
Ping Li et al. /Future Technology                                                                                           August 2025| Volume 04 | Issue 03 | Pages 
239-250 

239 

 

 

 

Article 

AI-enhanced spatial value reassessment in digital 

transformation: impacts of smart eco-city 

management paradigms on housing price 

formation mechanisms 
Ping Li1, Cheok Mui Yee1*, Wanyi He2, Lijuan Lu1, Kaizhou Qin1 

1Universiti Tun Abdul Razak, Wisma Unirazak, 195A, Jln Tun Razak, Hampshire Park, Kuala Lumpur, 50450, Malaysia 
2The National University of Malaysia, Lingkungan Johan, 43600 Bandar Baru Bangi, Selangor, Malaysia 

A R T I C L E   I N F O 
 

Article history: 
Received 30 April 2025  
Received in revised form 
08 June 2025 
Accepted 19 June 2025 
 
Keywords:  
Artificial intelligence,  
Digital-ecological integration,  
Smart eco-city governance,  
Spatial economics of housing, Value synergy 
 
*Corresponding author 
Email address: 
cheok_my@unirazak.edu.my 
 
 
DOI: 10.55670/fpll.futech.4.3.22 

A B S T R A C T 
 

This study examines the transformative impact of artificial intelligence-
enhanced smart eco-city management paradigms on spatial value assessment 
and housing price formation mechanisms. Through sophisticated mixed-
methods analysis of 320 neighborhoods across five urban areas, employing 
advanced machine learning algorithms for pattern recognition, the research 
identifies significant synergistic relationships between digital infrastructure 
and environmental quality that profoundly influence housing valuations. 
Empirical evidence demonstrates that neighborhoods exhibiting high levels of 
both digital connectivity and environmental amenities command substantial 
price premiums of 60-100% above baseline areas, markedly exceeding the 
combined individual effects of digital (25-45%) and environmental (15-40%) 
factors alone. The strength of this synergistic relationship manifests in robust 
correlations between combined Digital-Environmental indices and housing 
prices (r = 0.83), with AI-driven predictive models achieving exceptional 
accuracy in forecasting spatial value shifts (R²=0.861). The study contributes a 
multidimensional analytical framework linking technological innovation, 
artificial intelligence applications, environmental governance, and housing 
market dynamics. Policy implications suggest the necessity for integrated 
governance approaches spanning digital and environmental planning spheres, 
with particular attention to algorithmic equity considerations given the 
widening price gaps between digitally-enabled and analog neighborhoods. 
Effective development of smart eco-cities necessitates the implementation of 
comprehensive strategies that not only create value through AI optimization 
but also ensure its equitable distribution across diverse urban communities. 

1. Introduction 

The overlap of digital transformation, artificial 
intelligence advancement, and environmental sustainability 
has created new approaches to urbanization, such as eco-
cities, which have emerged as novel paradigms for solving 
sophisticated city problems. This study characterizes smart 
eco-cities as models for urban development that combine AI-
driven technologies and ecological systems towards the 
development of sustainable, productive, and liveable cities 
[1]. This distinction sets them apart from smart cities that 
integrate advanced technologies and eco-cities, which have a 
primary focus on sustainable environmental practices, 
instead of highlighting their unifying nature. The paradigm of 
smart eco-cities has the best solutions for coping with 

economic growth, environmental conservation, and social 
welfare, in balance, as more cities are subjected to higher 
challenges of having higher populations, limited resources, 
and climate change [2]. On the other hand, the balance of 
significant dual focus given to socio-environmental and 
techno-ecological aspects of smart eco-cities and their neglect 
from the economic aspects of smart eco-cities, especially the 
spatial value capture and housing market pricing 
mechanisms, is astonishing. In the realm of urban governance, 
there has been a dramatic change in how cities are planned, 
managed, and experienced in the digital era. Smart Cities 
development utilizes artificial intelligence, the Internet of 
Things (IoT), big data, and other technologies to improve the 
delivery of services and the efficiency of resource utilization 
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in a city [3]. At the same time, the eco-centric concept of a 
smart city seeks to achieve environmental sustainability 
through green infrastructure, renewable energy, and 
conservation [4]. The embedding of these concepts in a smart 
eco-city results in a socio-technical environment that is 
intricately complex, which needs to be analyzed critically in 
terms of its socio-spatial impacts on the economy and 
housing. Being one of the most important economic items and 
a human necessity, housing has become a centre of attention 
in urban development intricacies. The traditional approaches 
towards the mechanisms of housing price formation have 
emphasized locational determinants, structural features, and 
macroeconomic factors. Nonetheless, the birth of smart eco-
cities adds new components to this equation. As Bibri and 
Krogstie [5] argue, data-driven smart sustainable cities have 
the potential to redefine spatial economics through the 
creation of novel value propositions. Such changes are not 
simply cosmetic improvements in technology, but rather 
holistic transformations in the valuation, allocation, and 
pricing of urban space. While their model provides a strategic 
roadmap for transformational change, it does not address 
housing markets’ particular changes. 

It is easy to spot a gap in the literature at the intersection 
of smart eco-city growth and housing economics. The 
literature available on both of these domains is growing; 
however, there is minimal research that has examined the 
effects of AI-integrated smart eco-city management 
paradigms on housing price formation mechanisms. This gap 
is even more significant because housing markets are 
regarded as the most essential proxies for economic welfare 
and social equity in cities. As cities funnel resources into 
digital infrastructure and environmental amenities, it 
becomes critical to analyze how these investments 
differentially affect the allocation of spatial value in order to 
achieve sustainable and inclusive urban development. This 
research fills a specific gap by analyzing the impact of smart 
eco-city management paradigms on spatial value and the 
resultant implications on housing price formation 
mechanisms. It particularly seeks to answer these research 
questions: In what ways do elements of digital transformation 
and AI within smart eco-cities impact the assessment of 
spatial value? What are the dominant processes by which 
features of environmental sustainability impact the formation 
of housing prices? In what ways do these processes differ in 
various urban settings and policy environments? 

The principles that underpin this investigation 
incorporate aspects of urban economics, environmental 
politics, and the digital transformation theory. This study 
augments the multi-scalar framework approach suggested in 
sustainable urbanism by Cheshmehzangi et al. [6] in 
sustainable urbanism, with an integrated framework for the 
multilevel analysis of the relationships between technological 
change, AI applications, environmental quality, and the 
housing market. It also emphasizes the multiscopic character 
of smart eco-cities and the necessity for sophisticated 
economic analysis of varying scales and contexts.  

Figure 1 depicts the conceptual framework for the 
research that discusses how Smart City Digital 
Transformation and Eco-City Environmental Sustainability 
simultaneously impact Spatial Value Reassessment, which 
then impacts the Housing Price Formation Mechanism. 

 

 
Figure 1. Theoretical framework of smart eco-city impact on housing 
price formation mechanisms 

2. Literature review 

2.1 Smart eco-city development 
The development of smart eco-cities reflects a clear 

innovation in city development, as it combines digital 
technology with ecological sustainability to solve complex 
city problems. In smart eco-cities, the management of the 
environment, resources, and life is enhanced through the 
systematic use of data in decision-making. These urban 
models focus on the integration of digital technology and 
ecological design with an aim to build synergistic frameworks 
beyond the city planning paradigms, as noted by Bibri [7]. 
Although this analysis is important to understanding the 
socio-technical aspects of smart eco-cities, it misses out on 
details regarding the socio-political intricacies of 
implementing such cities in different urban settings. 

The digital transformation of urban management as a 
subsystem of eco-city advancement fundamentally alters the 
governance and service provision structures. At the city level 
in China, Tang et al. [8] prove with empirical evidence that the 
construction of a smart city has a pronounced positive impact 
on green technological innovation, thus estimating the 
bidirectional interaction between digital infrastructure and 
eco-sustainability. Such technologies come together with IoT 
applications, big data processing, and artificial intelligence for 
better resources and environmental supervision. AI-driven 
predictive analytics enable more sophisticated 
environmental monitoring systems that can anticipate 
resource demands and optimize urban service delivery 
through machine learning algorithms. Bauermann et al. [9] 
provide a further explanation of the eco-smart city concept by 
advocating its integration with the smart region paradigm. He 
notes that the digital transformation should not be limited to 
the boundaries of the municipality, but rather, should include 
the ecosystem of the region. Their approach underscores the 
urgency of moving away from fragmented strategies toward 
urban digitalization, yet it is rather silent on the obstacles to 
the realization of such approaches in poorly funded settings. 

This view complements Duan's [10] theory on the 
development of urban space, which defines the spatial value 
as having both physical and functional aspects. Duan suggests 
that digital infrastructure shifts beyond the customary 
physical bounds of urban space and creates new functional 
layers within it. In the same manner, Ciumasu’s [11] 
knowledge-action matrix for mapping a technological 
innovation onto the transitions of a smart eco-city provides 
an ordered paradigm for analyzing how digital 
transformations reconfigure urban ecological value 
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propositions. All these theories together provide a point of 
departure for critically interrogating how the paradigms of 
smart eco-city integrate digital and ecological components for 
re-evaluating spatial capital. 

2.2 Housing price formation mechanisms 
Price determinants of real estate have predominantly 

depended on geographic features, the building’s attributes, 
and external economic conditions. With the development of 
smart eco-cities, new variables come into play in the 
equations of housing price formation. Chiu [12] analyses the 
interplay between real estate development and urban 
greening, demonstrating how ecological amenities serve as 
capitalization of externality premiums. This analysis 
highlights the environmental quality market price; however, 
it could be more explicit in considering the distributional 
consequences across social strata. The effects of technology 
and the environment on housing prices in smart eco-cities are 
observable through various lenses. According to Kim and Choi 
[13], there are new market innovations in the construction 
industry that exploit sustainability elements, which promise 
to enhance the value of a residential dwelling. These 
innovations do, however, capture the monetization of 
ecological services alongside city digitalized infrastructure. 
As the analysis captures the existence of green premiums 
within property valuation, it does not capture the scepticism 
toward market-driven and socially sustainable affordable 
housing motives. This contradiction remains one of the most 
important aspects of the development of smart eco-cities that 
lacks thorough research, especially on issues concerning 
spatial justice. The integration of artificial intelligence in 
property valuation methodologies has further refined the 
assessment of ecological amenities' impact on housing prices, 
allowing for the detection of complex non-linear relationships 
between environmental features and market value that 
traditional statistical approaches often overlook. 

2.3 Legal and policy frameworks 
The basis for smart eco-city development is found within 

environmental legislation, which serves as the regulatory 
backbone. Romano [14] analyzes policy transfer within smart 
eco-city development and demonstrates how regulatory 
structures influence implementation outcomes. The case 
study of Sino-Singapore Tianjin Eco-City demonstrates how 
hybrid transnational legal frameworks operate to impose 
local conditions on international regulatory standards, 
although issues of compliance with environmental 
performance standards remain. The comparative analysis of 
the case study cities reveals distinctly different regulatory 
patterns. The European cities have developed integrated legal 
systems that make specific provisions for the interaction 
between digital governance and environmental governance 
through ‘Smart Sustainability Acts’. Conversely, North 
American systems have a split legal regime for digital 
infrastructure (telecommunications law) and environmental 
governance (environmental law), which causes 
fragmentation and integration problems. Policies governing 
smart cities are beginning to utilize new technologies for 
environmental management. Deng et al. [4] propose 
integrating technological innovation with regulatory 
mechanisms through a multi-spatial perspective. The analysis 
of policy documents reveals significant variation in legal 
enforceability: European cities demonstrated 78% 
incorporation of digital-environmental standards in legally 
binding municipal codes, compared to only 34% in North 
American and 45% in Asian contexts. This legislative 
fragmentation partially explains the spatial heterogeneity 

observed in implementation outcomes. Recent litigation 
challenging smart city data collection practices (e.g., Sidewalk 
Labs Toronto) illustrates emerging jurisprudence at the 
intersection of privacy law, environmental justice, and urban 
technological deployment. This regulatory divergence creates 
significant challenges for policy harmonization while 
highlighting the tension between technological efficiency and 
democratic accountability in smart eco-city governance. 
Additionally, emerging regulatory frameworks increasingly 
address algorithmic governance and artificial intelligence 
systems deployed in urban management, particularly 
focusing on transparency requirements and accountability 
mechanisms when AI-driven decision-making affects 
resource allocation and environmental justice outcomes in 
smart eco-cities. 

3. Methodology 

3.1 Research design 
This study employs a mixed-methods approach to 

investigate the impact of smart eco-city management 
paradigms on housing price formation mechanisms. The 
conceptual framework integrates spatial economics, 
environmental valuation, and digital transformation theories 
to examine the complex interactions between technological 
innovation, environmental sustainability, and housing market 
dynamics. The empirical analysis is based on a comparative 
case study of five urban areas (Singapore and Seoul in Asia, 
Copenhagen and Amsterdam in Europe, and Toronto in North 
America) that have implemented comprehensive smart eco-
city initiatives between 2015 and 2023. Beyond the three 
foundational criteria of digital infrastructure investments 
exceeding $50 million, environmental enhancement 
programs, and housing price data availability, the selection 
incorporated additional dimensions to control for 
institutional and cultural variability. Cities were chosen to 
represent diverse governance structures (Singapore's 
centralized planning versus Amsterdam's polycentric model), 
varying implementation maturity (3-8 years across cities), 
and distinct regulatory frameworks (comprehensive 
integrated policies in Singapore and Copenhagen versus 
sectoral approaches in Toronto). This purposive sampling 
captured different cultural orientations toward technology 
adoption and environmental consciousness, with Asian cities 
demonstrating technology-driven approaches contrasting 
with European emphasis on participatory environmental 
governance and North American market-oriented 
development, thereby enabling robust cross-contextual 
analysis while controlling for potential confounding effects of 
homogeneous institutional arrangements. The total sample 
includes 320 neighborhoods across the five case study cities, 
with an average of 64 neighborhoods per city, providing 
sufficient statistical power for the inferential analyses 
conducted. This approach aligns with Tolstykh et al.'s [18] 
conceptualization of urban areas as symbiotic socio-economic 
ecosystems, where collaborative governance mechanisms 
facilitate value creation across technological and 
environmental domains. 

Building on Duan's [10] theory of urban space 
development, this research conceptualizes spatial value as a 
product of both digital and ecological attributes, creating a 
multidimensional framework for analyzing housing price 
determinants in smart eco-city contexts. This approach 
extends beyond Duan's primarily physical conceptualization 
of urban space by incorporating the digital dimension as an 
equally significant determinant of spatial value. The research 
hypothesizes that: smart city digital infrastructure positively 
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influences housing prices through accessibility and service 
quality premiums; smart eco-city environmental features 
create measurable value premiums in housing markets; and 
the integration of smart and eco elements produces 
synergistic effects on spatial value that exceed their 
individual impacts. These hypotheses are tested through 
comparative case analysis of selected urban areas that have 
implemented smart eco-city initiatives, following the 
methodological approach outlined by Ciumasu [11] for 
mapping technological innovation onto smart eco-city 
transitions. 

As shown in Figure 2, the hierarchical pyramid structure 
operationalizes the three research hypotheses through 
progressive methodological refinement. The conceptual 
framework tier directly translates theoretical constructs into 
testable propositions: spatial economics theory 
operationalizes Hypothesis 1 by defining digital 
infrastructure premiums through accessibility and service 
quality measures, environmental valuation frameworks 
operationalize Hypothesis 2 by quantifying ecological 
amenity capitalization in property values, and digital 
transformation theory operationalizes Hypothesis 3 by 
conceptualizing synergistic value creation mechanisms. The 
data collection tier transforms these theoretical constructs 
into measurable indicators: housing price databases capture 
the dependent variable at neighborhood-level granularity 
enabling spatial premium detection, smart city metrics (IoT 
density, connectivity indices) quantify digital infrastructure 
exposure for testing H1, and eco-city indicators (air quality, 
green space access) measure environmental quality for 
testing H2, with overlapping coverage areas enabling 
interaction effect analysis for H3. The analytical tier 
synthesizes these elements through complementary 
techniques: spatial econometrics isolates place-based effects 
while controlling for spatial autocorrelation, machine 
learning algorithms detect non-linear synergistic 
relationships invisible to traditional methods, and AI-
enhanced pattern recognition reveals threshold effects and 
interaction patterns crucial for validating the hypothesized 
value synergies, thereby creating a methodological cascade 
where each tier builds upon and refines the preceding level to 
generate robust empirical evidence for the theoretical 
propositions. 

 
Figure 2. Pyramid structure of research methodology 

3.2 Data Collection and Analysis 
Data collection integrates multiple sources to capture the 

complexity of smart eco-city development and housing 
market interactions. The fundamental source of primary 
housing prices is drawn from the selling and buying relations 
of housing units in the case study areas, augmented by spatial 
information on Digital infrastructure and environmental 

indicators. In accordance with Allam et al.'s [15] methodology 
for estimating proximity benefits in the 15-minute city model, 
the study area is assigned composite indicators of both digital 
accessibility and environmental quality of a neighborhood. 
The Digital Accessibility Index integrates five components: 
IoT sensor density per square kilometer (25% weight), 5G 
network coverage percentage (20%), availability of digital 
public services (20%), smart mobility infrastructure density 
(20%), and citizen digital engagement metrics (15%), with 
component weights determined through principal 
component analysis (PCA) that explained 78.3% of total 
variance in the first principal component. The Environmental 
Quality Index combines six dimensions: green space 
accessibility within 500 meters (20% weight), air quality 
index readings (20%), noise pollution levels (15%), urban 
tree canopy coverage (15%), renewable energy 
infrastructure presence (15%), and waste recycling facility 
proximity (15%), with weights derived from a modified 
Delphi process involving 24 urban planning experts across 
the five case cities achieving consensus (Kendall's W = 0.82) 
after three rounds. Both indices underwent robustness 
validation through sensitivity analysis of alternative 
weighting schemes and cross-validation with resident 
satisfaction surveys (Pearson's r = 0.74 for digital 
accessibility and 0.79 for environmental quality), ensuring 
measurement validity across diverse urban contexts while 
maintaining methodological consistency with established 
urban quality assessment frameworks. While Allam et al. have 
come up with a robust framework for proximity analysis, 
their framework is not easily transferable to include the 
digital aspect of access characteristic of smart eco-cities. 

 Other sources of quantitative data include policy and 
strategy documents, urban plans, and testimonies from local 
decision-makers to explain the quantitative results in terms 
of local governance structures. Recognizing the potential for 
smart eco-city developments to exacerbate spatial 
inequalities, the methodological design incorporates explicit 
equity considerations through multiple analytical strategies: 
socioeconomic control variables including neighborhood-
level income quintiles, education attainment rates, and 
minority population percentages enable isolation of smart 
eco-city effects from pre-existing disparities; stratified 
regression analyses conducted separately for low-income 
(bottom 40%), middle-income (middle 40%), and high-
income (top 20%) neighborhoods reveal differential impacts 
across socioeconomic strata, with results indicating stronger 
price effects in already-advantaged areas (coefficient 
differences significant at p<0.01); and spatial accessibility 
metrics calculated using public transit rather than private 
vehicle travel times ensure environmental and digital 
amenity measurements reflect opportunities available to car-
free households. Additional equity-focused robustness checks 
include Gini coefficient calculations for housing price 
distributions before and after smart eco-city implementations 
(revealing a 0.08 increase in inequality), quantile regression 
at the 10th, 50th, and 90th percentiles to capture 
distributional effects beyond mean impacts, and interaction 
terms between smart eco-city indicators and socioeconomic 
variables that demonstrate significant moderation effects 
(p<0.05), collectively enabling comprehensive assessment of 
how technological and environmental improvements 
differentially affect diverse urban populations. Li and 
Zhuang's [16] assessment methodology in eco-city 
development in resource-exhausted cities provides great 
indicators on how to assess the quality of the environment, 
but their model has to be altered in order to add the 
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technological aspects of smart eco-cities. This study advances 
existing methodological frameworks through three key 
innovations: the development of a synergistic interaction 
model that quantifies non-additive value creation between 
digital and environmental dimensions—the integration of 
machine learning interpretability techniques (SHAP values, 
ALE plots) with spatial econometrics to reveal threshold 
effects and non-linear relationships that traditional 
approaches in urban valuation studies overlook; and the 
construction of cross-culturally validated composite indices 
that harmonize disparate spatial scales while preserving local 
contextual variations, extending Ciumasu's [11] knowledge-
action matrix through empirical operationalization across 
heterogeneous governance contexts. These methodological 
advancements enable the detection of emergent value 
patterns in smart eco-city development that single-dimension 
analyses or additive models cannot capture, particularly the 
identification of critical thresholds where digital-
environmental integration generates disproportionate 
spatial value premiums.  

The approach makes use of econometric modelling for 
the analysis of economically based spatial data to find existing 
correlations and associations between distinct characteristics 
of smart eco-cities and fluctuations in housing prices, taking 
into account conventional factors. Techniques of geospatial 
analysis, such as GIS mapping and hot spot analysis, are used 
to illustrate spatial trends in the distribution of digital 
infrastructure as well as the variation of prices in real estate. 
This technique adopts Che et al.'s [17] innovations in spatial 
planning technology for smart cities, together with their 
geometry of housing market analysis. Machine learning 
algorithms, particularly random forest and gradient boosting 
models, supplemented by artificial intelligence techniques for 
feature extraction and pattern recognition, are employed to 
identify complex non-linear relationships between multiple 
variables and to rank the relative importance of different 
smart eco-city features in explaining housing price variations. 
To ensure interpretability and address black-box concerns 
critical for policy applications, the analysis implements SHAP 
(SHapley Additive exPlanations) values to decompose 
individual predictions into feature contributions, revealing 
that digital-environmental interaction effects account for 
23.7% of model predictions while individual digital and 
environmental features contribute 18.2% and 16.4% 
respectively. Partial dependence plots illustrate non-linear 
threshold effects, demonstrating diminishing marginal 
returns for digital infrastructure investments beyond 0.75 
standardized units and accelerating environmental 
premiums above 0.60 quality index values, while 
accumulated local effects (ALE) plots control for feature 
correlations to isolate pure marginal impacts. Model-agnostic 
interpretability is further enhanced through permutation 
feature importance analysis conducted across 100 iterations, 
confirming the stability of feature rankings with digital-
environmental synergy consistently emerging as the 
dominant predictor (importance score: 0.312 ± 0.024), 
followed by transport accessibility (0.198 ± 0.031) and 
neighborhood income levels (0.167 ± 0.028), thereby 
providing transparent and actionable insights for evidence-
based policy formulation. These AI-enhanced analytical 
approaches enable the detection of subtle spatial patterns and 
interaction effects that traditional statistical methods might 
overlook. This analytical strategy enables the research to 
move beyond simple correlation analysis to explore causative 
mechanisms and contextual factors that moderate the 
relationship between smart eco-city development and 

housing price formation. The spatial econometric model is 
specified as follows: 

ln(𝐻𝑖) = 𝛼 + 𝜌𝑊𝑙𝑛(𝐻𝑖) + 𝛽1𝐷𝐼𝑖 + 𝛽2𝐸𝑄𝑖 + 𝛽3(𝐷𝐼𝑖 × 𝐸𝑄𝑖)        (1) 

where ln(Hi) represents the natural logarithm of housing 

price per square meter in neighborhood i ;  

 𝐷𝐼𝑖 =∑ 𝑤𝑗
𝐷𝐼 𝑑𝑖𝑗

5

is the Digital Infrastructure Index constructed 

from five components (IoT density, 5G coverage, digital 

services, smart mobility, citizen engagement) with PCA-

derived weights 𝑤𝑗
𝐷𝐼; 

  𝐸𝑄𝑖 =∑ 𝑤𝑚
𝐸𝑄

𝑒𝑖𝑚
6

 is the Environmental Quality Index 

aggregating six dimensions with Delphi-method weights 𝑤𝑚
𝐸𝑄

;  

(DIi × EQi) captures the synergistic interaction effect;  

𝑋𝑖𝑘  represents a vector of K control variables including 

CBDdisti (distance to central business district), Buildingagei, 

Transportaccessi, and Incomei (neighborhood median 

income);  

W is the row-standardized spatial weights matrix with 

elements 𝑤𝑖𝑗 = 1/𝑑𝑖𝑗  for 𝑑𝑖𝑗 ≤ 2𝑘𝑚  and 𝑤𝑖𝑗 = 0  otherwise, 

where 𝑑𝑖𝑗  is the Euclidean distance between neighborhoods i 

and j; 

 ρ  is the spatial lag coefficient capturing housing price 

spillovers;  is the spatial error coefficient with 𝑍𝑖  representing 

spatially lagged exogenous variables; 

 𝜇𝑐  denotes city-specific fixed effects; and εi~N(0, σ
2) is the 

idiosyncratic error term. The model is estimated using 

maximum likelihood estimation with robust standard errors 

clustered at the district level to account for within-district 

correlation. 

To address endogeneity concerns, the analysis employs 

instrumental variable estimation using pre-2015 

telecommunications infrastructure and historical 

environmental protection zones as instruments for current 

digital and environmental indicators (Hansen's J = 0.342, 

first-stage F > 10), while reverse causality is mitigated 

through 12-18 month lagged indicators measured prior to 

housing transactions. Robustness checks include propensity 

score matching on pre-treatment characteristics 

(standardized differences < 0.1), difference-in-differences 

estimation exploiting staggered smart eco-city rollouts, and 

placebo tests yielding null effects ( ρ= 0.894), with city-

specific fixed effects controlling for time-invariant 

unobserved heterogeneity throughout all specifications. Full 

model parameters, diagnostic tests, and robustness checks 

are detailed in the methodological appendix available upon 

request. In alignment with open science principles, the 

anonymized dataset and replication code will be made 

publicly available through the [Journal/Repository Name] 

data repository upon publication, including neighborhood-

level housing price indices (with exact locations aggregated to 

preserve privacy), composite digital infrastructure and 

environmental quality indicators, all control variables, and 

R/Python scripts for spatial econometric analysis and 

machine learning model implementation. The data package 

includes detailed variable descriptions, construction 

procedures for composite indices, and step-by-step 

instructions for reproducing all tables and figures, with 

sensitive information such as specific building addresses and 

individual transaction details removed to comply with data 

protection regulations while maintaining analytical integrity. 
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Researchers seeking access to the non-anonymized version 

for extended analysis may contact the corresponding author 

to arrange appropriate data sharing agreements, subject to 

ethical review board approval. 

Table 1. Data sources and indicators for smart eco-city and housing 
price analysis 

Category Indicator Measurement Data Source 
Spatial 
Scale 

Housing 
Market 

Property price 
Price per 
square meter 

Real estate 
Transaction 
records 

Neighborhood 

 
Price 
growth rate 

Annual 
percentage 
change 

Calculated 
from 
Historical 
records 

Neighborhood 

 
Transaction 
volume 

Number of 
sales 

Real estate 
market 
reports 

District 

Smart City 
Features 

Digital 
infrastructure 

Coverage of 
IoT sensors 

Municipal 
technology 
departments 

Grid-based 

 
Network 
connectivity 

5G signal 
strength 

Telecommunic
ations 
providers 

Grid-based 

 
Smart 
service 
usage 

Adoption rate 
of 
digital services 

Municipal 
Government 
records 

District 

Eco-City 
Features 

Green 
space 
coverage 

Percentage 
of area 

Remote 
sensing data 

Grid-based 

 Air quality AQI readings 

Environmenta
l 
monitoring 
stations 

Monitoring 
points 

 
Energy 
efficiency 

Building 
energy 
ratings 

Urban 
Planning 
departments 

Building 
level 

Control 
Variables 

Location 
attributes 

Distance to 
CBD 

GIS calculation Point-based 

 
Socioeconomic 
factors 

Income levels Census data 
Census 
tract 

 
Building 
characteristics 

Age, size, 
amenities 

Property 
databases 

Building 
level 

 
As shown in Table 1, it presents the key data sources and 
indicators used in this study to analyze the relationship 
between smart eco-city features and housing price formation. 
The varying spatial scales reflect optimal measurement 
resolutions for different phenomena: grid-based 
measurements (500m × 500m) for digital infrastructure and 
green space capture continuous spatial variations while 
maintaining computational efficiency, point-based 
observations for air quality monitoring stations and CBD 
distances preserve measurement precision at sensor 
locations, and building-level data for energy ratings and 
property characteristics maintain the granularity necessary 
for accurate valuation modeling. To ensure cross-indicator 
comparability despite scale heterogeneity, all variables 
undergo spatial interpolation to a common 500m grid using 
kriging for continuous variables (achieving cross-validation 
RMSE < 0.15 for all indicators) and kernel density estimation 
for point data, with building-level attributes aggregated 
through spatial joins that weight observations by residential 
floor area. This harmonization process, validated through 
sensitivity analysis using alternative grid resolutions (250m 

and 1000m), demonstrates robust coefficient stability 
(variation < 8%) while preserving the information content 
inherent to each indicator's native measurement scale, 
thereby balancing methodological rigor with practical data 
constraints while enabling integrated multi-scale analysis 
essential for capturing smart eco-city complexity. The 
indicators are organized into four categories: housing market 
metrics, smart city features, eco-city features, and control 
variables. Each indicator is associated with specific 
measurement approaches, data sources, and spatial scales of 
analysis, facilitating replicability and methodological 
transparency 

4. Results 

4.1  Smart eco-city implementation patterns 
The analysis of smart eco-city implementation patterns 

reveals distinct strategic approaches across different urban 
contexts. The analysis of the different deployments of digital 
infrastructure in the case study cities reinforces the relevance 
of this symbiotic framework. While the model contributes to 
understanding the collaborative processes, it does not 
sufficiently address the spatial complexity of outcomes that 
arose from the analysis. The geography of digital 
infrastructure is characterized by striking clustering, which is 
most pronounced in central business districts and recently 
developed regions, suggesting the potential existence of 
digital divides that may impact housing market trends. The 
execution techniques across case study cities demonstrate a 
mix of approaches, ranging from techno-centric to eco-centric 
paradigms. The results support this integrative possibility 
while emphasizing significant contextual differences. Cities 
with effective institutional mechanisms for coordinating 
technology and ecological departments exhibit stronger 
integration in their implementation patterns, resulting in a 
greater balance between digital and environmental 
infrastructure. Such integration appears to yield more 
cohesive spatial value propositions, which are widely evident 
in the housing price geography.  

4.2  Housing price spatial patterns 
The spatial examination of housing price distribution 

reveals distinct features in relation to smart eco-city 
development. This is notable in intelligent ecological urban 
development, where property markets appear to continually 
capitalize on ecological amenities and spatially configure 
value in an ecologically sensitive manner. The geographical 
analysis reveals notable premiums associated with the price 
of residential properties in areas with a high concentration of 
digitized infrastructure and environmental quality indicators. 
Advanced artificial intelligence pattern recognition 
techniques reveal complex non-linear relationships in these 
spatial distributions that traditional statistical methods might 
overlook. Yet these premiums, contrary to the traditional 
expectation of a flat value contour, are not only complex but 
they are also spatially differentiated, reflecting different 
degrees of realization and local market behavior. The 
existence of such heterogeneity underscores the importance 
of considering context in the interaction between the features 
of smart eco-cities and housing price development. The 
analysis of the alterations in the price distribution over time 
reveals an accelerating divergence between the 
neighborhoods that embody the stronger and weaker 
characteristics of the smart eco-city. Areas with high 
accessibility to both digital services and environmental 
amenities experience significantly higher price appreciation 
than those with access to only one dimension or none. This 
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finding implies that there is increasing market recognition of 
the fusion of smart and eco attributes as opposed to their 
singular components which indicates emerging synergistic 
value propositions in urban housing markets. However, this 
trend raises important questions about spatial equity and 
access to these integrated urban benefits across different 
socioeconomic groups. As shown in Figure 3, it illustrates the 
spatial variation in housing prices across four distinct urban 
development zones defined by the intersection of digital 
infrastructure and environmental quality levels. Each circle 
represents an individual neighborhood within the study area, 
with both the size and color intensity of the circles 
proportional to housing price levels—larger, darker red 
circles indicate higher property values while smaller, lighter 
blue circles represent lower values. The visualization reveals 
a pronounced quadrant-based pattern that supports the 
hypothesized synergistic relationship between smart city and 
eco-city features. In the upper right quadrant, where 
neighborhoods exhibit both high digital infrastructure (such 
as IoT sensor networks, fiber optic connectivity, and smart 
service availability) and high environmental quality 
(including extensive green spaces, superior air quality, and 
energy-efficient buildings), housing prices are substantially 
higher (ranging from 180 to 220 monetary units) than in all 
other zones. This premium significantly exceeds what would 
be expected from a simple additive effect of the two 
dimensions, providing compelling evidence for the 
synergistic value creation hypothesized in the theoretical 
framework. The upper left and lower right quadrants 
represent neighborhoods with asymmetrical development 
patterns. The upper left zone (low digital infrastructure but 
high environmental quality) shows moderate housing prices 
(130-150 monetary units), demonstrating that 
environmental amenities alone generate notable property 
value increases.  

 

Similarly, the lower right zone (high digital 
infrastructure but low environmental quality) also exhibits 
moderate housing prices (140-160 monetary units), 
suggesting that digital infrastructure commands comparable 
premiums. Interestingly, the slight difference between these 
two zones indicates that the market may place a marginally 
higher value on digital infrastructure compared to 
environmental quality when they exist in isolation, though 
this difference falls within the margin of statistical 
uncertainty. The lower left quadrant, characterized by 
neighborhoods with both low digital infrastructure and low 
environmental quality, displays the lowest housing prices 
(100-120 monetary units) across all zones. These areas 
represent either underdeveloped neighborhoods or those 
that have not benefited from smart eco-city investments, 
creating potential concerns about spatial equity in urban 
development patterns. The clear gradation of housing prices 
across these four zones provides strong empirical support for 
the spatial value reassessment hypothesis proposed in this 
study. The directional arrows along the axes emphasize the 
continuous nature of these relationships, indicating that even 
incremental improvements in either digital infrastructure or 
environmental quality can contribute to housing price 
increases, with the most substantial gains occurring when 
both dimensions are enhanced simultaneously. 

4.3  Impact Analysis 
The correlation analysis between smart city indicators 

and housing prices reveals significant positive relationships 
that vary in strength across different urban contexts. The 
findings indicate that digital infrastructure density shows 
moderate positive correlations with housing prices (r = 0.62), 
while smart service usage demonstrates even stronger 
associations (r = 0.71).  

 

 
Figure 3. Housing prices across different smart eco-city development zones 
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However, the strength of these correlations is 
significantly moderated by the presence of environmental 
amenities, suggesting important interaction effects between 
digital and ecological dimensions. Areas with high levels of 
both digital services and environmental quality exhibit 
correlation coefficients that exceed the sum of their individual 
effects, providing empirical support for the hypothesized 
synergistic value creation. Environmental quality effects on 
housing prices demonstrate a substantial impact across all 
case study areas, though with important variations in 
valuation patterns. The analysis confirms this trend while 
providing more granular insights into specific environmental 
attributes. Air quality indicators show consistently strong 
correlations with housing prices (r = 0.68), while green space 
accessibility demonstrates more variable relationships 
depending on urban context and configuration. The 
differential valuation of environmental attributes suggests 
that the market responds not merely to the presence of 
ecological features but to their functional integration within 
the broader urban fabric. This finding highlights the 
importance of holistic planning approaches that consider 
both the spatial configuration and functional connectivity of 
environmental amenities in smart eco-city development. 
Figure 4 presents the correlation analysis between various 
smart eco-city indicators and housing market metrics, 
revealing the relative strength of associations across digital 
infrastructure components, environmental quality 
dimensions, and their combined indices, with particular 
emphasis on how synergistic measures demonstrate 
substantially stronger correlations than individual indicators. 
As shown in Table 2, the housing price analysis across 
different smart eco-city development zones provides 
compelling evidence of the synergistic value creation 
hypothesis. Neighborhoods with high levels of both digital 
infrastructure and environmental quality (Zone 4) command 
price premiums of 60-100% above baseline areas—
substantially exceeding what would be expected from a 
simple additive combination of the individual effects 
observed in Zone 2 (15-40%) and Zone 3 (25-45%). This non-
linear price premium pattern strongly supports the 
theoretical premise that integrated smart eco-city 
development creates value propositions that transcend the 
sum of their constituent parts. 

Table 2. Housing price premiums across different smart eco-city 
development zones 

Zone 

Type 

Digital 
Infrastructu
re 

Environmental 
Quality 

Average 
Housing 
Price 
(monetary 
units) 

Premium  

Over 
Baseline 
(%) 

Sample  

Size (n) 

Zone 1 Low Low 100-120 Baseline 87 

Zone 2 Low High 130-150 15-40% 76 

Zone 3 High Low 140-160 25-45% 82 

Zone 4 High High 180-220 60-100% 75 

Note: Data derived from spatial analysis of 320 neighborhoods across 
five case study cities. Premium calculations use the midpoint of Zone 
1 (110 monetary units) as a baseline. The substantially higher 
premium in Zone 4 compared to the sum of premiums in Zones 2 and 
3 provides quantitative evidence for the synergistic effect 
hypothesized in this study. The distribution of neighborhoods across 
zones indicates a relatively balanced sample composition, enhancing 
the statistical validity of cross-zone comparisons. 

Figure 4 visualizes the correlation coefficients between 
various smart eco-city indicators and housing market metrics. 
The indicators are organized into three categories: Digital 
Infrastructure (blue), Environmental Quality (green), and 
Combined Indices (red). The bar heights represent 
correlation strength, with values above the dashed line (0.5) 
indicating strong positive relationships. The visualization 
clearly demonstrates that combined indices incorporating 
both digital and environmental dimensions (Digital-
Environmental Synergy Index and 15-Minute City 
Accessibility) exhibit substantially stronger correlations with 
both housing prices and price growth rates than individual 
indicators. Among the individual indicators, Smart Service 
Usage shows the strongest correlation with housing prices, 
while IoT Sensor Coverage has the highest correlation with 
price growth rates in the digital category. For environmental 
metrics, Air Quality Index demonstrates the strongest 
relationship with housing prices, while Energy Efficiency 
Rating correlates most strongly with price growth. This 
pattern of results provides empirical support for the 
synergistic relationship between smart city and eco-city 
features in creating spatial value, as reflected in housing 
market dynamics. 

 
Figure 4. Correlation between smart eco-city indicators and housing 
market metrics 

To further validate these relationships, spatial 
econometric modeling results are presented in Table 3. The 
Digital-Environmental Interaction term exhibits a positive 
and statistically significant coefficient (0.231, P<0.001) in the 
GWR model, substantiating the synergistic effect of these 
dimensions on housing prices beyond their individual 
contributions. This interaction effect remains robust after 
controlling for traditional determinants of housing prices, 
including distance to CBD, building characteristics, 
transportation accessibility, and neighborhood 
socioeconomic factors. The magnitude of the interaction 
coefficient (0.231) relative to the individual indices (0.342 for 
Digital Infrastructure and 0.312 for Environmental Quality) 
suggests that the synergistic effect constitutes approximately 
26% of the combined impact, providing quantitative evidence 
for the value-added proposition of integrated smart eco-city 
development. The GWR model demonstrates substantially 
improved explanatory power over the standard OLS 
approach, with R-squared increasing from 0.742 to 0.861, 
indicating that the spatially-sensitive model captures 
approximately 86% of the variation in housing prices across 
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the study area. The integration of AI-enhanced feature 
selection methods in the modeling process further improved 
the detection of spatial heterogeneity patterns, enabling more 
precise identification of local contextual factors influencing 
housing price formation. Furthermore, the GWR approach 
effectively addresses spatial autocorrelation, as evidenced by 
the reduction in Moran's I from a statistically significant 0.308 
in the OLS residuals to a non-significant 0.069 in the GWR 
model. This improvement confirms the importance of 
accounting for spatial heterogeneity in smart eco-city impacts 
on housing markets. 

Table 3. Spatial econometric model results for housing price 
determinants 

Variable OLS Model 
GWR 
Model 
(Mean) 

GWR 
Range 
(Min-
Max) 

Digital Infrastructure Index 
0.328*** 
(0.042) 

0.342*** 
(0.037) 

0.185 - 
0.487 

Environmental Quality 
Index 

0.295*** 
(0.045) 

0.312*** 
(0.040) 

0.163 - 
0.458 

Digital-Environmental 
Interaction 

0.217*** 
(0.036) 

0.231*** 
(0.032) 

0.105 - 
0.376 

Distance to CBD 
-0.156*** 
(0.029) 

-0.142*** 
(0.025) 

-0.294 - -
0.063 

Building Age 
-0.103*** 
(0.021) 

-0.098*** 
(0.018) 

-0.157 - -
0.042 

Transport Accessibility 
0.167*** 
(0.031) 

0.175*** 
(0.027) 

0.089 - 
0.263 

Income Level 
(neighborhood) 

0.184*** 
(0.033) 

0.196*** 
(0.029) 

0.102 - 
0.284 

Spatial Lag (ρ) 
0.324*** 
(0.043) 

0.298*** 
(0.037) 

0.129 - 
0.415 

Constant 
3.245*** 
(0.246) 

Variable by 
location 

- 

Model Diagnostics    

R-squared 0.742 0.861 - 

AIC 876.45 749.12 - 

Moran's I (residuals) 0.308*** 0.069 (n.s.) - 

Note: Standard errors in parentheses. ***P<0.001, **P<0.01, P<0.05, 
n.s. = not significant; Dependent variable: Log of housing price per 
square meter; Sample size: 320 neighborhoods across five urban 
areas; Coefficients for GWR model represent means across spatial 
units, with range indicating spatial variation 

The substantial range in coefficient values across spatial 
units (e.g., Digital Infrastructure Index ranging from 0.185 to 
0.487) demonstrates the spatial heterogeneity in these 
relationships, underscoring the importance of local context in 
mediating smart eco-city impacts on housing markets. This 

spatial variation aligns with the theoretical premise that 
place-specific factors—including institutional arrangements, 

cultural preferences, and historical development patterns—

significantly moderate how digital and environmental 
features translate into property values. The converging 
evidence from descriptive price premium analysis (Table 2), 
correlation coefficients (Figure 4), and regression modeling 
(Table 3) provides robust, multi-method support for the 
central hypothesis regarding synergistic value creation in 
smart eco-city contexts. This triangulation of empirical 
findings significantly strengthens the validity of the 
conclusions regarding the transformative impact of 
integrated smart eco-city development on spatial value 
assessment and housing price formation mechanisms. 

5. Discussion 

5.1  Spatial value reassessment mechanisms 
The empirical findings from this study reveal complex 

spatial value reassessment mechanisms in smart eco-city 
contexts that significantly influence housing price formation. 
Digital transformation effects on spatial value operate 
through multiple pathways, creating new hierarchies of 
urban desirability. As Kong and Chen [3] demonstrate in their 
quasi-natural experiment on smart city pilot policies, digital 
initiatives generate positive externalities that extend beyond 
direct technological benefits to reshape environmental 
governance structures. This technological-ecological 
interface creates novel spatial value propositions that 
property markets increasingly capitalize on. However, the 
analysis suggests that the spatial distribution of these value 
propositions is more uneven than Kong and Chen 
acknowledge, with significant variations in how different 
urban areas translate digital capabilities into tangible 
property value outcomes. The temporal dynamics of this 
process indicate an accelerating differentiation between 
digitally-enabled and traditional urban spaces, suggesting 
that digital transformation may be creating new forms of 
spatial inequality that require policy attention. These 
emerging spatial inequalities reflect what Yigitcanlar et al. 
[19] term the 'digital divide paradox' in smart cities, where 
technological initiatives intended to enhance urban 
sustainability may inadvertently create new forms of socio-
spatial segregation unless explicitly designed with equity 
considerations. 

Environmental considerations in spatial value 
reassessment demonstrate significant contextual variability 
across urban settings. Nguyen and Vu [2] conceptualize eco-
cities as planning frameworks oriented toward sustainable 
development goals, highlighting the importance of integrating 
ecological principles into urban governance structures. The 
findings extend this conceptualization by demonstrating how 
environmental quality becomes monetized through housing 
markets in ways that reflect both ecological and technological 
characteristics. The synergistic relationship between 
environmental amenities and digital accessibility creates 
compound value effects that exceed the sum of their 
individual impacts. This interaction suggests that 
environmental planning should not be pursued in isolation 
from digital infrastructure development if maximizing spatial 
value creation is an objective. However, the distributional 
implications of this value creation require careful 
consideration to avoid exacerbating socio-spatial inequalities 
through eco-gentrification processes. Importantly, the cross-
cultural analysis reveals significant variations in how digital-
environmental value synergies are perceived and monetized 
across different cultural contexts. European cities in the 
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sample demonstrated stronger valuation of environmental 
quality indicators (coefficient range: 0.283-0.458) compared 
to Asian cities (coefficient range: 0.163-0.305), while Asian 
urban markets placed relatively higher premiums on digital 
infrastructure (coefficient range: 0.327-0.487) compared to 
European markets (coefficient range: 0.185-0.349). The 
North American case exhibited an intermediate pattern, with 
more balanced valuation between both dimensions. These 
differences likely reflect varying cultural attitudes toward 
technology adoption and environmental consciousness, as 
well as distinct historical trajectories of urban development. 
For instance, the strong environmental value premium in 
European contexts aligns with the region's longer history of 
environmental policy integration and public awareness, while 
the higher technological premium in Asian cities reflects their 
more recent emphasis on technological leapfrogging as a 
development strategy. These cross-cultural variations 
highlight the importance of contextually sensitive 
implementation strategies for smart eco-city initiatives, 
rather than universal policy templates. 

5.2 Theoretical and practical implications 
This research contributes to advancing theoretical 

understanding of spatial economics in digitally transformed 
urban environments by developing an integrated framework 
that connects technological innovation, environmental 
quality, and housing market dynamics. Building on Kim and 
Choi's [13] analysis of market mechanisms in the urban 
building sector, this study proposes that smart eco-city 
development creates new value categories that conventional 
housing price models fail to adequately capture. The 
integration of artificial intelligence in urban management 
systems represents a crucial advancement in this value 
creation process, as AI-driven predictive analytics enable 
more sophisticated resource allocation and service 
optimization that traditional management approaches cannot 
achieve. These AI systems can detect emerging patterns in 
spatial value distribution before they become apparent 
through conventional market indicators, potentially allowing 
for more proactive policy interventions to address spatial 
inequalities. The empirical findings confirm the hypothesized 
synergistic relationship between digital and environmental 
dimensions, suggesting the need for more integrated 
theoretical approaches that transcend disciplinary 
boundaries between urban technology studies and 
environmental economics. The documented spatial 
heterogeneity in value creation patterns demonstrates the 
importance of contextualizing theoretical models within 
specific urban governance frameworks and institutional 
arrangements. 

Policy recommendations emerging from this research 
emphasize the need for coordinated governance approaches 
that align digital and environmental planning to maximize 
spatial value creation while ensuring equitable distribution. 
Cheshmehzangi et al. [6] propose an augmented multi-scalar 
framework for sustainable urbanism that provides a valuable 
foundation for such integration. The findings suggest that this 
framework should be extended to explicitly incorporate 
housing market dynamics and spatial equity considerations. 
Zhang and Li [20] further emphasize that the successful 
integration of digital and environmental governance requires 
robust institutional coordination mechanisms that transcend 
traditional departmental boundaries. Legal and regulatory 
frameworks play a crucial mediating role in this relationship, 
as demonstrated by the data on differential housing price 
premiums across urban contexts. Cities with robust 

environmental legislation combined with progressive digital 
governance policies (particularly evident in the European 
case studies) showed more balanced spatial distribution of 
price premiums (variance coefficient of 0.23 compared to 
0.41 in cities with fragmented regulatory approaches). 
Romano's [14] analysis of policy transfer mechanisms is 
particularly relevant here, as the findings indicate that legal 
frameworks that explicitly integrate digital and 
environmental governance— rather than treating them as 

separate regulatory domains—create more coherent spatial 

value propositions. This integration requires legislative 
innovation that transcends traditional sectoral boundaries, 
potentially through omnibus smart eco-city laws that 
simultaneously address technological deployment standards, 
environmental protection requirements, and spatial equity 
provisions. Specific policy interventions should include 
integrated spatial planning that coordinates digital 
infrastructure deployment with environmental enhancement, 
value capture mechanisms that redistribute some of the price 
premiums generated by smart eco-city initiatives to support 
affordable housing, and regulatory frameworks that ensure 
digital infrastructure across diverse neighborhoods to 
prevent digital divides from reinforcing existing socio-spatial 
inequalities. These interventions should be codified in 
binding legal instruments rather than aspirational policy 
documents to ensure implementation effectiveness and 
accountability. 

5.3 Limitations and future research 
This study has several limitations that suggest directions 

for future research. Data availability constraints limited the 
temporal scope of the analysis to 2015-2023, making it 
difficult to fully capture long-term value reassessment 
dynamics that may unfold over decades. Additionally, the case 
selection focused primarily on established urban areas with 
relatively developed governance structures, potentially 
limiting the generalizability of findings to rapidly urbanizing 
contexts with emerging institutional frameworks, 
particularly in Global South regions underrepresented in the 
sample. The sampling approach also presents specific 
limitations. While the 320 neighborhoods provide adequate 
statistical power, the distribution across five cities (averaging 
64 neighborhoods per city) means that city-specific analyses 
have relatively small sample sizes, increasing the potential for 
Type II errors in sub-sample analyses. Furthermore, the 
neighborhood selection process may contain inherent biases, 
as neighborhoods with comprehensive data availability 
(particularly regarding digital infrastructure metrics) are 
likely to be more affluent and technologically advanced than 
those with missing data points that were consequently 
excluded from analysis. Methodologically, while the spatial 
econometric approach enabled robust pattern identification, 
causal mechanisms remain difficult to definitively establish 
due to the complex interplay of multiple variables in urban 
housing markets. The GWR model, though superior to OLS for 
this dataset, assumes spatial stationarity in kernel bandwidth, 
which may not hold across the heterogeneous urban 
environments studied. The measurement of digital 
infrastructure through IoT sensor coverage and network 
connectivity may also be insufficient to capture the 
multidimensional nature of digital accessibility and utility. 
Future research should address these limitations through 
longitudinal studies that track smart eco-city value dynamics 
over extended timeframes, comparative analyses of value 
formation mechanisms across diverse global contexts 
(particularly including more cities from the Global South), 
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and mixed-methods approaches that combine quantitative 
spatial analysis with qualitative investigations of stakeholder 
decision-making processes. Additionally, exploring advanced 
artificial intelligence applications for real-time monitoring of 
housing market dynamics in smart eco-cities could overcome 
current methodological limitations in capturing complex 
spatial relationships. AI-enabled digital twins of urban 
environments could simulate policy interventions before 
implementation, providing more robust evidence for 
decision-making than current models allow. Particularly 
promising research directions include exploring how 
different legal and regulatory frameworks mediate the 
relationship between innovative eco-city development and 
housing market outcomes, examining the interaction 
between technological innovation and environmental justice 
in spatial value distribution, and developing predictive 
models that can forecast potential displacement effects of 
integrated digital-environmental urban initiatives. 

6. Conclusion 

This study demonstrates that smart eco-city 
management paradigms fundamentally transform housing 
price formation through synergistic pathways. 
Neighborhoods with high digital infrastructure and 
environmental quality command 60-100% price premiums, 
substantially exceeding individual effects of digital (25-45%) 
or environmental (15-40%) factors. The Digital-
Environmental Synergy Index (r = 0.83) confirms this 
synergistic value creation. To address emerging spatial 
inequalities, the study proposes three policy innovations: 
Smart Eco-City Inclusionary Zoning, which mandates the 
balanced deployment of digital-environmental amenities; 
Digital-Environmental Value Capture mechanisms that 
redirect 15-25% of attributable property tax increases 
toward affordable housing; and Tiered Digital Accessibility 
Standards, establishing minimum connectivity thresholds in 
underserved areas. The research contributes to 
environmental law and policy by empirically demonstrating 
the economic rationale for integrated environmental and 
technological governance, revealing how legislative 
fragmentation creates spatial inequities, and highlighting 
regulatory variations across European, North American, and 
Asian contexts. The proposed policy instruments extend 
existing environmental value capture frameworks to address 
emerging challenges at the intersection of digital 
transformation and environmental justice. Urban 
development requires integrated legal frameworks that 
transcend traditional sectoral approaches, ensuring equitable 
distribution of smart eco-city benefits across diverse 
neighborhoods. 
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