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A B S T R A C T 
 

The increasing complexity and volatility of modern financial markets 

necessitate advanced anomaly detection systems that can identify irregular 

patterns, which may signal market manipulation, systemic risks, or emerging 

crises. This research presents a comprehensive deep learning framework for 

real-time anomaly detection in stock markets, integrated with business 

decision support systems to enhance risk management and regulatory 

compliance. We propose and evaluate four distinct deep learning architectures: 

LSTM-Autoencoder, Variational Autoencoder (VAE), Transformer-based 

models, and an ensemble approach, utilizing high-frequency trading data from 

major stock exchanges spanning 2019-2024. Our methodology incorporates 

multi-dimensional feature engineering, including technical indicators, market 

microstructure variables, and sentiment analysis, processed through advanced 

normalization techniques. The experimental results demonstrate that the 

Transformer-based ensemble model achieves superior performance with an 

F1-score of 0.89 and AUC of 0.94, representing a 43.5% improvement over 

traditional methods (F1=0.62 for ARIMA-GARCH) and 17% improvement over 

standalone machine learning approaches (F1=0.76 for XGBoost). The system 

successfully detected 92% of major market anomalies with a 15-minute average 

early warning time while maintaining a false positive rate below 3%. 
Furthermore, the integration with decision support systems yielded a 34% 

improvement in risk-adjusted returns for test portfolios, reducing decision-

making time by 67.3% (from 98s to 32s) and achieving cost savings of $35.2M 

monthly across deployed institutions. This research contributes to financial 

technology by bridging the gap between advanced deep learning techniques 

and practical business applications, offering a scalable solution for market 

surveillance and risk management in increasingly complex financial 

ecosystems. 

1. Introduction 

Contemporary financial markets face unprecedented 
complexity and vulnerability to systemic risks, with 
anomalies ranging from flash crashes to sophisticated market 
manipulation causing severe economic disruptions. 
Traditional statistical methods, such as GARCH and ARIMA 
models, have proven inadequate in capturing the non-linear, 
high-dimensional patterns characterizing modern markets, 
particularly with the increasing prevalence of high-frequency 
trading and algorithmic participation [1]. Deep learning 
technologies have revolutionized financial anomaly detection 
through advanced neural architectures. LSTM networks, 
autoencoders, and transformer models demonstrate 

remarkable success in capturing temporal dependencies and 
detecting subtle market deviations [2]. The global anomaly 
detection market, valued at $5.04 billion in 2022 and 
projected to reach $17.12 billion by 2031 (CAGR 16.5%), 
reflects the critical adoption of AI technologies in financial 
services [3]. Significant challenges persist in developing 
effective anomaly detection systems. The scarcity of labeled 
data, the dynamic nature of the market, and the real-time 
processing requirements present substantial implementation 
challenges. Detecting anomalies in multivariate time series 
requires sophisticated approaches capturing both temporal 
and cross-sectional dependencies while maintaining 
computational efficiency [4]. Recent research has shown that 
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transformer-based models, such as TranAD, utilize self-
attention mechanisms to achieve superior performance in 
detecting market anomalies [5]. Integration with business 
decision support frameworks remains a critically 
underexplored area. While numerous studies focus on 
detection algorithms, few address practical incorporation 
into organizational decision-making processes. System 
effectiveness depends not only on technical accuracy but also 
on providing actionable insights seamlessly integrated into 
existing infrastructure [6]. Model interpretability remains a 
concern in regulated environments that require decision 
transparency. To address these challenges, this research 
develops a comprehensive deep learning framework 
combining state-of-the-art anomaly detection with practical 
decision support functionality. Building on LSTM-
autoencoder architectures demonstrating exceptional 
sequential data performance with >99% reconstruction 
accuracy [7], we propose a multi-model approach leveraging 
complementary neural network strengths. The framework 
incorporates variational autoencoders for probabilistic 
scoring, transformers for long-range dependencies, and 
ensemble methods for improved robustness [8]. Recent 
studies highlight the importance of combining market 
microstructure data, sentiment indicators, and 
macroeconomic variables for comprehensive detection [9]. 

Problem Statement: The core challenge addressed in this 
research is the inability of current anomaly detection systems 
to simultaneously achieve (1) high detection accuracy for 
diverse anomaly types in modern high-frequency markets, 
(2) real-time processing capabilities required for actionable 
alerts, and (3) seamless integration with business decision-
making processes. Existing statistical methods fail to capture 
non-linear, high-dimensional patterns, achieving F1-scores 
below 0.65 in our preliminary tests. Machine learning 
approaches improve accuracy but lack the temporal modeling 
capabilities essential for early anomaly detection, missing 
critical warning signals by 15-30 minutes. Most critically, 
even advanced detection algorithms remain disconnected 
from operational decision systems, creating a gap between 
technical capabilities and business value. Financial 
institutions report that 73% of detected anomalies fail to 
translate into actionable decisions due to a lack of 
interpretability, context, and integration with existing risk 
management frameworks. This research addresses these 
interconnected challenges by developing an integrated deep 
learning framework that not only detects anomalies with high 
accuracy but also provides interpretable, actionable insights 
within existing business workflows. This study pursues four 
specific objectives: 
• To develop and validate a comprehensive deep learning 

framework that achieves >85% F1-score across diverse 
financial anomaly types while maintaining sub-second 
detection latency; 

• To systematically evaluate and optimize four state-of-the-
art architectures (LSTM-Autoencoder, VAE, Transformer, 
and Ensemble) for their complementary strengths in 
detecting different anomaly patterns; 

• To design and implement a practical integration 
framework that bridges anomaly detection outputs with 
business decision support systems, reducing the detection-
to-action gap from hours to minutes; 

• To demonstrate real-world effectiveness through 
deployment case studies showing measurable 
improvements in risk-adjusted returns and operational 
efficiency. 

These objectives directly address our three fundamental 
research questions: How can deep learning models be 
optimized for various anomaly types while maintaining real-
time efficiency? Which architectures demonstrate superior 
performance for specific anomaly categories? How can 
detection systems integrate into existing frameworks while 
ensuring regulatory compliance [10]? The research 
significance extends beyond technical innovation to address 
pressing market needs. Recent events, including the 
GameStop trading frenzy and flash crashes, highlight financial 
system vulnerabilities [11]. By developing more effective 
detection systems, this research contributes to market 
stability, investor protection, and financial system integrity, 
with applications in regulatory compliance and risk 
management [12]. This paper makes several significant 
contributions to financial technology and anomaly detection. 
First, we present a comprehensive evaluation of state-of-the-
art deep learning architectures specifically tailored for stock 
market anomaly detection, providing empirical evidence of 
their relative strengths and limitations. Second, we develop a 
novel ensemble framework that combines multiple deep 
learning models to achieve superior detection performance 
while maintaining interpretability. Third, we design and 
implement a practical integration framework that bridges the 
gap between academic research and industry application, 
addressing real-world constraints such as latency 
requirements, data quality issues, and regulatory compliance 
needs. Finally, we provide extensive experimental validation 
using real market data, demonstrating the effectiveness of our 
approach in detecting various types of anomalies across 
different market conditions. 

2. Literature review 

2.1 Traditional anomaly detection in financial markets 
Traditional methods of anomaly detection in the finance 

sector have primarily employed statistical methods in 
conjunction with classical machine learning techniques to 
identify unusual patterns and assess potential risks. Notably, 
among the most powerful statistical methods used are the 
Autoregressive Integrated Moving Average (ARIMA) models 
and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models, which are critical in 
describing the volatility clustering and time-dependency 
phenomenon in financial time-series data. Such methods are 
based on the hypothesis that the market returns follow 
certain statistical distributions, hence allowing one to use 
past data to predict future anomalies accurately. Hybrid 
ARIMA-GARCH methods, with improved predictive capability 
in applications involving market volatility, have been recently 
found to have better performance. The literature suggests 
ARIMA(2,1,3)-GARCH(1,1) models are good at capturing 
mean and variance behavior relevant to finance products, 
where Mean Absolute Percentage Error declined by 1.549% 
to 0.045% with regard to short-term price predictions [13]. 
The shift towards machine learning approaches is seen as a 
noteworthy advancement in the performance of anomaly 
detection, as Support Vector Machines (SVM) and Random 
Forest algorithms are favored approaches due to their ability 
to handle non-linear interactions and high-dimensional data 
sets with competence. SVM-based methods frame the 
anomaly detection problem as one of classification decision-
making by projecting data into higher-dimensional spaces, 
making the patterns of abnormalities more salient. Random 
Forest algorithms, based on the paradigm of ensemble 
learning, are highly effective in fraudulent transaction 
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detection, as recent studies have explained their performance 
benefits over distance-based algorithms in terms of efficiency 
in computations and precision of detection. Empirical 
research has revealed that optimally parameterized Random 
Forest algorithms can attain detection efficiency of more than 
90% along with better false positive rates than classical 
statistical algorithms [14]. Despite their widespread use, 
traditional approaches face significant limitations in the 
setting of modern financial markets, with algorithmic trading, 
high-frequency trading, and complex interdependencies. 
Statistical methods like GARCH and ARIMA are constrained by 
linearity and stationarity assumptions, frequently failing to 
account for abrupt regime changes or rare, high-impact 
events. Machine learning methods, although more flexible, are 
compromised by the curse of dimensionality, requiring 
sophisticated feature engineering and specialized experience 
in high-dimensional spaces. Moreover, such approaches often 
fail to effectively model long-range dependencies and 
complex, time-varying relationships inherent in financial 
data. As data volume increases, computational requirements 
scale exponentially, making real-time anomaly detection in 
the high-frequency trading context extremely difficult. In 
addition, traditional methods tend to produce high false 
positive rates during times of market stress, when volatility 
patterns deviate substantially from historical norms, leading 
to alert fatigue and reduced operational efficiency [15]. 

2.2 Deep learning in finance 
Deep learning has revolutionized the field of financial 

analysis with sophisticated approaches that are able to 
uncover complex, non-linear relationships in market data 
that are not sufficiently addressed by traditional methods. In 
price prediction, the combination of convolutional neural 
networks (CNN) and particle swarm optimization (PSO) has 
shown greater effectiveness by incorporating feature 
selection techniques that rank features based on their 
contribution to stock returns. On the other hand, Long Short-
Term Memory (LSTM) networks are particularly good at 
learning sequential dependencies in financial time series, 
leading to significant improvements in forecast accuracy 
when combined with exhaustive preprocessing techniques 
[16]. The evolution of neural networks from simple to 
transformer-based architectures has enabled the processing 
of large sequential datasets by enhanced attention 
mechanisms, which are especially beneficial for representing 
long-range dependencies in dynamic markets. Risk 
assessment approaches have been greatly enhanced through 
the utilization of probabilistic deep neural networks, 
exemplified by the DeepVaR approach, which surpasses the 
limitations of the standard Value-at-Risk approach by 
combining uncertainty quantification in its forecasts, thereby 
being highly valuable during times of economic stress like the 
COVID-19 crisis [17]. Moreover, portfolio optimization has 
been greatly improved through deep reinforcement learning 
methods focusing on increasing risk-adjusted returns while 
managing various goals, such as wealth, variance, skewness, 
and kurtosis. Neural network-based methods have been 
found recently to be able to achieve Sharpe ratios of 1.35, 
which is greater than twice that of regression-based methods 
[18]. 

2.3 Deep learning for anomaly detection 
Deep learning methods have been identified as powerful 

methods of anomaly detection, offering sophisticated 
structures with the ability to identify complex time-based and 
space-based relationships within financial data streams. 

Autoencoders, as well as their probabilistic version, 
Variational Autoencoders (VAE), are adept at learning 
compressed representations of normal data patterns, 
allowing anomaly detection through the evaluation of the 
reconstruction errors. Lately, applications of LSTM-
Autoencoders have demonstrated high performance in 
capturing long-range sequential relationships, yielding over 
99% anomaly detection performance by combining LSTM 
sequential modeling with dimensionality reduction of 
autoencoders [19]. Additionally, the VAE architecture 
enhances detection performance by providing a probabilistic 
understanding of normative data patterns, enabling a more 
comprehensive evaluation of anomalies based on likelihood 
estimates. Generative Adversarial Networks (GANs) have 
revolutionized the domain of anomaly detection simply 
because of their ability to learn and produce realistic 
representations reflecting normal data. In particular, 
transformer-based GANs (TGAN-AD) have proven to be very 
effective in analyzing multivariate time series by efficiently 
capturing local and global temporal relations [20]. The 
incorporation of transformer architecture represents a major 
leap, as demonstrated by models like Anomaly Transformer 
and TranAD, which employ self-attention mechanisms to 
identify complex patterns over long periods of time, thus 
establishing state-of-the-art performance in detecting 
financial anomalies by modeling long-range relations and 
interactions among numerous variables effectively [21]. 

2.4 Business decision support systems 
Today's business decision-making systems have been 

significantly enhanced through the integration of artificial 
intelligence and machine learning technologies, profoundly 
altering organizational decision-making processes. Advanced 
systems, fueled by artificial intelligence, leverage 
sophisticated algorithms like deep learning, natural language 
processing, and automatic machine learning (AutoML) to scan 
large volumes of varied data, thereby providing actionable 
insights, which enhance operational effectiveness and 
strategic planning [22]. A recent breakthrough involves the 
utilization of real-time alert features, which leverage stream 
computing and predictive modeling approaches to identify 
patterns, forecast threats, and trigger instant responses when 
predefined levels are reached, thereby allowing for timely 
interventions in high-stakes situations. The human-in-the-
loop (HITL) approach has emerged as a critical design 
paradigm, addressing the modern need to build transparency, 
responsibility, and trust in artificial intelligence decision-
making systems. The HITL method uses combined feedback 
mechanisms, allowing human experts to verify, modify, and 
replace AI recommendations, thus allowing domain expertise 
and context understanding to be used to refine the 
capabilities of algorithms [23]. Empirical examples document 
how HITL platforms can reach an accuracy of 95% when 
compared to fully automated approaches, as well as 
maintaining ethical considerations and adherence to policies 
by using explainable AI components, providing objective 
explanations for each suggestion [24]. 

3. Research methodology 

3.1 Theoretical framework 
Our theoretical framework establishes the mathematical 

foundation for anomaly detection in financial markets 
through three interconnected components. First, we formally 
define anomalies in stock market data as statistically 
significant deviations from expected behavior patterns. Let 
𝑋𝑡 = 𝑃𝑡, 𝑉𝑡, 𝜎𝑡, 𝐼𝑡  represent the multivariate time series at 
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time𝑡 , where 𝑃𝑡  denotes price, 𝑉𝑡 volume, 𝜎𝑡 volatility, and 𝐼𝑡 
technical indicators. An anomaly is detected when: 

𝐴(𝑋𝑡) =
𝑑(𝑋𝑡,𝒩𝑡)

𝜎𝒩
> 𝜏                                                                (1) 

where 𝑑(𝑋𝑡 , 𝒩𝑡)  measures the distance between observed 
data and normal behavior 𝒩𝑡 , 𝜎𝒩  represents the standard 
deviation of normal patterns, and 𝜏 is the detection threshold. 
The weight allocation follows three key principles: (1) 
temporal pattern recognition is paramount in financial 
markets where anomalies manifest as time-dependent 
deviations, justifying the highest weight; (2) regulatory 
frameworks like Basel III and MiFID II require model 
transparency, necessitating a minimum 25% weight for 
interpretability; (3) high-frequency trading environments 
demand sub-second response times, requiring at least 30% 
emphasis on computational efficiency. 
The selection criteria for deep learning architectures are 
formulated through a multi-objective optimization 
framework that balances three critical factors. The overall 
architecture score 𝑆(ℳ) for model ℳ is computed as: 

𝑆(ℳ) = 𝛼 ⋅ 𝑇(ℳ) + 𝛽 ⋅ 𝐸(ℳ) + 𝛾 ⋅ 𝐼(ℳ)                           (2) 

where 𝑇(ℳ)  represents temporal modeling capability, 
𝐸(ℳ) denotes computational efficiency, 𝐼(ℳ) measures 
interpretability, and 𝛼 + 𝛽 + 𝛾 = 1.  

The weights were determined through a combination of 
expert consultation and empirical validation. We surveyed 15 
financial industry practitioners (risk managers and 
quantitative analysts) who ranked the importance of each 
criterion for anomaly detection systems. Additionally, we 
performed grid search optimization on validation data to find 
weights that maximize detection performance while meeting 
operational constraints. The final weights are: 𝑤𝑇 = 0.45 , 
𝑤𝐸 = 0.30, and 𝑤𝐼 = 0.25, reflecting the critical importance of 
temporal modeling accuracy in capturing market dynamics, 
while ensuring computational efficiency for real-time 
deployment and sufficient interpretability for regulatory 
compliance. Figure 1 illustrates the three core components of 
our theoretical framework for anomaly detection in financial 
markets. The framework integrates anomaly definition, 
architecture selection criteria, and decision support system 
design principles into a cohesive methodology. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decision support system design follows a risk-
adaptive framework where alerts are generated based on: 

𝑅(𝑡) = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝐴𝑖(𝑡) ⋅ exp(−𝜆 ⋅ 𝛥𝑡𝑖)                           (3) 

where 𝑤𝑖  represents risk weights, 𝐴𝑖(𝑡) denotes anomaly 
scores, and exp(−𝜆 ⋅ 𝛥𝑡𝑖)  provides temporal decay for 
reducing alert fatigue. 

As shown in Table 1, the transformer architecture 
achieves the highest overall score through superior temporal 
modeling capabilities, despite lower computational efficiency. 
This evaluation guides our selection of the transformer-based 
approach for the anomaly detection framework, with specific 
adaptations to address efficiency constraints through three 
compression techniques: (1) 8-bit quantization reducing 
model size by 75% with only 0.3% accuracy loss; (2) 
structured pruning removing 40% of attention heads while 
maintaining 98.2% of original performance; (3) knowledge 
distillation into a 6-layer student model achieving 2.1× 
speedup with 1.2% F1-score reduction. To validate the 
robustness of our weight selection, we conducted sensitivity 
analysis by systematically varying each weight by ±20% while 
maintaining the normalization constraint. The analysis 
revealed that the overall architecture ranking remains stable 
when weights vary within ±15%, with the transformer 
architecture consistently achieving the highest score across 
81 different weight combinations tested. The temporal 
modeling weight 𝑤𝑇 showed the highest sensitivity: reducing 
it below 0.35 shifts the optimal choice to VAE due to its 
computational efficiency advantage.  

Table 1. Architecture evaluation scores 

Architecture Temporal 
(T) 

Efficiency 
(E) 

Interpretability 
(I) 

Overall 
Score 
S(M) 

LSTM-AE 0.85 0.70 0.65 0.734 

VAE 0.70 0.85 0.75 0.765 

Transformer 0.95 0.60 0.80 0.785 

Ensemble 0.90 0.55 0.70 0.718 
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Figure 1. Theoretical framework for Deep Learning-based anomaly detection 
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However, this would compromise anomaly detection 
accuracy by 8-12% based on our validation experiments. The 
current weight configuration represents an optimal trade-off 
validated through both theoretical considerations and 
empirical performance metrics. 

3.2 Data collection and preprocessing 
Our data collection framework encompasses multiple 

sources to capture comprehensive market dynamics. The 
primary dataset consists of high-frequency tick-level data 
from major stock exchanges, including NYSE, NASDAQ, and 
LSE, covering the period from January 2018 to December 
2023. This temporal span includes both normal market 
conditions and extreme events such as the COVID-19 market 
crash and subsequent recovery, providing diverse anomaly 
patterns for model training and validation. The core financial 
variables collected include price data, trading volume, bid-ask 
spreads, and order book depth at 5-minute intervals. Market 
volatility is captured through 5-minute realized volatility 
calculations. Feature engineering transforms raw market 
data into informative inputs through three categories: (1) 
Technical indicators, including RSI, MACD, and Bollinger 
Bands; (2) Market microstructure features, including 
normalized bid-ask spreads and order flow imbalance 
metrics; (3) Sentiment indicators derived from financial news 
and social media using natural language processing 
techniques. Figure 2 illustrates the comprehensive data 
preprocessing pipeline, showing the flow from multiple data 
sources through feature engineering to the final processed 
dataset. The pipeline ensures data quality through systematic 
outlier detection, missing value imputation, and 
normalization procedures. We apply z-score standardization 
for price-based features and logarithmic transformation for 
volume-based features to handle heavy-tailed distributions. 
As shown in Table 2, the feature set comprises 47 dimensions 
capturing different aspects of market behavior. The multi-
source approach ensures robustness against single-source 
failures and provides comprehensive market state 
representation for anomaly detection. 

Feature Redundancy and Multicollinearity Analysis: To 
address potential redundancy among the 47 features, we 
conducted a comprehensive correlation analysis and a 
variance inflation factor (VIF) assessment. Pearson 
correlation analysis revealed strong correlations (|r| > 0.85) 
between certain technical indicators, prompting the removal 
of 8 redundant features.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2. Feature categories after redundancy analysis 

Feature Category Number of 
Features 

Update 
Frequency 

Data Source 

Price-based 
Technical 

15 5-minute Exchange 
APIs 

Volume 
Microstructure 

12 5-minute Order Book 
Data 

Market Sentiment 8 Hourly News APIs & 
Social Media 

Volatility 
Measures 

6 5-minute Calculated 

Order Flow 
Metrics 

6 5-minute Level 2 Data 

Total Features 47 - - 

 
VIF analysis identified multicollinearity issues in 5 

features with VIF > 10, which were subsequently eliminated. 
Principal Component Analysis (PCA) on the remaining 34 
features showed that 95% of variance is captured by 22 
principal components, confirming significant but manageable 
redundancy. However, we retained all 34 features rather than 
using PCA-transformed features to preserve interpretability 
crucial for financial decision-making. Instead, we rely on 
L1/L2 regularization in our deep learning models to handle 
remaining multicollinearity, with regularization parameters 
λ₁ = 0.001 and λ₂ = 0.01 determined through cross-validation. 

3.3 Proposed Deep Learning models 
We propose four complementary deep learning 

architectures designed to capture different aspects of 
anomalous patterns in financial time series. Each model 
leverages distinct mechanisms for temporal dependency 
modeling and anomaly scoring. 
Model 1: LSTM-Autoencoder. The LSTM-Autoencoder 
architecture consists of an encoder-decoder structure with 
bidirectional LSTM layers. The encoder compresses the input 
sequence X_t into a latent representation z, while the decoder 
reconstructs the sequence. Anomalies are detected when the 
reconstruction error exceeds a threshold computed using: 

𝜃𝐿𝑆𝑇𝑀 = 𝜇𝑟𝑒𝑐 + 𝑘 ⋅ 𝜎𝑟𝑒𝑐                                                               (3) 

where 𝜇𝑟𝑒𝑐 and 𝜎𝑟𝑒𝑐 are the mean and standard deviation of 
reconstruction errors on the validation set containing only 
normal data, and k  is determined through ROC curve 
optimization.  
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Figure 2. Data collection and preprocessing pipeline 
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Specifically, we select 𝑘 that maximizes the Youden index 𝐽 =
𝑇𝑃𝑅 − 𝐹𝑃𝑅  on the validation set, resulting in 𝑘 = 2.58 
(corresponding to 99.5% confidence interval). 
Model 2: Variational Autoencoder (VAE). The VAE learns a 
probabilistic mapping to a latent space, enabling robust 
anomaly detection through likelihood estimation. The 
encoder outputs parameters of a Gaussian distribution: 

𝜇𝑧, 𝜎𝑧 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋)                                                                (4) 

where 𝑋 ∈ ℝ𝑛×𝑑  is the input time series data with 𝑛  time 
steps and 𝑑 features, 𝜇𝑧 ∈ ℝ𝑘  and 𝜎𝑧 ∈ ℝ𝑘  are the mean and 
standard deviation vectors of the latent distribution with 
dimension𝑘 .The latent representation is sampled using the 
reparameterization trick: 

𝑧 = 𝜇𝑧 + 𝜖 ⋅ 𝜎𝑧, 𝜖~𝒩(0, 𝐼)                                             (5) 

where 𝑧 ∈ ℝ𝑘 is the latent representation, 𝜖 is a random noise 
vector sampled from the standard normal distribution 
𝒩(0, 𝐼) , and 𝐼  is the identity matrix. The loss function 
combines reconstruction error and KL divergence: 

ℒ𝑉𝐴𝐸 = 𝔼[||𝑋 − 𝑋̂||2] + 𝛽 ⋅ 𝐾𝐿(𝑞(𝑧|𝑋)||𝑝(𝑧))         (6) 

where 𝑋̂  is the reconstructed output, 𝔼[·]  denotes 
expectation, 𝛽  is a hyperparameter controlling the KL 
divergence weight (typically 0.01-1.0), 𝑞(𝑧|𝑋)is the encoder 
distribution, and 𝑝(𝑧) = 𝒩(0, 𝐼)  is the prior distribution. 
where 𝛽  controls the trade-off between reconstruction and 
regularization.  
The anomaly detection threshold for VAE is determined 
through a two-step process: 

𝜃𝑉𝐴𝐸 = −log(𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)                                                               (7) 

where 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set at the 5th percentile of reconstruction 
probabilities from normal validation data. Additionally, we 
employ adaptive thresholding: 

𝜃𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑡) = 𝜃𝑉𝐴𝐸 ⋅ (1 + 𝛾 ⋅ 𝑉𝑡)                                            (8) 

where 𝑉𝑡  is the normalized market volatility at time  𝑡 , and 
𝛾 = 0.3 is empirically determined to minimize false positives 
during high volatility periods while maintaining a 95% true 
positive rate. 
Anomalies are detected using the reconstruction probability: 

𝑃(𝑋) = exp(−ℒ𝑉𝐴𝐸(𝑋))                                                             (9) 

Model 3: Transformer-based Anomaly Detection. The 
transformer architecture leverages self-attention 
mechanisms to capture long-range dependencies without 
recurrence. The multi-head attention computes: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                         (10) 

where queries 𝑄, keys 𝐾, and values 𝑉 are linear projections 
of the input. Multi-head attention aggregates ℎ  parallel 
attention operations: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, . . . , headℎ)𝑊𝑂       (11) 

The anomaly score is computed based on the attention 
weights' entropy: 

𝐻att = − ∑ 𝑎𝑖𝑗
𝑖,𝑗

log(𝑎𝑖𝑗)                                                             (12) 

where 𝑎𝑖𝑗  represents attention weights. High entropy 

indicates diffuse attention patterns typical of anomalies. 

Model compression implementation: To address 
computational constraints for real-time deployment, we 
apply three optimization techniques: 
Mixed-precision quantization: We implement INT8 
quantization for attention weight matrices while maintaining 
FP16 for critical computations, reducing the memory 
footprint from 45MB to 11.3MB. 
Attention head pruning: Through importance scoring based 
on gradient magnitudes, we prune 40% of attention heads 
(from 8 to 5 heads), reducing inference time from 35ms to 
19ms. 
Knowledge distillation: We train a compact 6-layer student 
model (2.1M parameters) to mimic the 12-layer teacher 
model, achieving 94% of the teacher's performance with 53% 
latency reduction. 
The combined optimization reduces inference time to 18ms 
while maintaining an F1-score of 0.876 (compared to 0.89 for 
the full model), meeting real-time requirements without 
significant performance degradation. 
Threshold optimization strategy: For all models, we 
employ a unified threshold optimization approach combining 
statistical confidence intervals with ROC curve analysis. The 
optimization process involves: (1) computing baseline 
thresholds using the 99th percentile of normal data scores; 
(2) fine-tuning through grid search to maximize 𝐹𝛽  score with 

𝛽 = 0.5  to prioritize precision in financial applications; (3) 
validating thresholds on a hold-out dataset spanning different 
market conditions. This ensures robust performance across 
varying market regimes while minimizing false alarms. 
Model 4: Ensemble Approach. The ensemble combines 
predictions from the three base models using a weighted 
voting mechanism. The final anomaly score is: 

𝐴ensemble(𝑋𝑡) = ∑ 𝑤𝑖
3
𝑖=1 ⋅ 𝐴𝑖(𝑋𝑡)                                           (13) 

where weights 𝑤𝑖  are optimized using validation data to 
minimize false positive rates while maintaining sensitivity. 
The weight optimization problem is formulated as: 

min𝑤𝜆 ⋅ 𝐹𝑃𝑅(𝑤) + (1 − 𝜆) ⋅ (1 − 𝑇𝑃𝑅(𝑤))                         (14) 

subject to ∑𝑤𝑖 = 1 and 𝑤𝑖 ≥ 0. 

Figure 3 illustrates the architectural details of all four models 
and their integration in the ensemble framework. The parallel 
processing design enables real-time anomaly detection with 
sub-second latency. 
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Figure 3. Financial anomaly detection framework 
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As shown in Table 3, each model offers different trade-
offs between complexity and performance. The ensemble 
approach, while computationally more intensive, provides 
superior robustness through model diversity and 
complementary strengths in capturing different anomaly 
patterns. 

Table 3. Model architecture specifications 

Model Parameters Layers Latency 
(ms) 

Memory 
(MB) 

LSTM-AE 2.3M 4 LSTM + 
2 Dense 

15 28 

VAE 1.8M 3 Dense + 
Sampling 

8 22 

Transformer 4.1M 6 
Attention 
+ 12 FFN 

25 45 

Ensemble 8.2M Combined 35 95 

(Compressed) 2.1M 3 
Attention 
+ 6 FFN 

18 11.3 

 
Adaptive Learning for Market Regime Shifts: To handle 

concept drift and market regime changes, we implement a 
sliding window retraining strategy with drift detection. The 
system monitors the Kolmogorov-Smirnov (KS) statistic 
between current and historical feature distributions: 

𝐾𝑆𝑡 = max𝑥|𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥) − 𝐹ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙(𝑥)|                        (15) 

When 𝐾𝑆𝑡 > 0.15  (empirically determined threshold), the 
model triggers incremental retraining using the most recent 
3-month data while retaining 70% of historical patterns 
through elastic weight consolidation (EWC). This approach 
prevents catastrophic forgetting while adapting to new 
market dynamics. Additionally, we employ regime-aware 
normalization that adjusts feature scaling based on detected 
market states (normal, crisis, recovery) identified through 
Hidden Markov Models. 

3.4 Evaluation metrics 
We employ comprehensive evaluation metrics to assess 

the performance of our anomaly detection models across 
multiple dimensions. For classification performance, we 
utilize precision, recall, and F1-score metrics. Precision 
measures the proportion of correctly identified anomalies 
among all detected instances: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                               (16) 

where 𝑇𝑃  represents true positives and 𝐹𝑃  denotes false 
positives. Recall quantifies the model's ability to identify all 
actual anomalies: 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                               (17) 

where 𝐹𝑁 indicates false negatives. The F1-score provides a 
harmonic mean that balances precision and recall: 

𝐹1 = 2 ⋅
𝑃⋅𝑅

𝑃+𝑅
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                             (18) 

The Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC) offers a threshold-independent evaluation of 
model performance. The ROC curve plots the true positive 
rate (TPR) against the false positive rate (FPR) across various 
decision thresholds: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
                                           (19) 

The AUC is computed as: 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅), 𝑑(𝐹𝑃𝑅)
1

0
                                           (20) 

where values approaching 1.0 indicate superior 
discriminative capability. 
The early detection rate quantifies the model's capability to 
identify anomalies before they fully manifest, crucial for 
preemptive risk management. We define the early detection 
rate as: 

𝐸𝐷𝑅 =
𝑁𝑒𝑎𝑟𝑙𝑦

𝑁𝑡𝑜𝑡𝑎𝑙
× 100%                                                             (21) 

where 𝑁𝑒𝑎𝑟𝑙𝑦  represents anomalies detected within a 

predefined time window 𝜏 before the event peak, and 𝑁𝑡𝑜𝑡𝑎𝑙 
denotes all detected anomalies. The time advantage is 
measured as: 

𝛥𝑡 = 𝑡𝑝𝑒𝑎𝑘 − 𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛                                                             (22) 

where 𝑡𝑝𝑒𝑎𝑘 is the timestamp when the anomaly reaches its 

maximum severity, and 𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 is the timestamp when the 
system first triggers an alert. For false positive rate analysis, 
we examine the temporal distribution of false alarms to 
identify patterns and optimize alert thresholds. The time-
dependent false positive rate is calculated as: 

𝐹𝑃𝑅(𝑡) =
𝐹𝑃(𝑡)

𝐹𝑃(𝑡)+𝑇𝑁(𝑡)
                                                            (23) 

where 𝐹𝑃(𝑡) is the number of false positives at time 𝑡, and 
𝑇𝑁(𝑡) is the number of true negatives at time 𝑡. Additionally, 
we employ the Matthews Correlation Coefficient (MCC) for 
balanced evaluation in imbalanced datasets: 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                         (24) 

where MCC values range from -1 to +1, with +1 indicating 
perfect prediction and 0 representing random classification. 

3.5 Business decision support integration 
The integration of anomaly detection models with 

business decision support systems requires a systematic 
framework that transforms technical outputs into actionable 
insights. Our alert generation system employs a multi-tier 
classification mechanism based on anomaly severity and 
potential market impact. The alert priority score is calculated 
as: 

𝑆𝑎𝑙𝑒𝑟𝑡 = 𝛼 ⋅ 𝐴𝑠𝑐𝑜𝑟𝑒 + 𝛽 ⋅ 𝑉𝑖𝑚𝑝𝑎𝑐𝑡 + 𝛾 ⋅ 𝑇𝑢𝑟𝑔𝑒𝑛𝑐𝑦       (25) 

where 𝐴𝑠𝑐𝑜𝑟𝑒  represents the normalized anomaly score, 
𝑉𝑖𝑚𝑝𝑎𝑐𝑡 denotes the estimated financial impact based on 

position size and market volatility, and 𝑇𝑢𝑟𝑔𝑒𝑛𝑐𝑦  reflects 

temporal criticality. The weighting parameters 𝛼, 𝛽, and 𝛾 are 
calibrated through historical incident analysis, with 𝛼 + 𝛽 +
𝛾 = 1. 
The risk quantification module translates detected anomalies 
into monetary risk exposure using a conditional Value-at-Risk 
(CVaR) framework adapted for anomalous market 
conditions: 

𝐶𝑉𝑎𝑅𝛼
𝑎𝑛𝑜𝑚𝑎𝑙𝑦

= 𝐸[𝐿|𝐿 > 𝑉𝑎𝑅𝛼] ⋅ (1 + 𝜆 ⋅ 𝐴𝑠𝑐𝑜𝑟𝑒)      (26) 

where 𝐿 represents portfolio loss, 𝑉𝑎𝑅𝛼  is the Value-at-Risk 
at confidence level  𝛼 , and 𝜆  is the anomaly amplification 
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factor. The expected shortfall under anomalous conditions is 
computed as: 

𝐸𝑆𝑎𝑛𝑜𝑚𝑎𝑙𝑦 =
1

1−𝛼
∫ 𝑉𝑎𝑅𝑢

𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝑑𝑢

1

𝛼
                                           (27) 

where 𝐸𝑆𝑎𝑛𝑜𝑚𝑎𝑙𝑦 is the expected shortfall (conditional value 

at risk) under anomalous market conditions, 𝛼 is the 
confidence level (same as in equation 23), 

𝑉𝑎𝑅𝑢
𝑎𝑛𝑜𝑚𝑎𝑙𝑦

represents the value at risk at the percentile 𝑢 
under anomalous conditions, and the integral computes the 
average of all VaR values beyond the 𝛼  threshold. The 
integration variable 𝑢  ranges from 𝛼  to 1, capturing the tail 
risk distribution. Figure 4 illustrates the integration of 
anomaly detection outputs with alert generation, risk 
quantification, and decision recommendation components. 
The feedback loop enables continuous improvement of the 
system. 
 

Anomaly Detection Alert Generation

  Priority Scoring

  Threshold Filtering

  Alert Routing

Risk Quantification

  CVaR Calculation

  Impact Assessment

  Exposure Analysis

Decision Engine

  Action Generation

  Confidence Scoring

  Execution Interface
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Figure 4. Business decision support system architecture 

The decision recommendation engine employs a rule-
based expert system augmented with machine learning to 
generate context-aware trading actions. The 
recommendation confidence score incorporates market 
conditions, historical effectiveness, and current portfolio 
state: 

𝐶𝑟𝑒𝑐 = 𝑤1 ⋅ 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 𝑤2 ⋅ 𝑀𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑤3 ⋅ 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑        (28) 

where 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the historical success probability of 
similar recommendations, 𝑀𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 measures the current 

market stability index, and 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  denotes risk-adjusted 

expected return. The action recommendation follows a utility 
maximization framework: 

𝐴∗ = argmax𝑎∈𝒜𝔼[𝑈(𝑊𝑡+1)|𝑎, 𝑆𝑡]                                           (29) 

where 𝑈(·)  represents the utility function, 𝑊𝑡+1 is future 
wealth, and 𝑆𝑡  denotes the current system state, including 
detected anomalies. 
The system incorporates human-in-the-loop validation 
through a confidence-based delegation mechanism: 

 𝐷(𝑎) = {

Auto-execute   if 𝐶𝑟𝑒𝑐 > 𝜃ℎ𝑖𝑔ℎ

Human review   if 𝜃𝑙𝑜𝑤 ≤ 𝐶𝑟𝑒𝑐 ≤ 𝜃ℎ𝑖𝑔ℎ

Reject   if 𝐶𝑟𝑒𝑐 < 𝜃𝑙𝑜𝑤

      (30) 

where 𝜃ℎ𝑖𝑔ℎ  and 𝜃𝑙𝑜𝑤  are dynamically adjusted thresholds 

based on market volatility and regulatory requirements. This 
adaptive framework ensures appropriate human oversight 
while maintaining operational efficiency in time-critical 
situations. 
 

4. Results and discussion 

4.1 Experimental setup 
Our experimental framework was implemented on a 

high-performance computing cluster designed for deep 
learning workloads. The hardware configuration consists of 
dual NVIDIA A100 GPUs with 40GB of memory each, enabling 
parallel processing of multiple model architectures. The 
system features an AMD EPYC 7742 processor with 64 cores 
operating at 2.25 GHz base frequency, complemented by 
512GB DDR4 RAM to handle large-scale financial datasets. 
Storage infrastructure comprises a 10TB NVMe SSD array 
configured in RAID 0 for optimal I/O throughput during data 
preprocessing and model training phases. The software 
environment leverages PyTorch 1.13.0 with CUDA 11.7 for 
GPU acceleration, running on Ubuntu 20.04 LTS. Additional 
frameworks include TensorFlow 2.11 for comparative 
benchmarking, scikit-learn 1.2.0 for preprocessing pipelines, 
and pandas 1.5.2 for data manipulation. Real-time data 
streaming utilizes Apache Kafka 3.3.1 with custom Python 
connectors to financial data APIs. The experimental pipeline 
integrates MLflow 2.1.1 for experiment tracking and model 
versioning, ensuring reproducibility across different 
configurations. As shown in Table 4, the computational 
infrastructure was specifically configured to handle the 
demands of real-time financial data processing and deep 
learning model training, with particular emphasis on GPU 
memory capacity for transformer architectures. 

Table 4. Computational environment specifications 

Component Specification Purpose 
GPU 2× NVIDIA A100 

(40GB) 
Model training 
acceleration 

CPU AMD EPYC 7742 
(64 cores) 

Data preprocessing 

Memory 512GB DDR4-3200 Large batch 
processing 

Storage 10TB NVMe SSD 
RAID 0 

High-speed data 
access 

Framework PyTorch 1.13.0 + 
CUDA 11.7 

Deep learning 
implementation 

OS Ubuntu 20.04 LTS System platform 
Monitoring MLflow 2.1.1 Experiment 

tracking 

 
Hyperparameter optimization employed Bayesian 

optimization using the Optuna framework to efficiently 
explore the parameter space while minimizing computational 
resources. The optimization objective function combines 
validation loss with early detection capability: 

𝑓𝑜𝑝𝑡(𝜃) = 𝛼 ⋅ ℒ𝑣𝑎𝑙(𝜃) + (1 − 𝛼) ⋅ (1 − 𝐸𝐷𝑅(𝜃))      (31) 

where   represents the hyperparameter vector, 
ℒ𝑣𝑎𝑙 denotes validation loss, and 𝐸𝐷𝑅  is the early detection 
rate. The search space encompasses learning rates ranging 
from 10−9 to 10−2 on a logarithmic scale, batch sizes from 32 
to 256, and architectural parameters including hidden 
dimensions and attention heads for transformer models. 

Figure 5 illustrates the convergence behavior of different 
hyperparameter optimization strategies. The Bayesian 
optimization approach demonstrates superior efficiency, 
achieving convergence to near-optimal values within 60 
iterations, compared to random search, which exhibits high 
variance throughout the optimization process. The 
exploration phase (shaded region) during the initial 30 
iterations indicates the algorithm's adaptive sampling of the 
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parameter space, progressively focusing on promising 
regions as uncertainty reduces. 
 

 
Figure 5. Hyperparameter optimization convergence 

The dataset partitioning follows a temporal split strategy 
to prevent data leakage and ensure realistic evaluation 
conditions. The five-year dataset spanning 2019-2023 is 
divided into training (60%), validation (20%), and test (20%) 
sets, with careful consideration of market regime changes. 
The training set covers January 2019 to December 2021, 
encompassing both normal market conditions and the COVID-
19 volatility period. The validation set spans January 2022 to 
June 2022, while the test set includes July 2022 to December 
2023, capturing recent market dynamics including inflation 
concerns and banking sector stress events. As demonstrated 
in Table 5, the temporal split ensures that models are 
evaluated on genuinely unseen future data, with the 
increasing anomaly ratio in later periods reflecting 
heightened market volatility and structural changes. This 
partitioning strategy prevents the common pitfall of random 
splitting in time series data, which can lead to overly 
optimistic performance estimates due to temporal 
correlations. 

Table 5. Dataset partitioning and characteristics 

Dataset 
Split 

Time 
Period 

Sample 
Size 

Anomaly 
Ratio 

Market 
Events 

Training Jan 2019 
- Dec 
2021 

1,875,000 2.3% COVID-19 
crash, 
Recovery 
rally 

Validation Jan 2022 
- Jun 
2022 

312,500 2.8% Fed 
tightening, 
Tech 
correction 

Test Jul 2022 - 
Dec 2023 

468,750 3.1% Banking 
stress, AI 
boom 

Total Jan 2019 
- Dec 
2023 

2,656,250 2.5% Multiple 
regime 
shifts 

 
Data augmentation techniques were selectively applied 

to address class imbalance while preserving temporal 
dependencies. Synthetic anomalies were generated using a 
combination of statistical perturbations and adversarial 
examples, constrained to maintain market microstructure 
realism. The augmentation process increased the effective 

training set size by 15% while maintaining the natural 
distribution of anomaly types observed in historical data. 

4.2 Model performance comparison 
The comparative evaluation of baseline statistical 

methods against deep learning architectures reveals 
substantial performance improvements in anomaly detection 
capabilities. Traditional baseline models, including ARIMA-
GARCH and Isolation Forest, demonstrate limited 
effectiveness in capturing complex market dynamics, 
achieving F1-scores of 0.62 and 0.68, respectively. In contrast, 
deep learning models exhibit superior pattern recognition 
capabilities, with the transformer architecture achieving an 
F1-score of 0.89, representing a 43.5% improvement over the 
best-performing baseline. Post-hoc analysis using SHAP 
values confirmed the relevance of our feature selection, 
showing that all 34 retained features contribute meaningfully 
to model predictions with importance scores above 0.5%. The 
top 10 features account for 68% of prediction variance, 
including order flow imbalance (18%), bid-ask spread (14%), 
and 5-minute realized volatility (11%). This validates that, 
while some redundancy exists, each retained feature captures 
unique market dynamics that are essential for comprehensive 
anomaly detection. As demonstrated in Table 6, deep learning 
models consistently outperform traditional approaches 
across all evaluation metrics, though at the cost of increased 
computational requirements. 

The comparison with classical anomaly detection 
methods reveals significant performance gaps and important 
trade-offs. Traditional statistical methods like Z-score 
detection, while extremely fast (3ms), suffer from 
oversimplified assumptions about market distributions, 
achieving only F1=0.61 due to high false positive rates during 
volatile periods. One-Class SVM shows moderate 
improvements (F1=0.65) by learning non-linear decision 
boundaries but struggles with temporal dependencies 
inherent in financial data. Isolation Forest performs best 
among classical methods (F1=0.68) due to its ensemble 
nature and ability to handle high-dimensional data, yet it still 
falls 21 percentage points below our transformer model. The 
performance improvement from classical to deep learning 
methods comes at computational cost: our transformer 
requires 35ms inference time versus 3-22ms for classical 
methods. However, this latency trade-off is justified by the 
43% reduction in false positives and 35% improvement in 
early detection capability, translating to substantial risk 
mitigation benefits that outweigh the computational 
overhead. 

The Matthews Correlation Coefficient (MCC) provides 
particularly valuable insights for our imbalanced dataset 
(2.5% anomaly ratio), as it considers all confusion matrix 
elements and remains robust to class imbalance. The 
transformer model achieves MCC = 0.78, indicating strong 
balanced performance despite the severe class imbalance. 
This represents a 225% improvement over baseline methods 
(MCC = 0.24 for ARIMA-GARCH). The high precision values 
(0.91 for transformer) are crucial in financial applications 
where false alarms incur significant operational costs, while 
maintaining a recall above 0.85 ensures critical anomalies are 
not missed. The ROC-AUC scores exceeding 0.90 for deep 
learning models confirm their superior discriminative ability 
across all operating thresholds, essential for adapting to 
varying risk tolerances in different market conditions.  
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Figure 6 presents a comprehensive comparison of model 

performance metrics. The upper panel demonstrates the 
consistent superiority of deep learning approaches in both 
F1-score and AUC metrics, while the lower panel illustrates 
the performance-computation trade-off. The Pareto frontier 
indicates that the LSTM-Autoencoder offers an optimal 
balance between detection accuracy and computational 
efficiency for real-time applications. Statistical significance 
testing using Wilcoxon signed-rank tests confirms that 
performance differences between deep learning and baseline 
models are statistically significant (p < 0.001), validating the 
adoption of neural network architectures for financial 
anomaly detection. 

 

 
(a)Model performance metrics comparison 

 

 
(b)Performance vs computational cost trade-off 

 
Figure 6. Comparative analysis of model performance and efficiency 

Temporal Performance Analysis: To evaluate model 
robustness across different market regimes, we analyzed 
performance metrics over distinct time windows 
corresponding to major market shifts. During the pre-COVID 
normal market period (2019-February 2020), the 
transformer model achieved F1-scores of 0.91 with minimal 
concept drift (KS statistic: 0.08). The COVID crisis period 
(March-December 2020) presented significant challenges 
with drift scores reaching 0.32, triggering three retraining 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

events and resulting in temporary performance degradation 
to F1=0.85. The recovery rally of 2021 saw performance 
stabilize at F1=0.88 with two retraining events, while the 
2022 inflation and Fed tightening period maintained F1=0.87 
despite elevated drift scores of 0.24. The 2023 period, 
characterized by banking stress and AI boom dynamics, 
demonstrated the framework's maturity with F1=0.89 and 
efficient drift handling. Overall, the adaptive mechanism 
triggered 9 retraining events over the 5-year period, with 
each retraining improving performance by an average of 
3.2% within two weeks of deployment. 

4.3 Anomaly detection results 
Our anomaly detection framework successfully 

identified five distinct categories of market anomalies with 
varying degrees of severity and market impact. Flash crashes, 
characterized by rapid price declines exceeding 5% within 5-
minute intervals, were detected with 92% accuracy, 
demonstrating the model's capability to capture extreme 
market movements. Pump-and-dump schemes, identified 
through unusual volume spikes coupled with subsequent 
price reversals, achieved detection rates of 87%. Order book 
manipulation patterns, including spoofing and layering 
strategies, were identified with 84% precision through 
analysis of bid-ask dynamics and order cancellation rates. 

Given the inherent class imbalance in financial anomaly 
detection (anomaly ratios ranging from 2.3% to 3.1% across 
our dataset), we evaluated model performance using metrics 
specifically designed for imbalanced scenarios. Beyond 
standard metrics, we computed MCC values for each anomaly 
type, finding that flash crashes achieve the highest MCC (0.81) 
due to their distinctive patterns, while pump-and-dump 
schemes show lower MCC (0.69) due to their similarity to 
legitimate volume spikes. The balanced accuracy metric, 
calculated as the average of sensitivity and specificity, reaches 
0.895 for the ensemble model, confirming robust 
performance across both classes. As shown in Table 7, 
detection performance remains robust across different 
market conditions, with only marginal degradation during 
high volatility periods. The system maintains sub-second 
detection latency for most anomaly types, enabling timely 
intervention. 

 
 

Table 6. Performance metrics across model categories 

Model 
Category 

Model Precision Recall F1-Score AUC Inference Time 
(ms) 

MCC 

Baseline ARIMA-GARCH 0.58 0.66 0.62 0.71 12 0.24 

Baseline Isolation Forest 0.72 0.65 0.68 0.75 8 0.37 

Baseline One-Class SVM 0.69 0.61 0.65 0.72 18 0.31 

Baseline Z-score (3σ) 0.52 0.73 0.61 0.68 3 0.22 

Baseline Local Outlier Factor 0.70 0.63 0.66 0.74 22 0.34 

Machine 
Learning 

XGBoost 0.78 0.74 0.76 0.82 15 0.52 

Deep Learning LSTM-AE 0.87 0.82 0.84 0.88 22 0.68 

Deep Learning VAE 0.83 0.79 0.81 0.85 18 0.62 

Deep Learning Transformer 0.91 0.88 0.89 0.94 35 0.78 

Deep Learning Ensemble 0.90 0.85 0.87 0.92 45 0.74 
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Table 7. Anomaly detection performance by type and market 
condition 

Anomaly 
Type 

Normal 
Market 

High 
Volatility 

Low 
Liquidity 

Average 
Precision 

Detection 
Latency 

(s) 

Flash Crash 0.94 0.92 0.89 0.92 0.8 

Pump & 
Dump 

0.89 0.85 0.86 0.87 1.2 

Order Book 
Manipulation 

0.86 0.82 0.83 0.84 0.5 

Momentum 
Ignition 

0.83 0.79 0.81 0.81 1.5 

Cross-
Market 
Arbitrage 

0.91 0.88 0.87 0.89 0.6 

 
Figure 7 reveals temporal patterns in anomaly detection 

performance across different market conditions. The 
heatmap demonstrates consistent detection capabilities 
across anomaly types, with flash crashes maintaining the 
highest detection rates throughout all periods. The lower 
panel illustrates a moderate negative correlation (-0.412) 
between market volatility and average detection 
performance, indicating that while increased volatility poses 
challenges, the system maintains robust performance with 
only 6% average degradation during high volatility periods. 
This resilience stems from the ensemble approach's ability to 
leverage complementary strengths of constituent models 
under varying market conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Case studies 
We present three representative case studies using well-

known market anomalies to demonstrate the practical 
effectiveness of our framework. These include the GameStop 
short squeeze of January 2021, the Silicon Valley Bank (SVB) 
collapse of March 2023, and the August 2023 flash crash in 
technology stocks, each representing different anomaly types 
and market conditions. The first case examines the GameStop 
short squeeze event of January 27-28, 2021, where the stock 
surged 135% intraday before experiencing extreme volatility. 
Our system detected anomalous patterns at 9:47 AM EST on 
January 27, approximately 18 minutes before the most 
extreme price movements. The LSTM-Autoencoder identified 
unprecedented retail order flow patterns with reconstruction 
errors exceeding 8σ, while the transformer model's attention 
mechanism revealed abnormal correlations (attention 
weights > 0.85) between GameStop, AMC, and other "meme 
stocks." The VAE model quantified the event's unlikelihood 
with log-probability scores of -12.3, far exceeding the -3.5 
threshold. This early detection enabled risk managers to 
adjust portfolio exposures and implement circuit breakers, 
preventing an estimated $4.2M in losses from contagion 
effects. The second case analyzes the Silicon Valley Bank 
collapse of March 9-10, 2023, demonstrating our system's 
capability in detecting systemic banking stress. The ensemble 
model triggered alerts at 2:15 PM EST on March 9, identifying 
anomalous patterns in regional bank stocks and Treasury 
yield curves 5 hours before the official bank closure 
announcement. Specifically, the transformer detected 
unusual attention patterns between SVB, First Republic, and 
Signature Bank (cross-attention weights reaching 0.91), while 
order book analysis revealed persistent one-sided selling 
pressure with bid-ask spreads widening to 5x normal levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 

 

(b) 

Figure 7. (a) Temporal anomaly detection performance, (b)Detection performance vs market volatility 
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The system's alert prioritization correctly classified this 
as a "critical" systemic risk event, prompting immediate 
reviews of banking sector exposures. Real-world deployment 
at three hedge funds using our system reported average loss 
mitigation of $8.7M through timely position adjustments. 
Figure 8 illustrates the real-world anomaly detection case 
studies, including (a) GameStop short squeeze detection 
showing retail flow anomalies, (b) SVB collapse pattern 
revealing systemic banking stress, (c) August 2023 tech 
sector flash crash with order book manipulation signals. 

 

 
(a) Flash crash detection 

 

 
(b) Unusual trading pattern detection 

 

 
(c) Market manipulation detection 

Figure 8. Real-world anomaly detection case studies 

Interpretability Analysis: For each detected anomaly, we 
employ multiple interpretability techniques to provide 
actionable insights for decision-makers. In the flash crash 
case, SHAP (SHapley Additive exPlanations) analysis revealed 
that order flow imbalance contributed 42% to the anomaly 
score, followed by bid-ask spread widening (28%) and 
volume spike (21%). The transformer model's attention 
heatmaps highlighted cross-asset dependencies, showing 
abnormal attention weights (>0.8) between S&P futures and 
VIX options 90 seconds before the crash. For the market 
manipulation case, gradient-based attribution methods 
identified specific order book levels where spoofing activities 
concentrated, with 87% of malicious orders placed between 
the 3rd and 5th price levels. These interpretability outputs 
directly informed trading decisions: portfolio managers 
reduced positions in correlated assets identified by attention 
analysis, while compliance teams focused surveillance on the 
specific order book levels flagged by the system. As detailed 
in Table 8, the case studies validate the framework's practical 

value in preventing substantial financial losses. The system 
achieved zero false positives in two cases while maintaining 
high confidence scores, demonstrating the robustness of the 
ensemble approach in real-world scenarios. The economic 
impact calculations reflect potential losses avoided through 
timely intervention based on the system's alerts. 

Table 8. Case study performance summary 

Case Study Event Type Detection 
Time 

False 
Positives 

Economic 
Impact 

Model 
Confidence 

March 18, 
2022 

Flash Crash 45 
seconds 

0 2.3M 
saved 

0.94 

June 15, 
2023 

Algorithmic 
Pattern 

2.3 
minutes 

1 450K 
exposure 

0.87 

September 
8, 2023 

Order 
Spoofing 

18 
seconds 

0 1.1M 
avoided 

0.91 

 
The interpretability dashboard (Figure 8d) integrates 

three visualization components: (1) SHAP waterfall plots 
showing feature contributions to anomaly scores, enabling 
traders to understand which market indicators drive alerts; 
(2) Temporal attention heatmaps revealing dependencies 
across different time horizons, crucial for identifying cascade 
risks; (3) Feature importance rankings updated in real-time, 
helping risk managers prioritize monitoring efforts. During 
the March 2022 flash crash, the dashboard showed attention 
weights spiking to 0.92 between technology sector ETFs and 
index futures, prompting preemptive hedging that saved 
$1.8M in potential losses. 

4.5 Decision support system performance 
The decision support system's operational performance 

demonstrates significant improvements in risk management 
efficiency and decision-making quality. Alert accuracy 
analysis reveals a precision rate of 91.3% across all severity 
levels, with critical alerts achieving 96.2% accuracy due to 
stringent threshold calibration. The system's timeliness 
metrics indicate average alert generation latencies of 1.2 
seconds from anomaly detection to notification delivery, 
enabling rapid response to market events. Alert prioritization 
mechanisms effectively reduced false positive rates to 2.8% 
through adaptive threshold adjustment based on market 
conditions and historical performance feedback. User 
feedback collected through structured usability testing with 
45 professional traders and risk managers indicates high 
satisfaction ratings, with 87% reporting improved decision 
confidence and 92% noting reduced cognitive load during 
volatile market periods. The intuitive dashboard design, 
featuring color-coded risk indicators and contextual 
information displays, received particular praise for 
facilitating rapid situation assessment. Response time 
analysis shows that users required 68% less time to evaluate 
and act on alerts compared to traditional monitoring systems. 
Figure 9 presents comprehensive performance metrics of the 
decision support system. The alert accuracy analysis (9a) 
demonstrates consistently high precision across all priority 
levels, exceeding the 90% target threshold. Response time 
distributions (9b) confirm sub-second performance for 
critical alerts, ensuring timely intervention capabilities. User 
satisfaction ratings (9c) validate the system's usability and 
effectiveness, while the business impact assessment (9d) 
quantifies substantial cost savings through improved risk 
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management. As demonstrated in Table 9, the decision 
support system significantly outperforms industry 
benchmarks across all key performance indicators. The 
67.3% reduction in decision time translates directly to 
improved risk mitigation capabilities, while maintaining 
system reliability above 99.8% ensures consistent 
operational availability during critical market periods. 

(a)Alert accuracy by priority 
 

 
(b)Response time distribution 

 

 
          (c) User satisfaction ratings 

 

 
 (d)Business impact assessment 

 
Figure 9. Decision support system performance dashboard 

Table 9. Decision support system operational metrics 

Metric 
Category 

Metric Value Industry 
Benchmark 

Improvement 

Alert 
Performance 

Overall 
Accuracy 

91.3% 78.5% +16.3% 

Alert 
Performance 

Critical 
Alert 
Precision 

96.2% 85.0% +13.2% 

System 
Latency 

Alert 
Generation 
Time 

1.2s 5.8s -79.3% 

User 
Efficiency 

Decision 
Time 

32s 98s -67.3% 

Business 
Impact 

Monthly 
Cost 
Savings 

35.2M - - 

System 
Reliability 

Uptime 99.87% 99.5% +0.37% 

 

5. Discussion 

The substantial performance gap between classical and 
deep learning approaches stems from fundamental 
methodological differences. Classical methods like Z-score 
and One-Class SVM assume static distributions and 
independence between observations, failing to capture the 
dynamic, interconnected nature of modern financial markets. 
While these methods offer advantages in interpretability and 
computational efficiency, they cannot model complex 
temporal patterns such as volatility clustering or cross-asset 
contagion effects. Our experiments show that even 
sophisticated classical methods like Local Outlier Factor 
achieve at best 70% precision compared to 91% for 
transformer models, primarily due to their inability to 
leverage sequential information and adapt to regime changes. 
This validates our design choice of deep learning 
architectures despite their higher computational 
requirements. Our experimental results demonstrate that 
transformer-based architectures achieve superior anomaly 
detection performance with F1-scores reaching 0.89, 
significantly outperforming traditional statistical methods 
and earlier deep learning approaches. This performance 
advantage stems from the self-attention mechanism's ability 
to capture long-range dependencies in financial time series, 
enabling the detection of complex market manipulation 
patterns that span extended temporal windows. However, 
this enhanced accuracy comes with computational trade-offs, 
as transformer models require 35 milliseconds of inference 
time compared to 8 milliseconds for baseline methods. The 
ensemble approach emerges as an optimal solution, balancing 
detection accuracy (F1-score: 0.87) with reasonable 
computational overhead (45 milliseconds), making it suitable 
for real-time deployment in high-frequency trading 
environments. Our adaptive learning framework successfully 
addresses concept drift challenges, maintaining average F1-
scores above 0.84 even during extreme market regime shifts. 
The sliding window retraining approach proved particularly 
effective during the COVID-19 transition, where automated 
retraining within 48 hours of drift detection prevented 
performance degradation exceeding 10%. However, the 
trade-off between adaptation speed and stability remains 
challenging: aggressive retraining (window < 2 months) risks 
overfitting to temporary patterns, while conservative 
approaches (window > 6 months) may miss critical regime 
changes. Future work should explore meta-learning 
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approaches that can distinguish between temporary volatility 
and fundamental market structure changes. This research 
advances anomaly detection theory by demonstrating that 
financial market anomalies exhibit hierarchical temporal 
structures best captured through multi-scale attention 
mechanisms. Our findings reveal that market behavior 
patterns follow non-stationary distributions with regime-
dependent characteristics, challenging the assumptions of 
traditional econometric models. The interpretability analysis 
of transformer attention weights provides novel insights into 
how anomalous patterns propagate through market 
microstructure, with cross-asset dependencies playing a 
more significant role than previously recognized. These 
theoretical contributions extend beyond finance, offering 
generalizable frameworks for anomaly detection in complex 
adaptive systems. 

The implementation of our framework yields substantial 
practical benefits for financial institutions. Risk management 
applications demonstrate 34% improvement in risk-adjusted 
returns through timely anomaly detection and intervention. 
Regulatory compliance is enhanced through automated 
surveillance capabilities that maintain comprehensive audit 
trails, reducing compliance costs by approximately 40%. The 
cost-benefit analysis reveals a positive return on investment 
within 8 months, considering infrastructure costs, 
maintenance requirements, and quantified risk reduction 
benefits. Several limitations constrain the generalizability of 
our findings. Data availability remains challenging, 
particularly for emerging markets and alternative asset 
classes where high-frequency data is scarce. Model 
interpretability, while improved through attention 
visualization, still faces regulatory scrutiny in jurisdictions 
requiring explicit decision explanations. Computational 
resource requirements may prohibit smaller institutions 
from implementing the full ensemble framework. Market 
regime changes pose ongoing challenges, as models trained 
on historical data may exhibit degraded performance during 
unprecedented market conditions. Our results significantly 
exceed performance benchmarks established in recent 
literature, with 23% improvement over the previous state-of-
the-art TranAD model. The novel contribution lies in the 
integration of market microstructure features with 
transformer architectures 

6. Conclusion 

This research successfully developed and validated a 
comprehensive deep learning framework for real-time 
anomaly detection in stock markets, achieving the primary 
objectives of identifying optimal architectures and 
integrating them with business decision support systems. The 
transformer-based ensemble model demonstrated superior 
performance with an F1-score of 0.89, addressing our 
research questions regarding architecture optimization and 
computational efficiency trade-offs. Our theoretical 
contributions advance financial anomaly detection through 
novel integration of multi-scale attention mechanisms with 
market microstructure features, while the proposed 
ensemble framework represents a significant architectural 
innovation in handling non-stationary financial time series. 
The practical implementation guidelines enable financial 
institutions to deploy scalable anomaly detection systems 
that enhance risk management capabilities and ensure 
regulatory compliance through automated surveillance 
mechanisms. Future research directions should explore 
multi-market anomaly detection across interconnected global 

exchanges, leveraging federated learning approaches to 
preserve data privacy while improving model generalization. 
The development of explainable AI techniques specifically 
tailored for financial applications remains crucial for meeting 
evolving regulatory requirements. Integration with emerging 
technologies, including real-time streaming architectures and 
blockchain-based DeFi markets, presents opportunities for 
extending the framework's applicability. This research 
establishes a foundation for next-generation financial 
surveillance systems that combine deep learning 
sophistication with practical operational requirements, 
ultimately contributing to more stable and transparent 
financial markets. 
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