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The preservation of residential architecture from traditional ethnic groups has
never faced the types of challenges it does today due to urbanization. These
challenges include the insufficient retention of landmarks due to competing
stakeholder interests, which often leads to irreversible loss of cultural heritage.
This research proposes a new culturally identity-oriented multi-agent
reinforcement learning system for the protection of Bai ethnic traditional
dwellings in Dali, Yunnan Province. The research combines diverse multi-
source data collection approaches, including the building’s architecture and
culture, urbanization statistics, and stakeholder networks, and develops an
advanced computational framework in which every stakeholder category is
embedded as an independent intelligent agent with specific behavioral patterns
and autonomous decision-making skills. Specialized deep Q-networks of
enhanced Q-value methods that consider cultural identity loss in Q-value
calculus through loss function adjustments aimed at balancing cultural
preservation and stakeholder appeasement were employed within the
framework. Implementation results show performance with an overall
accuracy of 89.3% for implementation and 87.2% for cultural preservation
effectiveness. Conventional approaches previously achieved significantly lower
accuracy within these parameters, 15-25 percentage points. Enhancements in
cultural identity increase from a baseline of 58.3% to optimized values of
91.2%, while community satisfaction improves from 54.7% to 86.4%. The
framework maintains coordination indices above 85% for all stakeholder
groups, showing scalability with over 85% replication success rates for
populations between 5,000 and 50,000 residents. This demonstrates
theoretical and practical value in the use of Al concerning culturally aware
heritage preservation.

1. Introduction

technologies and urbanism with cultural heritage remains

Future Publishing LLC

The rapid pace of urbanization, coupled with competing
stakeholder priorities, affects approximately 68% of
traditional ethnic residential sites in China, often irreversibly
damaging cultural heritage. The incorporation of Al into
contemporary urban development to address complex
sustainability issues demonstrates the usefulness of
intelligent systems in solving deeply intertwined urban
planning problems [1]. However, the interface between Al
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markedly under-researched. The advent of Al technologies in
post-smart cities has brought benevolent and malevolent
intricacies to the conservation of heritage sites—a crossroad
that invites criticism for more nuanced approaches that
center on culture and community [2] “between the poles of
the universal and the particular” (the ‘sensitive’ side).
Conserving cultures that are heavily impacted by rapid
urbanization and the deterioration of authenticity in multi-
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stakeholder actions relies heavily on policy instruments such
as expert-driven systems and regulatory compliance
pathways. Traditional heritage preservation approaches
often fail to coordinate conflicting stakeholder interests,
resulting in 45-60% of sites experiencing a loss of cultural
authenticity during urbanization. Current frameworks lack
adaptive mechanisms for balancing development pressures
with preservation needs, particularly in ethnic minority
regions where decision-making systems cannot match rapid
urban transformation rates. Highly dynamic environments
with many self-sufficient decision-making agents, each with
their own goals, have potentially conflicting objectives, which
multi-agent reinforcement learning deals with as an advanced
paradigm. Recent advances in deep multi-agent
reinforcement learning demonstrate its capability in
managing complex systems involving cooperation and
coordination of heterogeneous agents [3]. Structural
frameworks  demonstrate  that multi-agent deep
reinforcement learning techniques are successfully applied to
situations that require advanced coordination between
diverse constituents [4]. The systematic analysis of digital
technologies' application in cultural heritage conservation
identifies multiple computational approaches for protection,
documentation, and management, indicating increased
recognition of technological transformation in heritage
preservation [5]. These innovations challenge the complex
problem of the integration of varying sociocultural priorities
with the preservation of historical values and therefore
provide strong arguments supporting heritage cultural
technology.

Artificial intelligence techniques have achieved accuracy
rates of 70-85% in preserving intangible cultural heritage [6],
with virtual reality and multi-agent algorithms providing
multifunctional conservation frameworks [7-10]. While
machine learning enables spatial analysis and sustainable
urban development [11, 12], current applications remain
limited. Bibliometric analyses indicate that existing
approaches prioritize technological documentation over
active management [13, 14], and despite potential
intersections between machine learning and big data [15],
these technologies inadequately integrate cultural
preservation objectives within urban planning contexts [16].
Existing preservation frameworks reveal substantial
limitations across stakeholder coordination, achieving
merely 52-65% success rates with developer-resident
alignment below 50%. The absence of cultural identity
quantification in 87% of current algorithms produces
culturally detached outcomes, while static architectures
experience a 40-55% performance decline under intensified
urbanization. Despite advances in deep learning architectures
for complex pattern recognition [17], these approaches
inadequately address cultural identity integration within
multi-stakeholder contexts. Applications of multi-agent
reinforcement learning in industrial settings show significant
adaptability [18]; however, its use in the preservation of
cultural heritage is still notably under-researched. Stated
differently, traditional methods of preservation do not offer
systematic rationales that integrate stakeholders with
competing interests and sustain the cultural integrity of the
region. In framework design approaches, identity and culture
have yet to be adequately addressed within a dominant
organizing paradigm; therefore, many frameworks remain
ineffective in culturally sensitive environments where the
community, culture, and their relationship sustain fluid
continuity. This research addresses these gaps through a
multi-agent reinforcement learning framework that
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quantifies intangible cultural values as computational
parameters with 89% validation accuracy. The framework
embeds cultural identity factors within preservation
decision-making to achieve 80-92%  stakeholder
coordination, while adaptive Q-learning mechanisms
maintain 85% effectiveness under variable urbanization
conditions. With validated scalability across populations of
5,000-50,000 residents and integration pathways for
government heritage systems, this approach bridges
technological innovation with cultural preservation
imperatives in urban development contexts.

2. Data and methods
2.1 Study area and multi-source data collection

This research analyzes the Dali Bai ethnic residential
architecture preservation areas in Yunnan Province, China,
which contain traditional courtyards alongside other
structures representative of important cultural heritage,
distinguishing building techniques unique to the region. The
study region includes the Dali Ancient City, the adjacent Bai
villages historically integrated with the ancient city, both of
which offer traditional forms of urban housing influenced by
modern globalization through urban centers and
development. The use of advanced technologies for data
collection from various sources allows efficient
characterization of the unique dynamics of stakeholder
interactions and the various datasets related to
archaeological site preservation. Machine learning
approaches for cultural heritage applications provide
established methodologies for systematic data collection and
analysis in heritage preservation contexts [19]. Building
architectural data encompasses geometric measurements,
structural condition assessments, and material composition
analysis collected through field surveys and photogrammetric
techniques. Advanced sensing technologies, including 3D
LiDAR systems and multi-technology collaboration
frameworks, enable comprehensive documentation of built
heritage structures with high precision and accuracy [20].
Community perspectives were assessed using a 42-item
cultural attachment scale (a = 0.87) spanning six dimensions
from place identity to intergenerational transmission
willingness. Following pilot validation with 60 households,
the 7-point Likert instrument incorporated triangulation with
observational and archival data to ensure measurement
robustness within local cultural contexts. Urbanization
indicators comprise demographic changes, land use
transitions, construction permits, and economic development
metrics obtained from municipal planning databases and
statistical yearbooks.

This study identifies four distinct stakeholder categories
comprising local residents who maintain traditional lifestyles
and cultural practices, government agencies responsible for
heritage protection and urban planning oversight, real estate
developers pursuing economic opportunities through
property development initiatives, and cultural preservation
experts who provide specialized technical expertise and
professional guidance for heritage conservation strategies.
Cultural identity quantification employs semantic 3D
documentation approaches integrated with multi-scale
mapping methodologies to systematically capture cultural
attributes and spatial relationships [21]. Cultural value
assessment encompasses five weighted dimensions ranging
from architectural authenticity (25%) to community
attachment (15%), evaluated through expert Delphi methods
(40%), empirical field measurements (35%), and community
surveys (25%). This integrated approach quantifies
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intangible heritage attributes within computational
frameworks while maintaining methodological rigor and
cultural validity. The comprehensive data collection
framework, as shown in Table 1, provides the empirical
foundation for developing and validating multi-agent
reinforcement learning models.

2.2 Multi-agent system modeling and ai architecture

design

The multi-agent reinforcement learning framework
establishes a computational architecture where each
stakeholder category operates as an autonomous intelligent
agent with distinct behavioral patterns and decision-making
capabilities. Multi-agent cooperation and competition
dynamics provide foundational principles for designing agent
interactions in complex environments where multiple
entities pursue different objectives [22]. Stakeholder-specific
neural networks enable residents to process cultural
preferences, government agents to evaluate policies,
developers to optimize economic outcomes, and experts to
assess heritage values. This framework departs from
traditional RL through cultural identity integration in Q-value
computations using adaptive coefficients (Ac = 0.3-0.5),
enabling multi-objective optimization where heritage
considerations become intrinsic to agent decisions. The
dynamically adjusted coefficients respond to heritage impacts
while the state space tracks preservation effectiveness,
community welfare, and cultural authenticity across evolving
urban contexts. The agent interaction protocols facilitate
communication and coordination processes through
message-passing and shared information systems that allow
multi-agent systems for joint action while maintaining agent
independence. Multi-agent actor-critic frameworks allow
mixed cooperative-competitive conditions where agents have
to integrate self-preserving tasks with objectives aligned to
common conservation goals [23]. The reward function guided
by cultural identity integrates multiple objective components
diversified as effectiveness of heritage preservation,
community relations, economic sustainability, and
maintenance of cultural authenticity, thereby forming
balanced feedback that enables learning towards culturally
adaptive solutions for agents to automate processes.
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The initialization of parameters for deep neural
networks utilizes methods based on experience replay for
stabilization across different types of agents using the Xavier
normalization technique. Deep Multi-Agent Reinforcement
Learning (MARL) Q-learning with distinct Q-vectors for
different rates of agent capability and learning adapts to
diverse agent capabilities and learning rates, showing
improved performance [24]. In a culture-imbued adaptive
systems framework for optimization of heritage preservation,
every agent type has its own learning rate, network structure,
and exploration versus exploitation settings. These
parameters are adjusted using Bayesian optimization
techniques, as shown in Figure 1, depicting the multi-agent
system architecture, which integrates cultural identity
considerations with adaptive learning mechanisms. Ethical
safeguards include participatory parameter design with 120
diverse community stakeholders, automated bias detection
with 15% deviation thresholds, and explainable Al modules
ensuring decision transparency. These measures prevent
minority marginalization and maintain community agency
while embedding inclusive cultural values within the
algorithmic framework.

Environment State Space

Local Residents Government

Cultural Preference
Module

Policy Evaluation
Module

Cultural
Preferences

Policy
Constraints

Cultural Identity
Oriented Reward |+———
Function

Economic
Objectives

Heritage
Assessment

Developers
Economic

Cultural Experts

Heritage

Optimization Assessment

Multi-objective
Optimization output

Figure 1. Cultural identity-oriented multi-agent reinforcement
learning system architecture

Table 1. Multi-source data collection framework for Dali Bai ethnic residential preservation areas

Data Category Collection Method Sample Size Temporal Coverage Stakeholder Groups Data Format
Building Architecture 3D LiDAR Scanning 245 structures 2022-2024 Residents, Experts Point clouds, CAD
Cultural Attributes Ethnographic Survey 180 households 2023-2024 Residents Structured interviews
Urbanization Metrics Municipal Database 15 indicators 2010-2024 Government Statistical data
Stakeholder Networks Social Network Analysis 95 participants 2023-2024 All groups Relational matrices
Heritage Condition Field Assessment 245 structures 2022-2024 Experts Condition reports

Note: Cultural attribute quantification integrated architectural integrity assessments of Bai vernacular structures, ethnographic measurements
of language use and ritual participation, and GIS-derived spatial proximity indices to heritage sites, employing standardized protocols to convert

multifaceted cultural data into algorithmic parameters.
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2.3 Reinforcement learning algorithm and machine

learning model

This study builds upon deep reinforcement learning
approaches by applying an optimized deep Q-network
architecture for multi-agent coordination in heritage
preservation [25]. The improved DQN framework
incorporates cultural identity considerations into the
traditional Q-value computation through a modified loss
function that balances preservation objectives with
stakeholder satisfaction metrics. The Q-value update
mechanism follows the enhanced Bellman equation, where
Q(ss at) represents the action-value function for state St and
action atattime step t, a denotes the learning rate, rtindicates
the immediate reward, y represents the discount factor for
future rewards, and S serves as the cultural weighting
coefficient:

Qs.a) < Qs a) +a[f + 7 max, Q(s...a)-Q(s, a)]+ A-Co(spa) (1)

The cultural identity preservation component Cci(s, a )
guides agent decision-making toward culturally sensitive
outcomes by quantifying the cultural impact of specific state-
action pairs. Specifically, Cci(ss a¢) integrates architectural
integrity, cultural practice continuity, and community
identity through weighted aggregation:

Co(s,a) =04A,(s,a)+0.35R, (s,a) +0.251,(s.a)  (2)

where Aci(s, a ¢ measures architectural preservation
probability, Pa(s:, at) captures cultural practice sustainability,
and Ia(s, ar) reflects community identity cohesion, with all
components normalized to [0,1] using empirical baselines
from Section 2.1's framework.

The experience replay mechanism employs adaptive
prioritized sampling strategies that enhance exploration-
exploitation trade-offs through dynamic priority assignment
based on temporal difference errors and cultural relevance
scores [26]. This approach ensures that culturally significant
experiences receive higher sampling probabilities during
training, accelerating convergence toward preservation-
oriented policies. The target network update strategy
implements a stabilized off-policy learning approach that
reduces bootstrapping errors inherent in multi-agent
environments. The loss function incorporates both value
function accuracy and cultural preservation effectiveness,
where ¢ represents the current network parameters, ¢
denotes the target network parameters, D indicates the
experience replay buffer, and 4 serves as the regularization
coefficient for the cultural loss component L (6):

L(6) = E(s,a,1,5)~D [(r +ymaxQ(s,a’;07) —
065,a:0)) |+ 4+ La(®) 3)

Policy gradient methods complement the value-based
approach through actor-critic architectures that optimize
multi-objective policies. Bootstrapping error reduction
techniques stabilize learning in the multi-agent setting by
constraining policy updates within confidence bounds [27].
The urbanization adaptation mechanism implements online
learning protocols that continuously adjust agent behaviors
based on evolving environmental conditions, enabling
dynamic responses to change urban development pressures
while maintaining cultural preservation priorities through
incremental learning strategies.
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3. Results
3.1 Al algorithm performance and deep learning model

evaluation

The proposed cultural identity-oriented multi-agent
reinforcement learning framework demonstrates
convergence characteristics, achieving 89.3% accuracy
within 900 training episodes. Figure 2 presents the
comprehensive evaluation results of the multi-agent deep
reinforcement learning algorithm's performance. Neural
network loss function analysis, as illustrated in Figure 2(a),
reveals distinct optimization trajectories for each agent
category, with cultural experts achieving convergence within
600 episodes, showing exponential decay from initial loss
values of 2.1 to final convergence at 0.2. Government agents
demonstrate consistent convergence patterns reaching
stability at 700 episodes, while local residents achieve
convergence at 800 episodes with final loss values of 0.3.
Developer agents require the longest convergence period at
900 episodes, reflecting the inherent complexity of balancing
economic optimization objectives with heritage preservation
constraints. The differential convergence patterns indicate
that structured decision-making processes, such as those
employed by cultural experts, facilitate more efficient policy
learning compared to multi-objective scenarios encountered
by developer agents.

Multi-Agent Deep Reinforcement Learning Algorithm Performance and Model Evaluation

(a) Neural Network Loss Function Convergence Curves

b) Agent Learning Trajectory Comparison
35 100 (b) Agt g Trajectory p:

Loss Function Value

Performance Effectiveness (%)
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9 (d) Model Accuracy Assessment Indicators Analysis
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Figure 2. Multi-agent deep reinforcement learning algorithm
performance and model evaluation (a) Neural network loss function
convergence curves, (b) Agent learning trajectory comparison, (c)
Performance comparison with traditional machine learning methods,
(d) Model accuracy assessment indicators analysis

The agent learning trajectory comparison shows an
incremental improvement across all stakeholder categories
as illustrated in Figure 2(b). Cultural expert agents maintain
85% effectiveness by the 2000th episode, and demonstrate
consistent improvement with minimal variance in earlier
phases. Local resident agents exhibit steady improvement,
reaching 75% effectiveness, government agents attain 65%
performance levels through structured policy evaluation
processes, and developer agents achieve 55% optimization
efficiency despite facing complex multi-objective constraints.
The learning curves display characteristic S-shaped growth
patterns typical of reinforcement learning algorithms, with
rapid initial improvement followed by gradual convergence
toward optimal policies. The performance differentiation
reflects each agent's specialized role within the heritage
preservation ecosystem, with cultural considerations serving
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as the primary coordination mechanism. Comparative
performance evaluation against traditional machine learning
methods reveals 15-25 percentage point improvements of the
proposed multi-agent approach across all evaluation metrics,
as demonstrated in Figure 2(c). The framework achieves
89.3% accuracy with narrow confidence intervals indicating
statistical reliability, representing 17.2 percentage point
improvements over single-agent DQN methods at 72.1%,
decision tree approaches at 66.7%, support vector machines
at 70.4%, random forest algorithms at 75.8%, and neural
network ensemble methods at 78.2%. The confidence
intervals demonstrate statistical significance of performance
improvements, with the proposed method showing
consistently higher results across all comparison categories.
Traditional rule-based approaches exhibit the lowest
performance at 61.3%, highlighting the limitations of
conventional heritage preservation methodologies in
complex multi-stakeholder environments.

Model accuracy assessment across multiple evaluation
dimensions, as presented in Figure 2(d), indicates the
framework achieves 89.3% accuracy, 90.1% precision, 88.7%
recall, and 89.4% F1-score. The provided performance
metrics with their associated confidence intervals serve as an
indicator of the statistical consistency of the gains in
performance. The proposed framework demonstrated very
low inconsistency across various performance metrics within
the given measures. The baseline methods suffer significantly
lower performance along with a higher degree of uncertainty,
especially in recall metrics, which have a difference of about
18 percentage points. This observation, along with the
proposed framework's ability to more accurately identify
critical heritage preservation as well as stakeholder
coordination situations, signifies the strength of the proposed
framework. Table 2 presents detailed performance metrics
demonstrating 25.8-34.4 percentage point improvements
over baseline algorithmic approaches. The framework
outperforms all other methods with over 87.2% cultural
preservation effectiveness and surpasses single-agent DQN
methods by 25.8 percentage points and rule-based methods
by 34.4 percentage points. When evaluating training
efficiency, it is observed that the framework requires 12.5
hours to achieve full convergence, in comparison to simpler
methods. While this overhead can be considered moderate,
the evaluation metric performance improvements
benchmarked against other methods more than justify the
investment for this computational overhead.
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The framework achieves the highest performance in
precision metrics at 90.1%, illustrating accurate decision
making pertaining to heritage preservation, and balanced
recall performance at 88.7% relative to complete opportunity
capture. Ensemble methods using neural networks have
longer training times (15.2 hours), but yield a deficiency in
every single metric, demonstrating the performance
efficiency of the proposed method for multi-agent
coordination in heritage preservation contexts.

3.2 Protection Effectiveness Evaluation

The implementation of the cultural identity-oriented
multi-agent reinforcement learning framework demonstrates
improvements in residential heritage protection integrity and
cultural identity enhancement across multiple evaluation
dimensions. Architectural preservation integrity assessment
reveals progress in maintaining traditional Bai ethnic
residential structures, with overall preservation
completeness increasing from baseline levels of 62.4% to
89.7% following framework implementation, as illustrated in
Figure 3(a). The temporal analysis demonstrates consistent
upward trends in preservation effectiveness, with notable
improvements observed in structural integrity maintenance,
traditional material preservation, and vernacular
architectural feature conservation. The framework
successfully coordinates stakeholder actions to prioritize
preservation activities that maintain authentic cultural
characteristics while accommodating necessary
modernization requirements.

Cultural identity reinforcement evaluation indicates
enhancement in community cultural attachment and ethnic
identity preservation measures, as demonstrated in Figure
3(b). The figure specifically tracks cultural identity metrics—
including language preservation, traditional craft
maintenance, and ceremonial practice continuity—which
show progressive improvement from baseline measurements
of 58.3% to peak levels of 91.2%, clearly distinguished from
heritage preservation integrity metrics shown in Figure 3(a).
The enhancement also encompasses intergenerational
knowledge transmission effectiveness. Community members
reportincreased pride in heritage preservation outcomes and
stronger connections to traditional cultural practices, with
younger generations demonstrating renewed interest in Bai
ethnic cultural traditions and architectural heritage
appreciation.

Table 2. Performance evaluation metrics comparison of different Al algorithms in residential heritage protection tasks

Algorithm Tvpe Accuracy Precision Recall F1- Cultural Preservation Training Time
g P (%) (%) (%) Score Effectiveness (%) (hours)
Proposed MARL 89.3 90.1 88.7 0.894 87.2 12.5
Framework
Single-Agent DQN 72.1 74.3 69.8 0.720 61.4 8.3
Decision Tree 66.7 68.2 65.1 0.665 58.9 2.1
Support Vector 70.4 72.1 68.9 0.705 64.3 47
Machine
Random Forest 75.8 77.2 74.5 0.758 69.1 3.9
Neural Network 78.2 79.6 76.8 0.782 71.7 15.2
Ensemble
Traditional Rule- 61.3 63.7 58.9 0.612 52.8 15
Based
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Figure 3. Cultural identity-oriented protection effectiveness and
community relationship optimization (a) Residential heritage
protection integrity temporal changes, (b) Cultural identity
enhancement trend analysis, (c) Community relationship
coordination index evolution, (d) Urbanization adaptation response
curve analysis

Community relationship optimization analysis reveals
improvements in stakeholder coordination and conflict
resolution mechanisms, as presented in Figure 3(c). The
social harmony index demonstrates consistent enhancement
from initial values of 54.7% to optimized levels of 86.4%. The
framework effectively mediates conflicts between
preservation objectives and development pressures,
facilitating collaborative decision-making processes that
balance diverse stakeholder interests. Local residents exhibit
increased satisfaction with preservation outcomes,
government agencies reportimproved policy implementation
efficiency, developers demonstrate enhanced cooperation in
heritage-sensitive projects, and cultural experts achieve
greater influence in preservation planning processes.
Urbanization pressure adaptation assessment, as shown in
Figure 3(d), demonstrates the framework's capability to
maintain preservation effectiveness despite evolving urban
development challenges. The adaptive response index adapts
preservation strategies to the different types of urban
intensification, such as demographic growth, infrastructure
development, tourism, and economic activities.
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Results show that, unlike other approaches, the
framework considers urbanization scenarios and maintains
effectiveness over 82% even under high pressure; traditional
approaches, by contrast, experience significant decline under
the same conditions. The adaptive mechanisms achieve the
balance between modernization of urban settings with
heritage features for optimum sustainable development while
ensuring cultural integrity is retained, alongside economic
development for communities. The evaluation depicting
comprehensive multi-objective optimization performance in
Table 3 illustrates the calculated value of the framework's
utility in proving effectiveness across all dimensions of
preservation.

The degree of integrity achieved regarding heritage
architecture has improved from baseline conditions and
surpassed targets set by heritage protection agencies towards
their goal of achieving 89.7%. Effectiveness in preserving
cultural identity has maintained 91.2%, proving successful in
the maintenance of intangible elements of cultural heritage
integrated with physical architectural conservation.
Community satisfaction indices have achieved 87.5%,
displaying the level of acceptance and support by wide
segments of the stakeholders for the preservation results.
Economic sustainability measures have reached 78.9%,
illustrating that the level of benefits brought by preservation
activities is sufficient to ensure the long-term efforts in
conserving the region. Environmental sustainability
parameters have reached 84.3%, indicating that the level of
preservation activities helps in attaining wider ecological
conservation goals, which are accompanied by the protection
of heritage values. The evaluation results as a whole
demonstrate the framework’s utility in accomplishing multi-
faceted objectives of preservation under community
development and culture during rapid urbanization.

3.3 Practical Application Verification

To some degree, the Dali Ancient City case study affirms
how well the culturally oriented multi-agent reinforcement
learning framework performs with respect to various
heritage  preservation challenges and stakeholder
coordination difficulties. Validation of the implementation
shows spatial variation in effectiveness regarding
preservation across the study region, scoring between 75%
and 95% of protection eligibility in different areas of the
region, as shown in Figure 4(a).

Table 3. Residential heritage protection effectiveness and multi-objective optimization indicators statistics

Evaluation Baseline Value | Implementation Result Improvement Target Achievement Performance
Dimension (%) (%) (%) (%) Rating
Heritage Architectural 62.4 89.7 27.3 94.1 Excellent
Integrity
Cultural Identity 583 91.2 32.9 95.8 Excellent
Preservation
Community
Satisfaction Index 65.2 87.5 22.3 91.7 Very Good
Stakeholder 54.7 86.4 317 93.2 Excellent
Coordination
Economic
Sustainability 49.8 78.9 291 82.6 Good
Environmental
Compatibility 71.6 84.3 12.7 88.7 Very Good
Policy Implementation
- 58.9 83.7 24.8 87.9 Very Good
Efficiency
Cultural Transmission 52.4 88.6 36.2 92.8 Excellent
Effectiveness
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The spatial distribution analysis indicates concentrated
high-performance areas in the core heritage districts, where
traditional Bai ethnic architectural features achieve effective
preservation outcomes, while peripheral zones demonstrate
progressive improvement patterns that reflect the
framework's adaptive coordination mechanisms responding
to varying urban development pressures and community
engagement levels.  Multi-stakeholder  coordination
effectiveness evaluation demonstrates improvements in
collaborative decision-making processes among diverse
interest groups, as presented in the coordination heat map in
Figure 4(b). The framework achieves coordination scores
between residents and cultural experts at 92%, indicating
successful alignment of community preferences with
professional heritage preservation standards. Government-
resident coordination reaches 85%, while developer-expert
collaboration attains 84%, representing improvements over
traditional preservation approaches that typically struggle
with stakeholder conflict resolution. The systematic
coordination matrix reveals that cultural experts maintain
consistently high coordination levels across all stakeholder
categories, serving as effective mediators in complex
preservation negotiations, while developers demonstrate
enhanced cooperation levels that exceed baseline
expectations through the framework's incentive alignment
mechanisms. The framework's modular architecture enables
transferability by separating universal coordination
mechanisms from culture-specific parameters, allowing
adaptation to diverse heritage contexts through coefficient
recalibration rather than algorithmic restructuring.

Dali Ancient City Field Validation and Multi-Party Coordination Effectiveness

(a) Field Validation Results Spatial Distribution

(b) Agent Coordination Protection Effectiveness Heat Map
o |
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Figure 4. Dali ancient city field validation and multi-party
coordination effectiveness (a) Field validation results spatial
distribution, (b) Agent coordination protection effectiveness heat
map, (c) Multi-party interest coordination index changes, (d)
Community satisfaction assessment results

Temporal analysis of multi-party interest coordination
demonstrates sustained improvement throughout the
implementation period, with coordination indices rising from
baseline values of approximately 52% to optimized levels
exceeding 82%, as shown in Figure 4(c). Identifying
progressive enhancement techniques has provided evidence
that a multi-agent system is capable of learning, adapting to
changing  stakeholder dynamics, and overcoming
preservation challenges. Satisfaction assessment shows
acceptance of community practitioners and residents across
broad demographic categories, with cultural practitioners
achieving as high as 94% satisfaction, leading the group,
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elderly residents achieving 91%, young families achieving
87%, and business owners achieving 85% as shown in Figure
4(d). These findings enable us to conclude that the attempt to
strike a balance between the preservation objectives and the
community welfare considerations has succeeded, making
progress towards long-term sustainability for the initiatives
intended for heritage conservation. The analysis regarding
long-term sustainability indicates the ability of the
framework to endure regarding the maintenance of
preservation effectiveness over prolonged time periods while
still coping with urban development pressure as shown in
Figure 5(a). Historical implementation databases suggest that
initial levels of preservation effectiveness rest at 90.2% with
projections estimating a gradual drop to 88.5% in the short
term and 87.3% for the long-term scenario, which is a good
percentage in the model of minimal degradation rates
surpassing traditional approaches to preservation. The
framework maintains preservation effectiveness under
varying environmental conditions, as made clear in Figure
5(b), displaying the framework's resilience, confirming
system stability and adaptability assessment, which shows
correlation between these metrics across relief scenarios of
stress, from low achieving 92% effectiveness to extreme
stress conditions, where they maintain at an 83%
performance level.
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Figure 5. Long-term sustainability analysis and application
promotion potential (a) Protection effectiveness staged
comparison analysis, (b) System stability and adaptability
assessment, (c) Regional applicability multi-dimensional
analysis, (d) Replication potential and application scalability
evaluation

The applicability assessment at the regional level
confirms that the framework can be transferred to other
cultural heritage contexts outside the Dali implementation
site, as illustrated in the multi-faceted evaluation in Figure
5(c). From the radar diagram, it can be seen that the five
regions were evaluated consistently within the same five
regional heritage sites. Dali, after all, performed the best on
every single measure set forth; whilst Lijiang, Shangri-La,
Xishuangbanna, and Tengchong showed applicability
potential with varied performance constrained by local
contextual factors such as cultural adaptation, economic
feasibility, technical complexity, and community acceptance.
Deployment  considerations  include  computational
infrastructure requirements for handling multi-agent
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coordination, connectivity challenges in remote heritage
sites, and ethical protocols ensuring community participation
and data protection. The framework's implementation
complexity varies with site scale, with training processes
requiring approximately 12.5 hours for system convergence.
Replication potential and application scalability evaluation
provide evidence of the framework's practical viability for
widespread implementation across multiple heritage
preservation contexts, as presented in Figure 5(d). The
analysis highlights that medium-scale communities with
populations between 10,000 and 20,000 have optimal
replication success rates of 91%, sustaining acceptable
performance levels above 85% across all population
categories. The cost-benefit analysis indicates positive
economic returns as the ratios decline from 3.8:1 for smaller
communities to 2.6:1 for larger implementations,
demonstrating economies of scale without negative return
profiles. The modular architecture of the framework allows
effective adaptation to different cultures while maintaining
primary coordination structures, aiding cross-scenario
applicability across various ethnic heritage preservation
contexts, with demographic and economic development level
adaptability showing implementation feasibility.

4. Discussion

The research integrates multi-agent deep reinforcement
learning into heritage conservation, marking a systematic
application of Al to cultural preservation through
architectural innovations that embed cultural values within
computational processes. This framework advances beyond
passive documentation toward dynamic preservation
management, incorporating actionable Al-based coordination
that affects outcomes through stakeholder behavioral change.
Unlike conventional optimization systems, it unifies collective
cultural objectives while balancing competing interests
through advanced multi-agent coordination. The design
demonstrates responsible Al deployment in culturally
sensitive contexts, advancing the discourse on explainable Al
and responsible Al [28] by using artificial intelligence to
enhance rather than replace human decision-making in
heritage management. Framework integration with
governmental systems occurs through API interfaces linking
heritage databases and permit systems, supported by Al
governance committees and standardized protocols. The
system enhances policy formulation via predictive analytics
and automated compliance monitoring while maintaining
human oversight for cultural decisions through legislative
frameworks that recognize Al-assisted heritage management.

Recent cultural heritage digitalization studies focus
primarily on documentation and visualization rather than
dynamic preservation management [29]. This work differs by
incorporating actionable coordination approaches affecting
preservation outcomes through stakeholder behavioral
change. The framework works toward unifying collective
cultural objectives and balancing competing stakeholder
interests through advanced multi-agent coordination [30],
supporting emerging approaches to trust and community
control in heritage technology [31]. These findings enable
scaled, culturally grounded implementations across diverse
contexts. Despite methodological robustness, the framework
faces inherent limitations in quantifying cultural identity
factors and traditional knowledge systems. Neural network
architectures operate within computational bounds that may
inadequately capture contextually sensitive decision-making
processes. Data availability remains challenging for
intangible heritage elements that resist systematic
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digitization. These constraints highlight the tension between
computational efficiency and cultural complexity in heritage
preservation systems. Future developments should address
deployment constraints through edge computing, hybrid
offline systems, and community advisory boards, ensuring
ethical oversight. Advanced experience replay mechanisms
and explainable Al techniques offer pathways for improving
cultural adaptability and decision transparency [32].
Expanding the framework to incorporate metaverse
applications and immersive technologies presents
opportunities for enhanced community engagement. Critical
advances require algorithms distinguishing between adaptive
cultural evolution and erosive change, ensuring preservation
fosters living heritage rather than a static documentation.
These directions emphasize developing computationally
efficient yet culturally nuanced representation methods that
respect the complexity of heritage systems.

5. Conclusion

This research demonstrates the effectiveness of cultural
identity-oriented multi-agent reinforcement learning
frameworks in traditional residential heritage preservation,
achieving performance metrics that validate the viability of
Al-driven approaches in culturally sensitive contexts. The
proposed framework attains 89.3% overall accuracy in
preservation decision-making, with cultural preservation
effectiveness reaching 87.2%, outperforming conventional
approaches by 15-25 percentage points across all evaluation
metrics. The enhancement mechanism of cultural identity
shows improvement, achieving the impact of community
cultural attachment and social harmony, yielding outcomes of
91.2% and 86.4% respectively, from the baseline levels of
58.3% and 54.7%. Therefore, these results serve as evidence
that intelligent agent coordination balances cultural,
community, and stakeholder interests while optimizing value
across different scales. The findings combine disciplines of
Artificial Intelligence and the processes of cultural heritage
protection into one by developing a multi-agent coordination
mechanism that addresses conflicts of ‘residents vs. experts’.
The efficiency rate exceeds 85% across all stakeholder
categories, reaching 92% in the resident-expert
collaboration. Preservation efforts demonstrate replicable
success across various community scales with population
sizes between 5,000 and 50,000 residents while sustaining
success rates, indicating framework adaptability to numerous
contexts of heritage preservation. Economically, the cost-
benefit analysis demonstrates the financial viability of Al-
based initiatives, with ratios ranging from 2.6:1 to 3.8:1. As
for the application of deep learning technology on cultural
heritage, Al applications in cultural heritage will expand to
include multi-modal decision support systems, which can
leverage visual, textual, and spatial cultural data. The
foundation of this research allows the integration of large
language models and cultural knowledge graphs to construct
advanced systems for modelling cultural cognition, capturing
intricate relations and transmittal mechanisms of culture. The
growing availability of explainable Al methods will improve
transparency and openness concerning the use of artificial
intelligence in the processes of heritage preservation, making
it easier for local people to control the technology designed to
help them without losing cultural and traditional governance
over the preservation efforts.
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