 𝑖 selects a 
power 𝑝𝑖

∗ and rate 𝑟𝑖
∗ such that: 

𝑈𝑖(𝑟𝑖
∗, 𝑝𝑖

∗, 𝑟−𝑖 , 𝑝−𝑖) ≥ 𝑈𝑖(𝑟𝑖 , 𝑝𝑖
∗, 𝑟−𝑖 , 𝑝−𝑖) ∀𝑖                             (11) 

where 𝑟−𝑖  and 𝑝−𝑖  represent the rates and powers of all other 
nodes except the node 𝑖. No node can improve its utility at NE 
by unilaterally changing its power or rate. 

3.5 Outage probability and residual energy 
The concept of outage probability was introduced to 

handle unpredictable channel conditions. In a wireless 
channel, fading and interference can cause the signal strength 
to drop below an acceptable threshold, leading to packet loss. 
The outage probability at the link 𝑚 is defined as: 

𝑃𝑟(𝑟𝑚 > 𝑐𝑚(𝑝𝑚)) ≤ 𝜁max                                                              (12) 

where 𝑐𝑚(𝑝𝑚) is the channel capacity at node 𝑚, and 𝜁max is 
the maximum tolerable outage probability. By exploiting the 
outage probability in the utility function, the model 
guarantees that the power and rate control decisions will 
minimise the risk of communication failure owing to fading or 
interference. 

The compensation of residual energy is also an 
important issue. The utility function punishes the node with 
lower residual energy by incorporating the residual energy 
ratio 𝑅𝐸𝑖  into the decision-making procedure. Nodes with low 
residual energy are not allowed to transmit at high power 
levels that preserve the energy of the network. 

 
4. The Proposed DPRO-GWA Approach 

The Dynamic Power-Rate optimisation Grey Wolf 
algorithm (DPRO-GWA) is a new technique for optimising 
power and rate in a mobile ad hoc network (MANETs) 
environment, where the mobile nodes are highly dynamic and 
power consumption is a significant problem. DPRO-GWA is 
intended to balance the trade-off between energy 
consumption, throughput, and delay, and to keep the switch 
active under such conditions. The method is game-theoretic, 
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and nodes selfishly optimise the trade-off between power 
overhead and rate obfuscation while considering the global 
network performance. In the following sections, we discuss 
the DPRO-GWA methodology in detail, including the game-
theoretical model, outage probability derivation, utility 
function definition, Nash equilibrium analysis, and use of the 
AGWO for an efficient optimisation solution. 

4.1 Game-theoretic framework  
The DPRO-GWA approach leverages a game-theoretic 

framework to model the power and rate control problems in 
a decentralized and noncooperative environment. In this 
framework, each node in the network is considered a player 
seeking to maximize its utility. Because nodes are 
independent, non-cooperative entities, they make decisions 
based on local information, such as residual energy, current 
Signal-to-Interference-plus-Noise Ratio (SINR), and the rate 
at which data can be transmitted. In this context, the strategy 
space of each node 𝑖 consists of its transmission power 𝑝𝑖 and 
transmission rate 𝑟𝑖. Each node independently selects its 
strategy to maximize its utility, which is a function of the 
node’s throughput, energy consumption, and delay. The 
utility function for the node 𝑖, denoted by 𝑈𝑖(𝑟𝑖 , 𝑝𝑖), reflects its 
trade-off between these factors. Nodes are considered in a 
non-cooperative game, where the payoff for each node 
depends on its strategy and the strategies chosen by other 
nodes. We formulate the problem as a supermodular game, 
where increasing one player's strategy (e.g. power or rate) 
benefits the other players (nodes) owing to positive 
externalities. Specifically, if we can increase a node's 
transmission power, it might experience improved signal 
quality, allowing neighbouring nodes to also increase their 
rates or reduce co-channel interference. 

The game equilibrium is such that, at equilibrium, no 
node would benefit from unilaterally changing its strategy, 
regardless of the strategies of the other nodes. In the context 
of DPRO-GWA, this optimality is modelled as a Nash 
Equilibrium (NE), meaning that no node is incentivised to 
deviate from its strategy to improve its utility. Through the 
DPRO-GWA approach, the NE is achieved by accounting for 
the energy, throughput, and delay requirements, resulting in 
a proper and fair solution for all the nodes in the network. The 
DPRO-GWA treats power and rate control as a game. Its 
decentralised nature allows each node to independently 
make transmission-setting decisions using local network 
information, which is scalable with respect to the network 
size, unlike its centralised counterparts. 

4.2 Outage probability  
In wireless networks, the outage probability is an 

important measure that captures the reliability of 
transmission under dynamic channel variation. The signal 
quality degrades because  of the packet loss phenomenon 
introduced by attenuation and interference in MANETs. The 
DPRO-GWA method includes the outage probability in the 
game-theoretic model to reduce the risk of communication 
failure. 

Let 𝑃𝑟out(𝑝𝑖) represent the outage probability for the 
node 𝑖 when transmitting with power 𝑝𝑖. The SINR 
determines this probability at the receiver, where if the SINR 
falls below a threshold, the transmission fails and an outage 
occurs. The outage probability is given by 
𝑃𝑟out(𝑝𝑖) = 𝑃(SINR𝑖 < 𝛾min)                                                       (13) 

where 𝛾min is the minimum SINR threshold required 
for successful transmission. By incorporating the outage 
probability into each node's utility function, the ECAPRC 

ensures that the nodes adjust their transmission power and 
rate to minimize the likelihood of communication failures 
owing to fading or interference. This leads to a more reliable 
network and improves the overall system stability. 

Incorporating the outage probability also helps avoid 
over-allocating power, which could lead to interference with 
neighboring nodes. This ensures that the power and rate 
control processes maintain a balance between achieving a 
high throughput and avoiding communication failure. 

4.3 Utility function  
The utility function for the node 𝑖, denoted as 

𝑈𝑖(𝑟𝑖 , 𝑝𝑖) reflects the trade-offs between energy consumption, 
throughput, and delay. This function is carefully designed to 
ensure that nodes make power and rate decisions that 
optimize their performance and contribute to the overall 
efficiency of the network. Let us define the utility function as 
follows: 
𝑈𝑖(𝑟𝑖 , 𝑝𝑖) = 𝛼𝑖 ⋅ Throughput

𝑖
− 𝛽𝑖 ⋅ Energy

𝑖
− 𝛾𝑖 ⋅ Delay

𝑖
  (14) 

where: 
• 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖  are the weights represent the relative 

importance of throughput, energy consumption, and 
delay for a node 𝑖. 

• Throughput
𝑖

= 𝑟𝑖, the transmission rate of the node 𝑖, 

which contributes positively to the utility. 
• Energy

𝑖
= 𝑝𝑖 ⋅ 𝑇transmit , the energy consumption of the 

node 𝑖, which is proportional to the transmission power 
and the time for which the node transmits. 

• Delay
𝑖
 represents the delay associated with data 

transmission, which is typically inversely related to the 
rate but is directly affected by power control decisions 
and network congestion. 

The objective is to maximize the throughput while 
simultaneously minimizing the energy consumption and 
delay. In this formulation, the throughput contributes 
positively, whereas the energy and delay introduce negative 
penalties. The relative importance of these factors can be 
adjusted using the weights. 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖, which may vary based on 
the type of application or the network conditions (e.g., real-
time applications prioritize delay minimization). By 
appropriately balancing these conflicting goals, the DPRO-
GWA method ensures that each node works toward achieving 
optimal performance for both individual utility and network 
efficiency. The DPRO-GWA algorithm is presented in Table 1. 

4.4 Nash equilibrium and proof  
The systems are ensured to converge to the Nash 

Equilibrium (NE), a set of settings for the DPRO parameters, 
where none of the devices can achieve a utility increment 
through independent deviations from the chosen settings. 
Such equilibrium is important because each node's strategy is 
the best response based on the strategies of all other nodes. 
We first define the payoff function for each node as its utility 
function: 

𝑈𝑖(𝑟𝑖 , 𝑝𝑖) = 𝛼𝑖 ⋅ 𝑟𝑖 − 𝛽𝑖 ⋅ (𝑝𝑖 ⋅ 𝑇transmit) − 𝛾𝑖 ⋅ 𝐷𝑖                      (15) 

Given that the utility function is supermodular, meaning 
that the utility increases when the other players' (nodes) 
strategies are higher, it follows that the game satisfies the 
conditions for a Nash Equilibrium. A supermodular game 
guarantees that players (nodes) will converge to an optimal 
strategy profile in which no player can improve their payoff 
by unilaterally changing their strategy (i.e. power or rate). 
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4.5 Algorithm 1: Pseudo code for proposed DPRO-GWA  

// Initialize the system parameters: 
    x = [(p1, r1), (p2, r2), ..., (pN, rN)]  // List of nodes with 

their initial power (p) and rate (r) 
    utility(x)  // Calculate the utility of each node based on 

initial conditions 
Repeat until convergence (or until a stopping condition is 

met): 
    // Step 1: Sense the Channel Conditions 

    for each node i in the network: 
        Sense the current channel conditions (e.g., SINR,                                                                                                                  

residual energy, etc.) 
        If a change is detected in the conditions: 
            Broadcast new power and rate (p_i, r_i) to neighbors 

   // Step 2: Notify Neighbors and Call AGWO Algorithm 
    for each node i that detects a change: 
        Notify neighbors about the change 
        Call AGWO algorithm with the updated states (power, 

rate, and channel conditions) 
        Store the updated output in x_new 

    // Step 3: Update Power and Rate 
    for each node i in the network: 
        // Update power and rate for the node and its 

neighbors 
        Update power and rate for node i based on the new 

values from x_new 
        Broadcast the updated values to neighbors 

// Step 4: Evaluate Utility Comparison 
    for each node i in the network: 
        Calculate the utility for the old state (x_old) and the 

new state (x_new) 
        If utility(x_old) < utility(x_new): 
            // Accept the new values as the best solution 
            x[i] = x_new[i]  // Update power and rate for node i 
    // If convergence criteria are met, exit loop 
    If convergence_condition_met(): 
        Break 
Return the final power and rate values for each node: x = 

[(p1, r1), (p2, r2), ..., (pN, rN)] 
 

To prove the existence and uniqueness of the Nash 
Equilibrium, we can apply the fixed-point theorem and the 
fact that the utility function is continuous and quasi-concave. 
This ensures a unique solution for the strategies of each node 
at equilibrium and that the solution is efficient and stable in 
the context of the network. 
At the NE, each node chooses its optimal power and rate such 
that any unilateral deviation results in a lower utility for the 
node. Therefore, the system reaches a stable configuration in 
which the overall network performance is maximized and the 
nodes achieve a balance between throughput, energy, and 
delay. 

4.6 Adaptive Grey Wolf Optimizer (AGWO)  
The proposed technique is named the Dynamic Power-

Rate optimisation grey wolf algorithm (DPRO-GWA), which is 
used to optimise power and rate allocation in a mobile ad hoc 
network (MANET), considering  energy, network 
throughput, and delay. It assumes a game-theoretic model to 
describe the behaviour of nodes that minimises energy usage 
but maximises  throughput. The AGWO is a fast-converging 
and energy-efficient optimisation algorithm that fulfils the 
desired throughput and operates at the required QoS levels. 
The DPRO-GWA uses AGWO, which is an upgrade of another 
popular optimisation algorithm, the Grey Wolf Optimiser 

(GWO). GWO is an optimisation algorithm based on the grey 
wolf social hierarchy and their manner of hunting for food. 
However, the classical GWO cannot find an optimal balance 
between exploration and exploitation in the search space. The 
AGWO further improves it by using a logarithmic decrease 
formula of the parameter which controls the trade-off 
between exploitation and exploration. 
The Adaptive Grey Wolf Optimizer (AGWO) is used to provide 
a clearer understanding of the improvements made to the 
standard Grey Wolf Optimizer (GWO). Specifically, the 
following enhancements are discussed in detail: 
• Adaptive Tuning Mechanism: A key enhancement lies in 

the logarithmic decay of the coefficient α, which governs 
the trade-off between exploration and exploitation 
during the optimization process. Initially, the algorithm 
emphasizes a broader exploration of the solution space, 
allowing for a more comprehensive search. As the 
iterations progress, the algorithm gradually shifts focus 
towards refining the solutions, thereby enhancing 
exploitation. The logarithmic decay function ensures a 
balanced transition between these two phases, 
preventing premature convergence to local optima while 
accelerating convergence towards the optimal solution 
over time. 

• Mathematical Formulation: At each iteration, the value of 
α is progressively reduced using a logarithmic function, 
enabling AGWO to efficiently explore the global solution 
space. This adjustment allows the algorithm to focus 
more on exploitation as the search progresses, ensuring 
that the best solutions found thus far are further refined. 

• In order to validate the choice of GWO as the 
optimization engine, we have included a comparative 
analysis with other popular metaheuristics, such as 
Particle Swarm Optimization (PSO), Differential 
Evolution (DE), and Genetic Algorithms (GA). 

• Performance Comparison: The benefits of GWO 
compared to various algorithms, especially regarding 
convergence velocity, capacity to evade local optima, and 
appropriateness for extensive and intricate optimisation 
challenges. The efficacy of AGWO compared to PSO, DE, 
and GA across several benchmark optimisation issues 
illustrates that AGWO surpasses these algorithms for 
solution quality and computing efficiency in the realm of 
MANET optimisation. 

• Qualitative and Quantitative Analysis: Qualitative talks 
and quantitative data from simulations comparing 
AGWO's performance with PSO, DE, and GA regarding 
convergence rate, accuracy, and stability. This 
comparison substantiates the assertion that GWO, 
especially with its adaptive improvements in AGWO, is 
more appropriate for the optimisation tasks necessitated 
in MANETs, considering the problem's dynamic 
characteristics. 

4.7 GWO: Grey Wolf Optimizer 
Grey Wolf Optimizer (GWO) is a bio-inspired 

optimization algorithm based on the grey wolves' hunting and 
social behaviour. Nature Grey wolves have a social ranking 
order that follows alpha wolves, then beta wolves, delta 
wolves, and omega wolves. The decisions made by the alpha 
wolves and the pack were followed. This behaviour is used to 
guide the search for the optimal solution in the optimisation 
problem. In GWO, the best solution is the alpha wolf, the 
second best is the beta wolf, and the third best is the delta 
wolf. Finally, the wolves search for and share information 
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based on the best solutions. Thus, wolves can search the 
solution space efficiently and attain the global optimum. 
The key update equations for the GWO are as follows: 
1. Distance Calculation: 

𝐷𝛼 =∣ 𝐶1 ∘ 𝑋𝛼 − 𝑋 ∣, 𝐷𝛽 =∣ 𝐶2 ∘ 𝑋𝛽 − 𝑋 ∣, 𝐷𝛿 =∣ 𝐶3 ∘ 𝑋𝛿 −

𝑋 ∣                    (16) 

where 𝐶1 is a coefficient vector, and 𝑋 represents the current 
position of a wolf. 
2. Position Update: 

𝑋1 = 𝑋𝛼 − 𝐴1. (𝐷𝛼), 𝑋2 = 𝑋𝛽 − 𝐴2. (𝐷𝛽), 𝑋3 = 𝑋𝛿 −

𝐴3. (𝐷𝛿)                  (17)  

Here, 𝐴1 is a coefficient that controls the step size, and 𝐷𝛼 is 
the distance vector. 
3. Convergence: 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
                            (18)  

This equation combines the positions of the three best 
solutions to update all wolves’ positions. 

4.8 AGWO: Adaptive Grey Wolf Optimizer 
The AGWO adopts a logarithmic decay for the coefficient 

𝑎 associated with exploration and exploitation, which is 
better than the GWO. This enables the algorithm to adapt 
effectively by balancing the discovered, but previously 
exposed, high-quality solutions and exploring unexplored 
search space regions. Logarithmic decay also prevents local 
optimal convergence, so the search can still be steady towards 
the global optimum. The adjustment of 𝑎 is done as follows: 

𝑎(𝑡) = 2−∣ log (
𝑎𝑏+𝑑𝑐⋅𝑖

𝑇max
) ∣                                                            (19) 

Where: 
• 𝑎𝑏 and 𝑑𝑐 are constants that determine the scale of 

adjustment. 
• 𝑖 is the current iteration, and 𝑇max is the maximum 

number of iterations. 
The logarithmic updating mechanism contributes to a 

more satisfactory exploration and faster convergence than 
the linear updating in the conventional GWO, resulting in 
better energy preservation and resource allocation 
performance. 

Algorithm 2: AGWO (Adapted Grey Wolf Optimization) 
Input: 

• Network, Population Size 
Output: 

• α (Optimized Solution) 
1. Initialize: 
2. Set Population ← ∅; 
3. Set Xα ← ∅; 
4. Set Xβ ← ∅; 
5. Set Xδ ← ∅; 
6. Initialise the iteration counter t = 0. 
7. For i = 1 to PopulationSize do: 
8.   Set Xi ← RandomPosition; 
9.   Set Pi ← RandomPower; 
10.  Set Ri ← RandomRate; 
11.  Set xp_best ← Xi; 
12.  Calculate Fitness(i) using Eq. (14); 
13. End For 
14. While ¬TerminationCondition do: 
15.   Increment t = t + 1; 
16.   Adaptively adjust coefficient α using Eq. (28); 

17.   For i = 1 to PopulationSize do: 
18.     Update Position Xi using Eq. (26); 
19.     Update Power Pi using Eq. (27); 
20.     Update Rate Ri using Eq. (29); 
21.     Calculate Fitness(i) using Eq. (14); 
22.     Update α, β, and δ; 
23.   End For 
24. End While 
25. Return the optimal solution α. 

4.9 Complexity Analysis of AGWO 
The complexity of the AGWO algorithm is analyzed based 

on the number of wolves 𝑁. The dimension of the search 
space 𝐻, and the number of iterations 𝑇max. The 
computational cost of traditional GWO is 𝑂(𝐻 ⋅ 𝑁2 ⋅ 𝑇max), 
which can become expensive as the number of nodes 
increases. However, the AGWO algorithm introduces a 
logarithmic reduction in the exploration-exploitation ratio, 
which reduces computational overhead. The time complexity 
of AGWO is 𝑂(𝐻 ⋅ 𝑁 ⋅ log(𝑁) ⋅ 𝑇max), which is more efficient 
compared to traditional GWO. This reduction in complexity 
allows the AGWO to handle larger networks with faster 
convergence and minimal overhead. 

5. Simulation setup and performance evaluation 
In this section, the performance evaluation of the 

proposed DPRO-GWA is presented, which is obtained 
through comprehensive simulations. We compared DPRO-
GWA with DRPAA [34] and RENUM [35] for power and rate 
control algorithms included in the literature. The simulation 
scenario, performance metrics, and comparison with other 
algorithms are described. Furthermore, the convergence 
behaviour of DPRO-GWA, its outage performance, and the 
energy-delay trade-off are analysed. The network topology 
was generated using the random waypoint mobility model to 
model the nodes in the network with a speed of up to 10 m/s 
and a fixed pause time of 100 s. The packet inter-arrival times 
are based on the Constant Bit Rate (CBR) application; the 
traffic is generated by three traffic classes to simulate traffic 
in the Mobile Ad-Hoc Network (MANET). Each test comprised 
20, 10-minute-long, randomly selected source-destination 
pairs. A specific situation of an ad-hoc network layout with 
lossy links and flows is depicted in Figure 1 with source nodes 
S1 and S2 and destination nodes D1 and D2. The packets are 
transferred from the source to the destination over the path 
defined by the power allocation and transmission rate. 

 

 
Figure 1. An example of a wireless ad hoc network with lossy links 
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5.1 Simulation environment  
These were simulated using NS-3 (Network Simulator-

3), an open-source discrete-event network simulator for the 
research and education community to simulate wired and 
wireless IP networks. One of the reasons why we chose NS-3 
for the simulation in this study is that it provides a complete 
set of wireless communication models (Wi-Fi, LTE, and 
MANETs); hence, we can model the complex dynamics of 
MANETS. The simulation parameters were defined to closely 
resemble realistic mobile ad hoc network (MANET) 
environments, including mobility patterns, topologies, and 
traffic loads. In the Random Waypoint Mobility Model (RWM), 
each node chooses a destination and speed randomly from a 
range in [0, 10] m/s, before it pauses for a random amount of 
time before proceeding. This model reflects the dynamic and 
random behaviour of the node mobility scenario in MANETs. 
In the communication model, every node works in half-
duplex mode and sets the transmission power and rate range 
between. It uses a Rayleigh fading model to simulate the 
channel conditions, which models the effects of scattering, 
reflection, and diffraction on signal propagation. We used 
User Datagram Protocol (UDP) traffic between the nodes, in 
which the size of the packets was fixed to 1024 bytes. We set 
the average packet arrival rate of each node to 10 packets per 
second. 

The key simulation parameters are as follows: 
• Number of nodes: 50. 
• Transmission power range: [10,50] mW. 
• Transmission rate range: [1,10] Mbps. 
• Mobility model: Random Waypoint with speeds 

ranging from [1,10] m/s. 
• Simulation time: 1000 seconds. 
• Traffic pattern: Constant Bit Rate (CBR) traffic. 
Simulations were conducted for various scenarios with 

different mobility speeds and traffic patterns to evaluate the 
robustness of the DPRO-GWA under varying network 
conditions. 

5.2 Performance metrics  
The performance of the DPRO-GWA was assessed and 

compared using the following metrics: 
1. Throughput: The data successfully sent to the device over 
the network in bits per second (bps). Greater throughput 
means more availability of the network, which can be 
valuable in facilitating communication requirements. The 
throughput of such a channel can be measured by: 

Throughput =
Total Transmitted Data

Simulation Time
                                                (20) 

2. Energy consumption: Total consumed energy of the entire 
network during the simulation, which also includes the 
transmission and reception of the energy consumed by data 
packets. In an energy-constrained environment, the objective 
is to minimise energy consumption to extend the life of the 
nodes. Consuming energy can be recognized by 

Energy Consumption = ∑ (𝑝𝑖 ⋅ 𝑇transmit)
𝑁
𝑖=1                         (21) 

where 𝑝𝑖 is the transmission power and 𝑇transmit is the time 
spent transmitting by the node 𝑖. 
3. Delay: The average end-to-end delay is the time taken by a 
packet to reach the destination node from the source node. A 
lower delay is required for real-time applications, such as 
voice and video. The average end-to-end delay is then given 
by: 

  Delay =
∑ End-to-End Delay𝑖

𝑁
𝑖=1

𝑁
                                                           (22) 

where End-to-End Delay
𝑖
 is the delay for the packet 𝑖. 

4. Outage Probability: This quantifies the likelihood of 
transmission degradation owing to an insufficient SINR, 
which typically results in packet loss. This provides a measure 
of communication reliability. 

Outage Probability =
Failed Transmissions

Total Transmissions
                                       (23) 

These metrics have an instantaneous impact on the 
performance of the DPRO-GWA, and trade-offs among 
throughput, energy efficiency, and delay under all possible 
situations while ensuring a balanced network uptime. 

We evaluated the proposed DPRO-GWA algorithm and 
compared it with three existing schemes: DRPAA, ECPRC, and 
RENUM. Although both approaches are intended for 
optimising power or rate control, the DRPAA and RENUM are 
not designed to quantify multi-perspective trade-offs 
(energy, delay, and throughput) for dynamic environments. 
DRPAA varies as the simulation evolves and does not fix the 
power level depending on the network configurations, such 
as congestion and node movement. However, it ignores the 
effect of outage probability or residual energy, which are vital 
to the stability and reliability of the network. The DRPAA also 
presents a redundant coordinator, which is not desirable for 
large networks. Although RENUM aims at joint rate and 
energy optimisation, it is not designed for delay constraints 
and outage probability, which are the most important 
parameters in real-time applications. The RENUM static 
power and rate adaptation algorithm may not be optimal 
because of node mobility and the dynamic topology in a 
wireless mesh network environment. 

In contrast, DPRO-GWA has the following advantages. 
1. Adaptive Power and Rate Control: This approach relies on 
game theory. It allows an individual node to adapt its power 
and rates while separating the rate and power adaptation 
based on the local information. This has decentralised, 
scalable, and efficient implications for the industry. 
2. Integration of Outage Probability: DPRO-GWA incorporates 
the outage probability into the utility function. 
3. Trade-offs in Energy and Delay: DPRO-GWA is a protocol 
that balances energy savings with minimal delay and 
functions optimally under varying traffic loads and mobility 
scenarios. 

Simulation results show that DPRO-GWA achieves better 
throughput, energy consumption, and delay than DRPAA and 
RENUM under node mobility and disproportionate, abrupt 
traffic patterns. However, DPRO-GWA has a higher outage 
probability, indicating improved reliability for 
communication while in motion. 

5.3 Results and analysis  
We chose throughput, total energy consumption in 

communication, and end-to-end delay for the transmission 
timespan of packets as metrics to describe the DPRO-GWA 
performance. In this study, we modified the rate outage 
probability to minimise fluctuations and maintain a balance 
between the power level and data rate, reflecting changes in 
the network topology during mobility. Delays in packet 
transmission, queuing time, retransmission time, route 
discovery time, and propagation delay help maintain network 
connectivity at the optimal power level during packet 
transmission. The performance measure of nodes 1-6 is 
measured to view the power of the nodes and the assigned 
rate to the nodes. The convergence behaviour of the 
developed method for power and rate allocation is illustrated 
in Figure 3 and  Figure 4. Without loss of generality, it is 
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assumed that all nodes in the network utilise the same 
method to determine the rate and power levels. As shown in 
Figure 2, if all users possess high power (milliwatts) from the 
start of the alumni process setting, nodes are initially 
unfamiliar with the network, requiring more energy for 
packet transmission. After adjusting the mapping, the process 
becomes iterative with additional cycles, converging towards 
fairness for each user measurement, as shown in Figure 3. 
This convergence reduces the per-user transmission power 
utilisation to a low level, thus improving the performance-to-
outage probability. 

Similarly, the rate (kbps) of the links illustrates the rapid 
changes in Figure 4, where the user's entropy becomes 
uniform after a few iterations. The user rates were 
determined by their respective maximum utilities. Because 
each user's utility at NE differs, their power and rate also vary. 
The AGWO helps users achieve optimal power and rate 
quickly; however, lossy and unreliable wireless links cause 
significant topological changes. The solution to this problem 
lies in the use of the rate outage probability, which is another 
concern of the DPRO-GWA approach. 

Figure 4 illustrates how the outage probability is used to 
determine the rate for all users, whereas synchronisation is 
maintained at the nodes to handle unexpected variations in 
the channel. 

 

Figure 2.  Average power levels 

 

Figure 3. Average data rate, convergence properties of DPRO-GWA 

The energy consumption of individual nodes is controlled 
to a limit based on the imbalance of energy consumption 
among different nodes and selfish behaviour of the nodes. 
Initially, all users had zero energy consumption, but this 
increased over time. The utility of each node differed, as was 
the case for the NE point. Consequently, the energy 
consumption varies as the nodes transmit at different power 
levels. Therefore, energy consumption also increases over 

time because of the number of packets transmitted during 
transactions between nodes. The nodes transmit packets with 
a power level determined using the DPRO-GWA. The system 
nodes must be utilised to their maximum capacity to gain the 
greatest benefits while preventing other nodes from 
enhancing their benefits by altering resource consumption. 
The convergence point of the proposed algorithm for the 
supermodular game in terms of AGWO is illustrated in Figure 
4. The proposed method then utilised the dynamic behaviour 
of the DPRO-GWA to minimise energy consumption. Figure 5 
compares the total system energy consumption between the 
ECPRC (using GWO only) and DPRO-GWA. This indicates that 
the AGWO achieves an effective convergence point with very 
low complexity and energy consumption compared with the 
GWO. 

Owing to its efficiency, the proposed approach 
outperforms existing power and rate control methods. To 
illustrate this behaviour, we compared the proposed 
algorithm with the Lagrangian multiplier-based algorithm 
RENUM and the particle swarm intelligence-based algorithm 
DRPAA in terms of the aggregated throughput achieved, as 
shown in Figure 6. The results indicate that the variations in 
the end-to-end throughput at time T s increase with an 
increase in the number of hops per flow. 

 
Figure 4. Utility of individual nodes 

 

Figure 5. Total energy consumption (mJ) comparison of DPRO-GWA 
with other algorithms 

Figure 7 shows the average power consumption, data rate, 
and delay of the ECPRC, DPRO-GWA, DRPAA, and RENUM 
algorithms. The average power consumption of the proposed 
approach is better than that of the DRPAA and RENUM, 
whereas the data rate achieved in DPRO-GWA is almost equal 
to that of the RENUM-based algorithm. Additionally, DPRO-
GWA reduces the end-to-end delay. 
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Figures 5 and 8 present the same information for all 
algorithms concerning the total energy consumption and 
average delay, respectively. From Figure 5, it is evident that 
DRPAA and RENUM consume more energy than DPRO-GWA. 
As shown in Figure 8, the average delay for all algorithms is 
initially considerable; however, after a few iterations, the 
decision-making time decreases. This is because the 
convergence and delay become static. From Figure 8, it can be 
noted that the delay for DPRO-GWA is less than that of the 
other heuristic algorithms. The convergence rate of the 
proposed approach is illustrated in Figure 9, and the 
convergence order is clearly outlined in Figure 9, indicating 
that the convergence rate improved in the DPRO-GWA. 

 

Figure 6. Aggregate throughput for different hops 

Figure 7. Power, datarate and delay evaluation for different 
algorithms 

One of the key strengths of the DPRO-GWA is its efficient 
convergence to the optimal solution. The adaptive gray wolf 
optimizer (AGWO), which is used to solve the power and rate 
control problems, improves the convergence speed compared 
to traditional optimization algorithms. In DPRO-GWA, the 
parameter 𝑎. In the AGWO, a logarithmic reduction is used, 
allowing the algorithm to balance exploration and 
exploitation more effectively during optimization. 

 

Figure 8.  Average delay (ms) comparison of DPRO-GWA with other 
algorithms 

Figure 9. Comparison of convergence rate for different approaches 

The simulation results show that DPRO-GWA converges 
faster than other optimization-based algorithms, including 
DRPAA and RENUM, particularly in networks with many 
nodes. The convergence rate of the DPRO-GWA is measured 
by the number of iterations required to reach a stable state, 
where the nodes' power and rate decisions no longer change 
significantly. DRPAA and RENUM take significantly longer to 
converge, particularly under high mobility and dynamic 
conditions. 

The DPRO-GWA significantly enhances the network 
reliability through the built-in outage probability. Therefore, 
DPRO-GWA considers the probability of transmission failure 
arising from inadequate SINR values while executing power 
and rate control to minimise such outages, leading to a lower 
packet loss rate. The simulation results indicate that DPRO-
GWA has a lower outage probability than DRPAA and RENUM, 
particularly in high-interference environments or under 
rapidly varying channel conditions. This results in better 
communication reliability, making it well-suited for delay-
sensitive applications in which seamless connectivity is 
important. 

We focus on delay and energy-efficient designs and 
believe that DPRO-GWA strikes a fine balance between these 
two factors. The utility function of DPRO-GWA was designed 
to penalise throughput loss and time overhead, resulting in 
power and rate settings that jointly optimise both objectives. 
The simulation results show that DPRO-GWA achieves lower 
energy consumption for the same delay as DRPAA and 
RENUM, which optimise their systems only for throughput or 
energy. This is especially relevant for real-time applications, 
where reducing latency is as important as lowering the 
energy consumption. 



C. Goswamiet al. /Future Technology                                                                                        August 2025| Volume 04 | Issue 03 | Pages 29-44 

41 

 

Moreover, through DPRO-GWA, the energy-delay trade-off 
ensures that when focusing on energy efficiency, the system 
experiences only a limited loss in communication quality, as 
reflected in the average delay and total throughput across 
varying network configurations. This combination makes 
DPRO-GWA highly versatile for energy-constrained real-time 
applications in MANET. 

6. Discussion 
Simulation results indicate that DPRO-GWA outperforms 

other algorithms in dynamic rate and power adjustment and 
the rate- and energy utility-based network optimisation 
algorithm (DRPAA-RENUM). Based on these results, we can 
conclude that DPRO-GWA will likely provide the best 
performance in terms of throughput, energy, and delay, 
irrespective of changing environments and high mobility. In 
addition, the DPRO-GWA consumes more energy and has a 
higher throughput. This process is game-theoretic, involving 
nodes that become powerful and act independently, achieving 
a trade-off between energy and throughput. Another 
advantage is that the optimal solution can operate with both 
DRPAA and RENUM. It has a lower outage probability than the 
DRPAA and RENUM because the DPRO-GWA uses the outage 
probability as an optimisation criterion. Because wireless 
channels are typically affected by interference and fading, the 
improvement is particularly notable; under these conditions, 
DPRO-GWA can adaptively adjust the transmission power 
and rate to reduce the number of lost data packets, ensuring 
reliable communication. 

The same cannot be said for the delay on DPRO-GWA, 
which shows a significant improvement in quality over the 
conventional algorithms. This is particularly important in 
applications that require real-time feedback, in which 
minimising delays is essential. DPRO-GWA depends on a 
utility function to dynamically evaluate the transmission 
configuration that could enhance network performance, 
although it compromises energy conservation with minimal 
impact on reliability in terms of energy savings. We have 
defined the evaluation metrics used to assess the 
performance of DPRO-GWA. The following metrics were 
included in our analysis: 
Energy Consumption per Node: This metric represents the 
average energy consumed by each node during the 
simulation. It was computed by summing the transmission 
and reception energy at each node over the simulation period. 
Throughput: The total amount of successfully delivered data 
to the destination nodes, measured in bits per second (bps). 
End-to-End Delay: The average delay for a packet to travel 
from the source node to the destination, including all delays 
due to transmission, propagation, queuing, and 
retransmissions. 
Packet Delivery Ratio (PDR): The ratio of the number of 
successfully delivered packets to the total number of packets 
sent by the source nodes, which reflects the reliability of the 
network. 
Outage Probability: The likelihood that the transmission 
between nodes fails due to insufficient SINR (Signal-to-
Interference-plus-Noise Ratio). 
We have included performance graphs to visually illustrate 
the comparisons between DPRO-GWA and the other 
algorithms in the results and analysis section. These graphs 
allow for an intuitive understanding of the performance 
differences and help highlight the advantages of DPRO-GWA 
across the different metrics. Overall, DPRO-GWA is an 
effective power and rate control algorithm in MANET. It 
addresses several key factors, such as energy efficiency, delay, 

and reliability, which are especially crucial in constrained and 
real-time applications. 

6.1 Challenges and limitations  
Although the DPRO-GWA approach works well, it has 

some constraints and limitations. As AGWO is applied to solve 
the power and rate control problems, its computational 
complexity is a major concern. Although the proposed AGWO 
accelerates convergence compared with other optimisation 
algorithms, the optimal solution may not be found reasonably, 
particularly for large networks (on the order of thousands of 
nodes). Consequently, this may create a significant overhead 
for implementing the DPRO-GWA protocol in large MANETs, 
as the nodes must adapt to the variable mobility models and 
traffic distribution in the scenario. A major challenge is that 
MANETS are dynamic networks with constantly changing 
topologies owing to node mobility. The game-theoretic task 
assumes that nodes must independently make effective 
decisions regarding their states in non-static environments 
based on local information. Rapidly changing network 
topologies often result in delays or errors in real-time 
decision-making. For instance, nodes may lack the most up-
to-date data on channel conditions and the power settings of 
surrounding nodes, leading to inefficient performance. 

It also accounts for external interference and inter-node 
communication delays, which can lead to performance 
degradation, particularly in high-density networks and those 
with significant external interference. Additionally, in 
cooperative networks, it is a common assumption that 
different nodes will not collaborate to optimise network 
performance but will operate independently of each other. 
Finally, although the outage probability term is useful for 
tuning reliability, it may not be sufficient in extreme fading 
scenarios or very dense interference situations, where even 
with optimal power control, the SINR could still be too low for 
successful communication. DPRO-GWA is a viable scheme for 
resource-deprived wireless networks, such as MANETS, 
vehicular networks, and disaster recovery applications. It is 
especially suited for scalable and dynamic environments with 
impractical, centralised control. However, all these benefits 
come with their own set of challenges when implementing 
DPRO-GWAs in real-world scenarios. Resource management 
is essential for implementing and deploying AGWO in an 
aerial network, minimising computational overhead, and 
achieving fast convergence. Furthermore, real-time channel 
conditions and node mobility are critical requirements for an 
effective algorithm design. Inferring the outage probability 
from real-world systems also requires real-time monitoring 
of network conditions. 
Nevertheless, DPRO-GWA can strike a balance between 
throughput, energy consumption, and delay, making it a 
strong candidate for next-generation wireless networks, 
where energy efficiency and low-latency communications are 
vital to the success of applications such as autonomous 
vehicles and Internet of Things (IoT) deployments. 

7. Future work  
The Dynamic Power-Rate Optimisation Grey Wolf 

Algorithm (DPRO-GWA) mechanism shows considerable 
achievements in power optimisation and efficient rate control 
on MANET as a powerful feature; therefore, we still highlight 
some topics for future work. 
Cross-layer optimisation (CLO): This is one of the prime 
extensions, where cross-layer optimisation strategies are 
utilised to tune parameters between different layers, 
including application, network, and MAC layers. DPRO-GWA 
operates independently on the Physical and Data Link layers; 
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however, in practical networks, the joint optimisation of these 
layer decisions can enhance the overall efficiency of real-time 
applications, such as video conferencing or autonomous 
vehicle communication. In future work,  the DPRO-GWA 
framework can be extended to include decisions related to 
packet size, routing, and channel access policies to achieve 
end-to-end optimisation. 
Integration of 5G: The transition to 5G networks presents 
enhanced challenges and opportunities for the DPRO-GWA. 
5G is equipped with high-end technologies to utilise and 
improve power exploitation and rate control for dense 
networks (such as massive Multiple Input, Multiple Output 
(MIMO), beamforming, and network slicing) [7]. Integrating 
the DPRO-GWA with these 5G features enables real-time 
power allocation and flexibility in rate adjustments, 
depending on spectrum availability and the physical channel 
state. Furthermore, the ability to allocate dedicated resources 
through network slicing in 5G introduces another promising 
aspect for improving DPRO-GWA performance by providing 
differentiated services for IoT and critical communication 
domains. 
Realistic Large-Scale Deployments: As an evolutionary 
methodology, DPRO-GWA requires testing its real-world 
performance through simulations, particularly using test 
beds or field trials. There are Ansible tools capable of 
simulating complex scenarios, such as environmental factors, 
node heterogeneity, and node mobility, which are difficult to 
incorporate into a simulation model. Additionally, enhanced 
scalability and performance can be realised by introducing 
real-time traffic patterns with the DPRO-GWA and shifting 
some computational tasks to the edge via edge computing. 

8. Conclusion  
This paper presents a mechanism, the Dynamic Power-

Rate Optimisation Grey Wolf Algorithm, for a novel approach 
to modify power and rate allocation to boost Mobile Ad Hoc 
Networks (MANETs) performance. DPRO-GWA is the first 
study to apply a game-based model to a network where an 
AGWO ensures that nodes in the network make the best 
decisions to achieve a trade-off among energy, delay, and 
throughput while maintaining the stability of the network. 
The key gaps addressed by our approach are as follows: 
1. Handling the Trade-off Between Energy, Throughput, and 

Delay: 
Unlike DRPAA and RENUM, which primarily focus on 
either optimizing throughput or energy efficiency, our 
proposed approach (DPRO-GWA) integrates both energy 
conservation and throughput maximization while 
explicitly incorporating delay constraints. This makes our 
method uniquely suited for real-time applications in 
MANETs where low-latency communication is critical 
(e.g., voice and video streaming). ECPRC, while energy-
efficient, fails to adequately account for delay and network 
stability under dynamic conditions. DPRO-GWA 
specifically targets the energy-delay trade-off, offering a 
more balanced solution for practical MANET applications. 

2. Outage Probability Consideration: 
A significant limitation of DRPAA and RENUM is their 
neglect of the outage probability (the likelihood of 
transmission failure due to poor channel conditions). Our 
approach explicitly integrates outage probability into the 
optimization process, which improves communication 
reliability, especially in highly dynamic and lossy 
networks. By considering the risk of packet loss due to 
fading or interference, DPRO-GWA enhances the 

robustness of the network, which is critical for mission-
critical applications in MANETs. 

3. Incorporation of Adaptive Grey Wolf Optimization 
(AGWO): 
While both DRPAA and RENUM rely on fixed optimization 
techniques, our work introduces an adaptive version of 
the Grey Wolf Optimizer (AGWO), which significantly 
accelerates convergence without compromising solution 
quality. This adaptation allows for faster and more 
efficient optimization in dynamic network environments 
where network conditions can change rapidly. Traditional 
metaheuristic algorithms like GWO suffer from slow 
convergence, especially in large or complex networks. 
AGWO overcomes this by balancing exploration and 
exploitation more effectively, thus offering improved 
performance with lower computational complexity 
compared to standard GWO and other optimization 
algorithms. 

4. Game-Theoretic Framework with Distributed Power and 
Rate Control: While game-theoretic approaches like those 
used in DRPAA provide a decentralized framework, they 
often do not fully address critical aspects such as the 
interplay between residual energy and real-time 
communication requirements. Our work leverages a 
supermodular game-theoretic model, which guarantees 
the existence and uniqueness of the Nash Equilibrium 
(NE), ensuring a robust, distributed, and self-stabilizing 
power-rate control mechanism. This game-theoretic 
foundation distinguishes our approach from others by 
providing a formalized mechanism that adapts to the 
needs of individual nodes while ensuring that the system 
as a whole remains stable and efficient. 

The DPRO-GWA outperforms various state-of-the-art 
algorithms, such as the DRPAA and RENUM, in terms of 
average throughput, energy consumption, and delay. This 
performance is exacerbated in dynamic and high mobility 
environments, as supported by the simulation results. This is 
particularly important for real-time microphones, which 
require low packet loss; therefore, the outage probability is 
included in the optimisation to ensure better results and 
reliability. 

The main contributions of this work can be summarised as 
follows:  

(1) a game-theoretical model to optimise both the system 
power and rate control,  

(2) inclusion of outage probability to allow for increased 
reliability of the communication link,  

(3) Application of AGWO to provide a possible faster 
convergence to the optimal solution, and  

(4) a comprehensive evaluation of the approach through 
simulation results demonstrating an improvement over 
typical method. 
Future work will focus on extending the DPRO-GWA to cross-
layer optimizations, 5G integration, and real-world testbed 
implementations to ensure its practical viability and further 
enhance its performance in real-world networks. 
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