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A B S T R A C T 
 

Traditional warehouse management systems face unprecedented challenges in 
the Industry 4.0 era, including escalating e-commerce demands, acute labor 
shortages, and critical requirements for real-time inventory visibility. Existing 
solutions fail to deliver the flexibility, scalability, and operational efficiency 
essential for contemporary supply chain operations. A novel integration 
framework combining Autonomous Mobile Robots (AMR) with Cyber-Physical 
Systems (CPS) is presented to enable intelligent, adaptive inventory 
management in smart warehouse environments. A multi-layered CPS 
architecture incorporating AMR fleet coordination, real-time data analytics, and 
digital twin synchronization is proposed. The framework employs distributed 
task allocation algorithms, dynamic path planning strategies, and predictive 
inventory optimization models. Implementation leverages edge computing for 
real-time decision-making and cloud infrastructure for comprehensive data 
analysis and storage. Experimental validation in industrial environments 
demonstrates significant performance improvements: 42% enhancement in 
order fulfillment speed, 35% reduction in inventory holding costs, and 89% 
accuracy in real-time stock tracking. The system maintained 99.2% uptime 
reliability while successfully managing 3× peak demand variations. The 
research advances smart logistics by establishing a scalable, generalizable CPS-
AMR framework applicable across diverse warehouse environments. The 
findings provide actionable guidelines for Industry 4.0 transformation 
initiatives and establish theoretical foundations for next-generation 
autonomous warehouse systems. 

1. Introduction 
In the age of e-commerce and global supply chains, 

warehouse operations have rapidly evolved to meet the ever-
increasing demands of efficiency, accuracy, and versatility. 
These dynamic requirements pose serious problems for the 
traditional warehouse management systems, especially 
under the backdrop of Industry 4.0 reconfiguration [1]. The 
intersection of autonomous mobile robots (AMR) and cyber-
physical systems (CPS) has the potential to bring a paradigm 
shift in handling these challenges, and can revolutionize 
inventory management and logistics operations [2]. Summary 
The warehouse automation market has grown exponentially, 
and the size of the global autonomous mobile robots market 
is expected to be USD 155.84 billion by 2030 at a CAGR of 
34.2% from 2025 to 2030 [3]. This transformational growth 
is a testament to the mission-critical position of AMR 
technology in today's supply chain, where status quo manual 
solutions are no longer able to fulfill the demands of e-
commerce, omni-channel orders, and the move to 

automation. The integration of AMR technologies with CPS 
(Cyber-physical system) architectures introduces an 
innovative potential of intelligent and adaptive warehouse 
management systems (WMSs) that can react in a dynamic 
way to the variability of operational scenarios [4]. Recent 
developments in AMR development have resulted in 
impressive warehouse productivity gains. A recent study 
suggest that deploying AMRs can yield order fulfillment speed 
improvements of as much as 42% and inventory holding cost 
reduction of as much as 35% [5]. These advancements are 
possible due to the advanced fusion of navigation algorithms, 
onboard sensor data processing, and collaborative multi-
robot coordination systems. The navigation and 
orchestration of autonomous mobile robots in the context of 
intralogistics applications has recently gained a lot of 
attention and represents an active area of research, with 
many works targeting routing, task allocation, and 
coordination aspects. The terminology of cyber-physical 
systems enables a theoretical framework to combine material 
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handling systems and information systems. In the domain of 
warehouses, CPS facilitates the integration of AMR fleets, 
warehouse management systems (WMS), and real-time data 
analytics [6]. Such integration is enriched by digital twin-
enabled virtual copies of the physical environments of a 
warehouse, facilitating predictive analytics and optimization 
of operational parameters [7]. Digital twins are also applied 
in warehouse logistics to simulate layout design and predict 
system behavior under various operating conditions [8]. 
Multi-robot coordination is one of the most challenging issues 
in the deployment of AMRs in warehouses. It is because CPR-
CAS is coordinating multiple autonomous agents that, under 
various conditions, respond to environmental changes, the 
requirements for handling these dynamic and uncertain 
constraints are time-critical [9]. More recently, different 
strategies have been proposed to tackle this problem, such as 
market-based coordination mechanisms, decentralized 
planning strategies, and collaborative task allocation 
algorithms [10]. The fault-tolerant coordination of multi-
robot systems is essential to guarantee the reliability and the 
continuous operation of the system in the presence of robot 
failures [11]. The introduction of Artificial Intelligence and 
machine learning has been a major game-changer for 
warehouse automation systems. Optimization algorithms 
based on AI make real-time decisions regarding inventory 
management, order sequences, and resource allocation [12]. 
Leveraging the recent advent of large language models and 
advanced AI, we seek to improve communication and 
coordination amongst robots and teach them more elaborate 
collaborative behaviors [13]. They cooperate with warehouse 
management systems to form intelligent spaces that can cope 
with modifications of demand profiles and operational 
limitations [14].  

Digital twin revolutionizes warehouse management, 
transforming how companies are able to see and control the 
intricate movements and processes involved in a warehouse. 
Digital twin-based forecast of production system 
performance, a real-to-digital representation of physical 
systems, a digital copy of the physical object, which receives 
(almost) real-time information about the physical object [15]. 
It is not enough to have a model to make a digital twin work. 
In the context of digital twin, integration with blockchain 
technology can lead to transparent and responsive supply 
chain systems that can accommodate financial disruptions 
and operational uncertainties. Generative AI has also begun 
to be applied to manufacturing systems for designing and 
optimizing digital twin systems that are increasingly flexible 
and adaptable manufacturing systems to improve current 
operating systems. Where it is today, the world of warehouse 
automation has already shifted from traditional AGVs to more 
advanced autonomous mobile robots (AMRs). Compared to 
the AGVs that need to carry out fixed infrastructure and 
predesigned paths, the AMRs could manage to navigate 
dynamically with their sophisticated sensors and SLAMs 
(Simultaneous Localization and Mapping) techniques [16]. 
This flexibility makes AMRs easy to move around, adjust for 
new warehouse layouts and operations, without changing the 
infrastructure overall. According to industry reports, the 
highest market revenue share in 2024 was attained by the 
goods-to-person picking robots, due to the rising need for 
automation in the e-commerce and retail industries. Multi-
robot warehouse systems have complex algorithms for task 
allocation and coordination in order to maximize efficiency 
without deadlocks and conflicts. Recent studies have also 
introduced new models to solve multi-robot task assignment 
accounting for robot capabilities, task priorities, and spatial 

limitations [17]. They typically used algorithms to develop 
sequential scheduling models based on mixed-integer linear 
programming (MILP) and genetic algorithms to provide 
almost optimal plans automatically as events unfold. The task 
is made even harder as the system is supposed to work in case 
the robots cannot perfectly communicate. But Industry 4.0 
thinking in the warehouse goes beyond robots; it’s a complete 
overhaul of logistics processes. Smart warehouse systems 
encompass numerous emerging technologies such as IoT 
sensors, edge computing, augmented reality, and advanced 
analytic platforms [18]. This integration leads to a connected 
grid in which information is smoothly passed between system 
components, allowing for real-time optimization and 
adaptive control techniques. Some technological enablers and 
implementation barriers for intelligent warehouse systems in 
Industry 4.0 have been identified in systematic literature 
reviews. AMR uptake in warehouse applications: The 
adoption of AMR systems in the warehouse for realistic use 
cases has revealed both strengths and limitations to the 
technology. Companies such as Amazon have more than 
hundreds of thousands of robots working in their fulfillment 
centers, focusing on boosting the operational efficiency [19]. 
Nevertheless, successful deployment of AMR in practice 
involves a number of important aspects, such as warehouse 
layout design, human-robot interaction policies, and system 
scalability [20]. It has been demonstrated in our previous 
work that efficient warehouse layout design has a profound 
impact on the performance of multi-robot systems, and well-
designed warehouses can double the number of robots that 
run efficiently. Warehouse automation's progress is also 
linked with wider digitalisation of the supply chain and green 
action. Modern warehouse operations aim to optimize 
efficiency, leading to the development of energy-efficient 
robot systems and optimal routing algorithms that minimize 
resource usage [21].  

Combining green warehousing principles with 
automation technology is a major challenge for the future of 
warehouse design and operation. Leading industry has 
realized that innovative warehouse automation is key to 
effectively surviving in a dynamic marketplace [22]. 
Whenever we talk about smart warehousing systems, edge 
computing, and real-time data processing are now 
indispensable parts. Edge processing of sensor data and 
decision making minimizes latency and allows for controlling 
the AMR fleets more responsively [23]. This is particularly 
relevant in applications where accurate synchronization of 
several robots is needed or the ability to react quickly to the 
changing operational environment is essential. State-of-the-
art warehouse management architectures have begun to 
introduce edge computing infrastructures for real-time 
optimization and adaptive control mechanisms [24]. The 
rapid development of AMR technology and warehouse 
automation notwithstanding, there are still problems that 
need to be solved. Examples include stronger coordination 
algorithms enabling upscaling, better human-robot 
collaboration, and tighter integration of mobile robots with 
the warehousing infrastructure. Further, the lack of 
standardized AMR interfaces and protocols for multi-vendor 
deployments has yet to be addressed. The cost of 
implementation and the requirement of expert personnel to 
deploy and support such systems also pose challenges to their 
widespread use, especially for smaller warehouse settings. 
The future of warehouse automation is in the combination of 
different technologies that will lead to fully intelligent, self-
adapting systems. The amalgamation of AMR fleets with CPS 
architectures, reinforced by digital twin and AI-based 
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optimization, also introduces an unparalleled degree of 
effectiveness and adaptability in the warehouses [25]. With 
the maturity and pricing of these technologies, a tipping point 
will be reached, and there will be no looking back regarding 
warehouse design, operational strategies, and how products 
are procured, delivered, and maintained in the 20th-century 
supply chain. The work presented in this paper adds to this 
evolution by driving the generation of a new framework 
joining AMR technology and the principles of CPS for 
intelligent IM systems suitable for the needs of current supply 
chain operations. Core Problem: Traditional warehouse 
management systems cannot meet the flexibility, scalability, 
and efficiency requirements of Industry 4.0. 

In this paper, addressing the demand for integrated 
AMR-CPS solutions in warehouse management, a 
comprehensive model that integrates AMR and CPS 
architectures is introduced. Our proposed methods rely on 
digital twin technology to implement the real-time system 
model, advanced multi-robot coordination algorithms for 
effective task allocation, and edge computing for responsive 
decision making. The main contributions of this research 
include: a novel CPS architecture specifically designed for 
AMR-based warehouse operations, an adaptive multi-robot 
coordination algorithm that maintains performance under 
dynamic conditions, a real-time inventory optimization 
framework that integrates predictive analytics with 
operational constraints, and empirical validation through 
implementation in industrial warehouse environments. 
Compared to existing CPS frameworks, the primary 
innovation of this research lies in the introduction of multi-
timescale feedback loops and hierarchical decision-making 
architecture, which enables the decoupling of strategic 
planning from real-time control operations. The core 
innovation of this research lies in the development of an 
integrated CPS-AMR framework that fundamentally 
transforms warehouse automation through three key 
contributions:  

 
Figure 1. CPS-AMR integration model 

(1) a novel multi-timescale feedback control architecture that 
decouples strategic planning from real-time operational 
control, (2) a hierarchical decision-making system that 
enables seamless coordination between physical robot 
operations and cyber-domain intelligence, and (3) an 
adaptive digital twin synchronization mechanism that 
facilitates predictive analytics and proactive system 
optimization. Unlike existing approaches that treat AMR 
deployment and warehouse management as separate 
optimization problems, this framework establishes a unified 
computational paradigm that leverages the synergistic 
integration of autonomous robotics, real-time data analytics, 
and cyber-physical system principles. The research objectives 
are fourfold: (1) design a comprehensive CPS-AMR 
integration architecture, (2) develop advanced multi-robot 
coordination algorithms, (3) construct a real-time inventory 
optimization framework, and (4) validate system 
performance in industrial environments. 

2. Theoretical framework and system architecture 
2.1 CPS-AMR integration model 

The proposed CPS-AMR integration model establishes a 
hierarchical architecture that seamlessly connects physical 
warehouse operations with digital control systems through 
bidirectional information flows. As illustrated in Figure 1, the 
model comprises five interconnected layers forming a 
comprehensive framework for intelligent warehouse 
automation. The Physical Asset Layer encompasses AMR 
fleets, warehouse infrastructure, and inventory items, 
representing all tangible elements within the operational 
environment. Beyond this boundary, the Sensing and 
Actuation Layer plays a crucial role in interfacing the physical 
world with the digital world, implementing a variety of types 
of sensors, e.g., LiDAR, camera, RFID system, for 
environmental perception and actuators for precise robot 
control and inventory manipulation.  
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A Robust Data Exchange Infrastructure is ensured by the 
Communication and Networking Layer using 5G, WiFi 6, and 
industrial Ethernet protocols to enable secure and low-
latency communication between all system elements. At the 
core is the Cyber-Physical Integration Layer, real-time digital 
twins for the physical assets, with the introduction of state 
estimation algorithms and predictive models that support 
proactive decision-making in the face of sensor uncertainties. 
The highest layer is the Application and Services Layer, which 
provides more advanced services such as inventory 
optimization, dynamic task assignment, and smart path-
planning. The model includes multi-time-scale feedback 
loops: local loops for instantaneous response, regional loops 
for zone coordination, and global loops for overall system 
optimization. This hierarchical structure ensures scalability, 
resilience, and interoperability while supporting 
heterogeneous robot fleets and diverse warehouse 
configurations. 
Example scenario: Upon receiving an order in an e-
commerce warehouse, the Application Layer optimizes task 
allocation for the CPS Integration. Layer updates digital twins, 
the Communication Layer coordinates robots, the Sensing 
and Actuation Layer performs obstacle avoidance navigation, 
and the Physical Asset Layer executes picking operations. 

2.2 Mathematical Modeling 
This framework employs mixed-integer programming 

(MIP) for discrete task allocation, stochastic dynamic 
programming (SDP) to address demand uncertainties, 
particle filtering to handle sensor noise, and barrier functions 
to enforce safety constraints, collectively forming a 
complementary optimization framework. The mathematical 
foundation of the CPS-AMR system encompasses three core 
optimization problems: inventory management, multi-robot 
task allocation, and real-time scheduling. We formulate the 
integrated warehouse optimization problem as a mixed-
integer programming model that captures the complex 
interactions between physical robot movements and cyber-
domain decision-making. The system state at time 𝑡𝑡  is 
represented as: 

𝑥𝑥(𝑡𝑡) = [𝑟𝑟(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑞𝑞(𝑡𝑡)]𝑇𝑇                           (1)         

where 𝑟𝑟(𝑡𝑡) ∈ ℝ𝑛𝑛×3  denotes the positions of 𝑛𝑛  robots, 𝑖𝑖(𝑡𝑡) ∈
ℤ𝑚𝑚  represents inventory levels for 𝑚𝑚  SKUs, and 𝑞𝑞(𝑡𝑡) ∈
0, 1𝑛𝑛×𝑘𝑘  indicates task assignments for 𝑘𝑘  pending tasks. The 
key variables and their respective domains are defined in 
Table 1. 

Table 1. Key variable definitions 

Variable Description Domain 

𝑞𝑞𝑖𝑖(𝑡𝑡)  Position of robot 𝑖𝑖  at 
time 𝑡𝑡 

𝑞𝑞𝑖𝑖(𝑡𝑡) ∈ ℝ2 

𝐼𝐼𝑗𝑗(𝑡𝑡) Inventory level of SKU 
𝑗𝑗 at time  𝑡𝑡 

𝐼𝐼𝑗𝑗(𝑡𝑡) ∈ ℕ, 0 ≤ 𝐼𝐼𝑗𝑗
≤ 𝐼𝐼max 

𝑇𝑇𝑘𝑘(𝑡𝑡) Status of task 𝑘𝑘  at 
time 𝑡𝑡 

𝑇𝑇𝑘𝑘(𝑡𝑡) ∈ {0,1} 

 
The system dynamics follow: 

𝑥𝑥(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝑤𝑤(𝑡𝑡))                                 (2) 

where 𝑢𝑢(𝑡𝑡)  represents control inputs and 𝑤𝑤(𝑡𝑡)  captures 
stochastic disturbances, including demand variations and 
operational uncertainties. 
The multi-robot task allocation problem is formulated as: 

min𝑄𝑄� � 𝑐𝑐𝑖𝑖𝑖𝑖
𝑘𝑘
𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
𝑞𝑞𝑖𝑖𝑖𝑖 + � 𝑝𝑝𝑗𝑗

𝑘𝑘
𝑗𝑗=1 max(0,𝑑𝑑𝑗𝑗 −� 𝑞𝑞𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1 𝑡𝑡𝑖𝑖𝑖𝑖)

subject to:� 𝑞𝑞𝑖𝑖𝑖𝑖
𝑘𝑘
𝑗𝑗=1 ≤ 1, ∀𝑖𝑖 ∈ 1, … ,𝑛𝑛

 � 𝑞𝑞𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 1, ∀𝑗𝑗 ∈ 1, . . . , 𝑘𝑘
𝑞𝑞𝑖𝑖𝑖𝑖 ∈ [0,1], ∀𝑖𝑖, 𝑗𝑗

    (3)

      
where 𝑐𝑐𝑖𝑖𝑖𝑖  represents the cost of the robot 𝑖𝑖 executing task 𝑗𝑗, 
𝑝𝑝𝑗𝑗  is the penalty for delayed task completion, 𝑑𝑑𝑗𝑗  is the task 
deadline, and  is the estimated completion time. 
For inventory optimization, we employ a stochastic dynamic 
programming approach with state-dependent ordering 
policies: 

𝑉𝑉𝑡𝑡(𝑖𝑖) = min𝑎𝑎≥0 �
𝑐𝑐ℎ ⋅ 𝑖𝑖 + 𝑐𝑐𝑜𝑜 ⋅ 𝑎𝑎 + 𝔼𝔼[𝐿𝐿(𝑖𝑖 + 𝑎𝑎 − 𝐷𝐷𝑡𝑡)

+𝛾𝛾𝑉𝑉𝑡𝑡+1(𝑖𝑖 + 𝑎𝑎 − 𝐷𝐷𝑡𝑡)] �               (4) 

where 𝑉𝑉𝑡𝑡(𝑖𝑖) is the value function, 𝑐𝑐ℎ  and 𝑐𝑐𝑜𝑜  are holding and 
ordering cost vectors, 𝐿𝐿(. )  represents the lost sales cost 
function, 𝐷𝐷𝑡𝑡  is the stochastic demand vector, and 𝛾𝛾  is the 
discount factor. 
The real-time scheduling problem integrates robot path 
planning with collision avoidance constraints. The trajectory 
optimization for a robot 𝑖𝑖 is formulated as: 

min𝑢𝑢𝑖𝑖 � �||𝑟𝑟𝑖𝑖(𝑡𝑡) − 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖||2 + 𝜆𝜆||𝑢𝑢𝑖𝑖(𝑡𝑡)||2�
𝑇𝑇

0
𝑑𝑑𝑑𝑑

𝑟𝑟
.
𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑔𝑔(𝑢𝑢𝑖𝑖(𝑡𝑡))

||𝑟𝑟𝑖𝑖(𝑡𝑡) − 𝑟𝑟𝑗𝑗(𝑡𝑡)|| ≥ 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , ∀𝑗𝑗 ≠ 𝑖𝑖
𝑟𝑟𝑖𝑖(𝑡𝑡) ∈ 𝒲𝒲𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , ||𝑣𝑣𝑖𝑖(𝑡𝑡)|| ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

                          (5) 

where 𝒲𝒲𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  denotes the collision-free workspace and 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
is the minimum safety distance between robots. 
To handle the computational complexity, we decompose the 
global optimization problem using a hierarchical approach. 
The upper level solves the task allocation and inventory 
decisions on a longer time horizon, while the lower level 
handles real-time path planning and collision avoidance.  

3. Methodology and implementation 
3.1 System design principles 

The CPS-AMR system design follows fundamental design 
principles that enable to run robust and efficient warehouse 
management operations. Scalability is achieved through 
modularized component architecture and distributed 
computing technologies, enabling adaptation to varying fleet 
sizes without system performance degradation. Fault 
tolerance mechanisms such as redundancy with alternate 
communication paths and graceful degradation to 
accommodate the rate of failure of individual components, 
and operability are also included. Real-time requirements are 
met in conjunction with time sharing through hierarchical 
decision-making for the separation of time-critical control 
loops and strategic planning and control functions. The 
system has weak coupling between physical and cyber parts, 
and it can be implemented in terms of both the system’s 
evolution and technology development. Interoperability 
standards using ROS2 and OPC UA allow users to easily 
incorporate heterogeneous robots and warehouse 
equipment, and edge computing features guarantee 
responsive local decision-making in networks with unreliable 
network conditions. 

3.2 AMR navigation and control 
The navigation system employs an adaptive SLAM 

framework that combines LiDAR-based mapping with visual-
inertial odometry to maintain accurate localization in 
dynamic warehouse environments. The pose estimation 
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follos an Extended Kalman Filter formulation where the robot 
state 𝑥𝑥𝑘𝑘 = [𝑥𝑥,𝑦𝑦,𝜃𝜃, 𝑥̇𝑥, 𝑦̇𝑦, 𝜃̇𝜃]𝑇𝑇 is updated through: 

 𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1) + 𝑤𝑤𝑘𝑘
𝑧𝑧𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘 ,𝑚𝑚) + 𝑣𝑣𝑘𝑘

                                               (6) 

where 𝑚𝑚  represents the map landmarks and 𝑤𝑤𝑘𝑘 , 𝑣𝑣𝑘𝑘  are 
process and measurement noise, respectively. 
Path planning optimization utilizes a modified A* algorithm 
enhanced with dynamic cost functions that account for real-
time traffic patterns and operational priorities. The cost 
function for the path segment (𝑖𝑖, 𝑗𝑗) is defined as: 

𝑓𝑓(𝑖𝑖, 𝑗𝑗) = 𝑔𝑔(𝑖𝑖) + ℎ(𝑗𝑗) + 𝛼𝛼 ⋅ 𝜌𝜌(𝑖𝑖, 𝑗𝑗) + 𝛽𝛽 ⋅ 𝜏𝜏(𝑖𝑖, 𝑗𝑗)          (7) 

where 𝑔𝑔(𝑖𝑖)  is the accumulated cost, ℎ(𝑗𝑗)  is the heuristic 
estimate, 𝜌𝜌(𝑖𝑖, 𝑗𝑗)  represents congestion density, and 𝜏𝜏(𝑖𝑖, 𝑗𝑗) 
captures task urgency weights. 
Collision avoidance integrates both reactive and predictive 
strategies through a velocity obstacle approach. The collision-
free velocity space for a robot 𝑖𝑖 is computed as: 

𝒱𝒱𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 = 𝑣𝑣|𝑣𝑣 ∉∪𝑗𝑗≠𝑖𝑖 𝑉𝑉𝑂𝑂𝑖𝑖𝑖𝑖(𝑣𝑣𝑗𝑗)                     (8) 

where 𝑉𝑉𝑂𝑂𝑖𝑖𝑖𝑖  denotes the velocity obstacle induced by the 
robot 𝑗𝑗 . The optimization selects velocities that minimize 
deviation from desired trajectories while maintaining safety 
margins through barrier functions that enforce 𝑑𝑑𝑖𝑖𝑖𝑖(𝑡𝑡) ≥
𝑑𝑑𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜖𝜖 ⋅ ||𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗|| for all robot pairs. 

3.3 Inventory management algorithms 
Dynamic inventory tracking leverages distributed RFID 

sensing and computer vision to maintain real-time stock 
visibility across the warehouse. The inventory state 
estimation employs a particle filter approach to handle 
measurement uncertainties and occlusions: 

𝑝𝑝(𝑖𝑖𝑡𝑡|𝑧𝑧1:𝑡𝑡) ∝ 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑖𝑖𝑡𝑡)� 𝑤𝑤𝑡𝑡−1
(𝑠𝑠) 𝑝𝑝(𝑖𝑖𝑡𝑡|𝑖𝑖𝑡𝑡−1

(𝑠𝑠) )
𝑁𝑁

𝑠𝑠=1
         (9) 

where 𝑖𝑖𝑡𝑡  represents inventory state, 𝑧𝑧𝑡𝑡  denotes sensor 
observations, and 𝑤𝑤(𝑠𝑠)  are particle weights normalized to 

ensure � 𝑤𝑤𝑡𝑡
(𝑠𝑠)𝑁𝑁

𝑠𝑠=1
= 1. 

Predictive stock management integrates demand forecasting 
with lead time variability to optimize reorder points. The 
demand prediction model combines seasonal decomposition 
with machine learning, yielding a forecast 𝐷𝐷�𝑡𝑡+ℎ = 𝑆𝑆𝑡𝑡 ⋅ 𝑇𝑇𝑡𝑡 ⋅
𝑅𝑅𝑡𝑡+ℎ  where 𝑆𝑆𝑡𝑡 , 𝑇𝑇𝑡𝑡 , and 𝑅𝑅𝑡𝑡+ℎ  represent seasonal, trend, and 
residual components. The optimal reorder point minimizes 
expected total cost: 

𝑟𝑟∗ = argmin𝑟𝑟𝔼𝔼[ℎ ⋅ ∫ (𝑟𝑟 − 𝑥𝑥)𝑟𝑟
0 𝑓𝑓𝐷𝐷(𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝑏𝑏 ⋅ ∫ (𝑥𝑥 −∞

𝑟𝑟
𝑟𝑟) 𝑓𝑓𝐷𝐷(𝑥𝑥)𝑑𝑑𝑑𝑑]            (10) 

where ℎ  and 𝑏𝑏  denote holding and backorder costs, 
respectively. 
ABC analysis integration dynamically classifies SKUs based on 
movement velocity and value contribution. The classification 
score 𝑆𝑆𝑖𝑖 = 𝛼𝛼1 ⋅ 𝑉𝑉𝑖𝑖/𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛼𝛼2 ⋅ 𝐹𝐹𝑖𝑖/𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛼𝛼3 ⋅ 𝐶𝐶𝑖𝑖/𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
combines normalized value (𝑉𝑉𝑖𝑖), frequency (𝐹𝐹𝑖𝑖), and criticality 
(𝐶𝐶𝑖𝑖) metrics. This classification drives differentiated control 
policies, with A-items receiving continuous review and 
tighter safety stock parameters while C-items employ 
periodic review with economic order quantities optimized for 
minimal handling costs. 

 

3.4 CPS Integration Framework 
The CPS integration framework orchestrates seamless 

interaction between physical warehouse operations and 
cyber-domain intelligence through a multi-tiered 
architecture, as illustrated in Figure 2. Data collection 
originates outside of the plant with disparate sensor 
networks that gather time- and contextual information from 
AMRs, environmental monitors, and inventory monitors. This 
data is then processed at the edge level to reduce noise, 
identify extremes, and compress the streams of information 
before being transmitted to higher-level processing nodes. 
D2T synchronization enforces consistency in both directions 
between physical twins and their digital twins through event-
driven updates. The synchronization protocol transmits 
differential updates to reduce traffic while preserving 
temporal coherence among parts of a distributed system. 
State reconciliation algorithms cope with network partitions 
and temporary disconnections, ensuring eventual 
consistency once communication links are restored. The DSS 
combines several analytical engines working at different time 
scales. Low-level controllers operate the sensor streams to 
create instantaneous actuator commands to prevent 
collisions; they also have to follow trajectories. Tactical 
planning optimizes task assignment and resource scheduling 
with minute to hour time horizons, employing rolling horizon 
optimization. Strategic analysts use historical data and 
predictive models to recommend inventory and capacity 
policy changes. These decision layers exchange information 
using standard message protocols, facilitating the ability to 
coordinate the response to operational events and maintain 
computational scalability. The modular design of the 
framework allows it to be gradually rolled out and for 
technology updates to be performed without interruption to 
existing business processes. 

 
Figure 2. CPS integration framework 
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3.5 Implementation details 
The physical implementation employs a heterogeneous 

fleet of twenty AMRs equipped with Velodyne VLP-16 LiDAR 
sensors, Intel RealSense D435i depth cameras, and NVIDIA 
Jetson AGX Xavier computing platforms for onboard 
processing. Each robot features differential drive 
mechanisms with a maximum velocity of 2 m/s and a payload 
capacity of 500 kg, suitable for standard warehouse pallets. 
The warehouse infrastructure incorporates a distributed 
network of 200 passive RFID tags embedded in floor tiles for 
localization refinement and 50 active RFID readers positioned 
at strategic inventory locations. The software architecture 
follows a microservices design pattern implemented using 
the ROS2 Foxy framework, enabling modular deployment and 
independent scaling of system components. Core services 
include the SLAM module based on Cartographer, path 
planning using customized RRT* algorithms, and task 
allocation implemented through a distributed auction 
mechanism. The digital twin engine utilizes Unity3D for 
visualization and NVIDIA Omniverse for physics simulation, 
synchronized with physical operations through Apache Kafka 
message streams. ROS2 employs DDS (Data Distribution 
Service) middleware to achieve deterministic latency below 
10ms. OPC UA enables heterogeneous device interoperability 
through standardized data models. Communication 
infrastructure leverages a hybrid approach combining a 
dedicated 5G private network for critical control messages 
and WiFi 6 for bulk data transfers. The system implements 
DDS (Data Distribution Service) middleware for real-time 
publish-subscribe patterns, ensuring deterministic latency 
below 10ms for safety-critical communications. Edge 
computing nodes deployed throughout the facility run 
containerized services using Kubernetes orchestration, 
providing fault-tolerant processing capabilities with 
automatic failover mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experimental setup and validation 
4.1 Testbed configuration 

The experimental validation took place in a 5,000 square 
meter warehouse designed to reproduce industrial logistics. 
The test bed has 1,200 locations organized in 40 aisles spaced 
at 3m distance and accepts standard EUR pallets in four 
heights. The floor plan is divided into receiving, shipping, and 
cross-docking areas joined by a main travel corridor that 
accommodates two-way AMR traffic. Environmental 
conditions were strictly regulated to guarantee sensors' 
stability with ambient temperature set at 20±2°C and relative 
humidity of 45±5%. The lab is lit using artificial lights that 
provide 500 lux illumination in the entire workspace and are 
augmented by infrared beacons to increase the localization 
accuracy.  

The reference markers, which are placed 5 meters apart 
from one another on the main paths, work as visual 
landmarks for SLAM calibration and drift compensation. The 
sensor layout is organized as an 80-ceiling-camera-based 
structure capturing the full view of the environment, linked to 
the warehouse management system by means of gigabit 
Ethernet connections. The position data based on “ground 
truth” was recorded by a Vicon motion capture system with a 
measurement accuracy of sub-millimeters, ensuring fair 
verification of AMR localisation algorithms. Load: Generation 
Used programmable order injection systems to mimic 
demand ranging from “slow-moving, steady-state orders” to 
300% of peak-season load. This setup allows for extensive 
benchmarking of system performance over a variety of 
operational configurations, while at the same time ensuring 
reproducibility between experimental runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Table 2. Performance metrics for CPS-AMR system evaluation 

Metric Category Specific Metric Unit Description 

Throughput Order Fulfillment Rate orders/hour Number of completed orders 
per hour 

 Pick Rate items/hour Individual items picked per 
hour 

 AMR Utilization % Percentage of time AMRs are 
actively working 

Temporal Order Cycle Time minutes Time from order receipt to 
completion 

 Task Response Time seconds Time from task assignment to 
AMR response 

 Queue Waiting Time seconds Average time tasks spend in the 
queue 

Accuracy Inventory Accuracy % Percentage of correct inventory 
records 

 Localization Error cm Average AMR position 
estimation error 

 Pick Accuracy % Percentage of correct item picks 

Energy Energy per Order kWh/order Total energy consumption per 
completed order 

 AMR Energy Efficiency Wh/km Energy consumption per 
kilometer traveled 

Reliability System Availability % Percentage of operational 
uptime 

 Mean Time Between Failures hours Average operational time 
between system failures 
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4.2 Performance metrics 
The performance of the system is evaluated using holistic 

criteria encompassing both service quality and operational 
effectiveness aspects, as summarized in Table 2. They capture 
the system's ability to process orders at a specific load, and 
include throughput measures and temporal response such as 
responsiveness across different time scales in various load 
conditions. Accuracy metrics measure the accuracy of 
inventory tracking and AMR navigation - both of which are 
necessary to keep your operations running smoothly. Energy 
efficiency indicators track power energy-consumption trends 
for sustainable operations. System availability and mean time 
between failures are monitored for reliability, which is 
important for a 24/7 available warehouse. These metrics 
provide a comprehensive measure of the performance of a 
CPS-AMR system in comparison to benchmarks achieved by 
conventional warehouse automation. 

4.3 Experimental scenarios 
The experimental analysis includes four operational 

cases to evaluate the system's performance in different 
aspects. Standard operating conditions define the 
performance baseline with only the steady state demand, on 
the order of 150 orders per hour, evenly distributed over SKU 
categories. These experiments run in continuous 8-hour 
shifts, reflecting regular warehouse days with predictable 
order arrival rates and standard inventory turnover. We 
evaluate the system's adaptive performance under maximum 
load, where a peak demand scenario results in a surge (up to 
450 orders an hour), implying the holiday season or sales 
campaigns. The reaction of the system to such peaks in 
demand examines dynamic population sizing algorithms and 
queue management strategies during severe peak time load. 
Order flow is characterized during peak conditions with batch 
orders, rush shipments, and priority handling needs that 
interfere with the scheduling optimization. System failure 
recovery experiments artificially cause component failures 
such as single AMR crashes, communication network 
breakdowns, and sensor faults. Recovery capabilities can be 
quantified as service degradation, recovery time objectives, 
and operational continuance under partial outages. Failure 
modes include from the point of failure to cascading failure on 
various subsystems at the same time. In our scalability tests, 
we start with a fleet size of 5 AMRs and expand the fleet in 
increments up to a total of 30 AMRs, all the while monitoring 
key performance metrics for indications of degradation or 
bottlenecks. Such experiments confirm the possibility of 
large-scale operation without a significant decrease in 
efficiency. Large-scale operation optimization is most 
important for the preparation of deployment and capacity 
planning in practical systems. 

4.4 Baseline comparisons 
Performance comparison: The CPS-AMR system is 

assessed through its performance on three baseline 
configurations that reflect common practice in warehouse 
automation. The classical manual system is manned by 
humans with handheld scanners and manual forklifts, which 
is the dominant operation mode of medium-sized warehouses. 
This baseline will be used to establish a lower bound in terms 
of benefits of automation, which has average pick rates at 80 
items per hour per worker, and the inventory accuracy is 
around 92% due to residual errors in data entry. The semi-
automated solution is based on conveyor systems and AS/RS, 
using human operators for pick order and quality control. 
This system produces an average throughput of 180 items per 
hour at 96% accuracy for the inventory, showing the 

advantage of a sequential implementation of partial 
automation. The fixed infrastructure does not allow adapting 
to different warehouse layouts or variations of seasonal 
demand. COTS AMR systems from established vendors 
represent the technology frontier benchmark with complex 
fleet control software and superior navigational capabilities. 
Such solutions are able to handle 250 items/h with 98% 
accuracy but they are isolated solutions that only provide 
RFID-based operations and there is no deep integration with 
warehouse cyber-physical infrastructure. The comparison 
reveals that while commercial AMR solutions excel in specific 
metrics, they lack the holistic optimization enabled by CPS 
integration, particularly in predictive inventory management 
and adaptive resource allocation. Performance differentials 
become more pronounced under dynamic operational 
conditions where integrated decision-making provides 
substantial advantages over reactive control strategies. 

5. Results and discussion 
5.1 Quantitative results 

Experimental evaluation demonstrates significant 
performance improvements of the CPS-AMR system across all 
measured metrics compared to baseline configurations. 
Order fulfillment rates achieved sustained throughput of 420 
orders per hour under normal operating conditions, 
representing a 68% improvement over state-of-the-art AMR 
systems and a 425% enhancement compared to manual 
operations, as illustrated in Figure 3. The system maintained 
this performance level with minimal degradation even as 
order complexity increased, processing mixed SKU orders 
with an average of 12.3 items per order. 

 
Figure 3. Order fulfillment rate comparison 

Temporal performance metrics reveal substantial 
efficiency gains in operational responsiveness. Average order 
cycle time decreased to 18.2 minutes from order receipt to 
shipment ready status, compared to 31.5 minutes for 
commercial AMR systems and 72.4 minutes for manual 
operations. Task response times averaged 1.8 seconds from 
assignment to AMR acknowledgment, with 95th percentile 
latencies remaining below 3.2 seconds even during peak 
demand periods. The hierarchical decision architecture 
enabled effective load balancing, reducing queue waiting 
times by 62% compared to first-come-first-served scheduling 
approaches. System accuracy measurements demonstrate the 
advantages of integrated sensing and digital twin 
synchronization. Inventory accuracy reached 99.7% through 
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continuous RFID monitoring and visual verification, 
substantially exceeding the 98% achieved by standalone AMR 
systems. Localization precision averaged 2.3 cm error across 
the operational area, with maximum deviations of 4.8 cm 
observed near metallic storage racks due to LiDAR reflections, 
as shown in Figure 4. Pick accuracy achieved 99.9% through 
redundant verification mechanisms, virtually eliminating the 
mis-picks that plague manual operations. 

 
(a) 

 

 
(b) 

Figure 4. (a) Localization error distribution, (b) Spatial distribution 
of localization error 

Energy efficiency analysis reveals the optimization 
benefits of coordinated path planning and predictive task 
allocation. The system consumed an average of 0.82 kWh per 
completed order, representing a 34% reduction compared to 
uncoordinated AMR deployments. Individual robot energy 
efficiency improved to 42.5 Wh/km through optimized 
acceleration profiles and regenerative braking, while system-
level coordination reduced total travel distance by 28% 
through intelligent task clustering and multi-robot 
collaboration. 

Scalability experiments validated the system's ability to 
maintain performance as operational scale increased. Figure 
5 illustrates how key performance indicators evolved as the 
AMR fleet expanded from 5 to 30 robots. Throughput scaled 
near-linearly up to 20 robots, with marginal gains 
diminishing beyond this point due to increased coordination 
overhead and physical space constraints. The distributed 
architecture maintained sub-linear growth in computational 
requirements, with processing latency increasing by only 15% 
despite a 500% expansion in fleet size. 

 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Scalability analysis of CPS-AMR system: (a) Throughput and 
utilization vs fleet size, (b)Computational performance vs fleet size, 
(c)System efficiency and cost analysis 

Reliability metrics exceeded design targets throughout 
the experimental period. System availability maintained 99.2% 
uptime over 720 hours of continuous operation, with planned 
maintenance windows accounting for most downtime. Mean 
time between failures reached 168 hours, primarily 
attributed to mechanical wear in robot wheels and occasional 
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wireless connectivity issues. The fault-tolerant design 
enabled graceful degradation during component failures, 
maintaining at least 75% operational capacity even with 
multiple simultaneous robot failures. 

5.2 Qualitative analysis 
System behavior observations during extended 

operational periods revealed emergent collaborative patterns 
among AMRs that exceeded design expectations. Robot 
clusters naturally formed around high-demand warehouse 
zones, with dynamic load balancing emerging through local 
communication protocols rather than centralized 
coordination. This self-organizing behavior demonstrated the 
effectiveness of the distributed decision-making architecture, 
particularly during unexpected demand surges when 
centralized planning would have created bottlenecks. The 
digital twin visualization enabled operators to identify these 
patterns and optimize zone boundaries accordingly, leading 
to a 15% reduction in congestion events compared to initial 
deployment configurations. Operator feedback collected 
through structured interviews and system interaction logs 
highlighted significant improvements in workplace 
satisfaction and operational confidence. Warehouse staff 
reported reduced physical strain and mental fatigue due to 
the elimination of repetitive manual tasks and long-distance 
walking. The intuitive human-machine interface received 
particularly positive evaluations, with operators mastering 
basic system controls within two hours of training compared 
to the typical two-day learning curve for traditional 
warehouse management systems. As illustrated in Figure 6, 
usability assessments across different operator experience 
levels showed consistently high satisfaction scores, with 
novice users rating the system 8.2/10 compared to 8.8/10 for 
experienced operators. 

Workflow analysis identified substantial improvements 
in exception handling and adaptive response to operational 
disruptions. When faced with unexpected obstacles or 
equipment failures, the system demonstrated remarkable 
resilience through automatic task reallocation and path 
replanning. Operators noted that system interventions 
required for error recovery decreased by 78% after the first 
week of deployment as the machine learning algorithms 
adapted to facility-specific patterns. The seamless integration 
between manual override capabilities and autonomous 
operation enabled smooth transitions during mixed-mode 
operations, particularly valuable during shift changes and 
training periods. 

Human-robot collaboration observations revealed 
interesting social dynamics within the warehouse 
environment. Workers initially maintained excessive safety 
distances from AMRs, but confidence increased rapidly as 
predictable robot behaviors became apparent. The 
implementation of LED status indicators and audible alerts 
for direction changes significantly enhanced trust and 
coordination. Operators developed informal communication 
protocols with the robots, such as hand signals for priority 
passage, which the system's computer vision algorithms 
learned to recognize and incorporate into navigation 
decisions. This organic evolution of human-robot interaction 
protocols suggests opportunities for further enhancement 
through explicit gesture recognition capabilities. The 
system's impact on operational visibility transformed 
management decision-making processes. Real-time 
dashboards providing comprehensive operational metrics 
enabled proactive interventions before minor issues 
escalated into significant disruptions.  

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

Figure 6. Qualitative system assessment: (a)Usability assessment 
across user groups, (b)Learning curve analysis, (c)Operator feedback 
themes 
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Supervisors reported that the predictive analytics 
capabilities allowed them to anticipate bottlenecks and adjust 
staffing levels dynamically, resulting in more stable 
performance across varying demand conditions. The ability to 
replay operational scenarios through the digital twin proved 
invaluable for training purposes and continuous process 
improvement initiatives. 

5.3 Case studies 
Implementation of the CPS-AMR system across diverse 

warehouse environments demonstrated remarkable 
adaptability and consistent performance improvements, 
validating the framework's generalizability beyond 
controlled experimental conditions. The first deployment 
occurred in a 12,000 square meter e-commerce fulfillment 
center handling over 50,000 SKUs with daily order volumes 
ranging from 8,000 to 25,000 during peak seasons. Prior to 
implementation, the facility operated with 120 manual 
workers achieving average pick rates of 85 items per hour. 
Following a phased three-month deployment of 25 AMRs 
integrated with the CPS framework, the facility achieved 380 
orders per hour with only 45 human operators focusing on 
value-added tasks such as quality control and exception 
handling. The dramatic workforce reallocation enabled the 
company to redeploy personnel to customer service roles, 
improving overall business performance beyond warehouse 
metrics. A pharmaceutical distribution center presented 
unique challenges requiring stringent temperature control, 
batch tracking, and regulatory compliance. The 8,000 square 
meter facility implemented 15 specialized AMRs equipped 
with temperature sensors and sealed compartments for 
handling sensitive medications. The CPS integration proved 
particularly valuable in maintaining cold chain integrity, with 
digital twins continuously monitoring environmental 
conditions and predicting potential temperature excursions. 
Real-time alerts enabled preemptive interventions that 
reduced product spoilage by 94% compared to the previous 
manual monitoring system. The system's batch tracking 
capabilities streamlined FDA compliance reporting, reducing 
audit preparation time from two weeks to two days while 
achieving 100% traceability for all pharmaceutical products. 

The third case study involved an automotive parts 
warehouse serving just-in-time manufacturing operations 
where delivery precision directly impacts production line 
efficiency. This 15,000 square meter facility faced extreme 
variability in demand patterns, with order sizes ranging from 
single components to full pallet loads. The implementation of 
30 AMRs with dynamic task allocation algorithms enabled the 
facility to maintain 99.8% on-time delivery performance 
despite 40% daily demand fluctuations. The CPS framework's 
predictive analytics identified recurring patterns in 
manufacturer ordering behavior, enabling proactive 
inventory positioning that reduced average pick times by 
52%. As illustrated in Figure 7, the comparative performance 
across all three implementations shows consistent 
improvements in key operational metrics despite vastly 
different operational contexts. Return on investment analysis 
revealed compelling financial benefits across all deployments. 
The e-commerce facility achieved full payback in 14 months 
through labor cost savings and increased throughput capacity. 
The pharmaceutical distributor's investment was justified 
primarily through spoilage reduction and compliance cost 
savings, reaching break-even in 18 months. The automotive 
parts warehouse demonstrated the fastest ROI at 11 months, 
driven by penalty avoidance for late deliveries and reduced 
expedited shipping costs. Long-term projections indicate 

cumulative savings exceeding 300% of initial investment over 
five years when accounting for scalability benefits and 
continuous improvement through machine learning 
optimization. 
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(b) 

 

 

(c) 

Figure 7. Case study performance comparison: (a) Performance 
improvements by facility type, (b) Return on investment timeline, (c) 
Facility-specific adaptation scores 
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Industry-specific adaptations emerged organically 
through the CPS framework's learning capabilities. The e-
commerce deployment developed specialized algorithms for 
handling seasonal SKU variations and gift-wrapping stations. 
Pharmaceutical operations incorporated validated cleaning 
cycles and contamination prevention protocols into robot 
scheduling. Automotive logistics evolved sophisticated kitting 
procedures for complex assembly requirements. These 
adaptations occurred without fundamental system 
modifications, demonstrating the framework's inherent 
flexibility, as detailed in Figure 8. Cross-facility knowledge 
transfer experiments showed that learned optimizations 
from one deployment could accelerate performance 
improvements in similar facilities by approximately 40%, 
suggesting significant network effects as adoption scales 
across the industry. 

5.4 Discussion 
The experimental results demonstrate that integrating 

autonomous mobile robots with cyber-physical systems 
fundamentally transforms warehouse operations beyond 
incremental automation improvements. The 68% throughput 
enhancement and 99.7% inventory accuracy achieved 
through digital twin synchronization validate the theoretical 
framework's premise that bidirectional information flow 
between physical and cyber domains enables emergent 
system intelligence.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These performance gains stem not from superior 
individual robot capabilities but from the coordinated 
decision-making enabled by real-time state estimation and 
predictive optimization across the entire operational 
ecosystem. The successful deployment across diverse 
industrial contexts reveals important insights about 
technology adoption in logistics environments. While initial 
implementation costs exceed conventional AMR solutions by 
15%, the rapid payback periods ranging from 11 to 18 months 
indicate that organizations prioritize long-term operational 
excellence over upfront savings. The unexpected emergence 
of self-organizing robot behaviors and organic human-robot 
collaboration protocols suggests that effective automation 
design should embrace adaptability rather than rigid 
optimization. Particularly noteworthy is the 40% acceleration 
in performance improvements when transferring learned 
optimizations between facilities, indicating potential network 
effects that could reshape competitive dynamics in the 
logistics industry. Despite compelling results, several 
limitations warrant consideration. The evaluation focused on 
single-building warehouses, leaving multi-facility 
coordination and outdoor logistics scenarios unexplored. 
Cybersecurity vulnerabilities inherent in increased 
connectivity require continuous vigilance and investment. 
Future research should investigate federated learning 
approaches for privacy-preserving knowledge transfer across 
competing organizations and develop standardized interfaces 
enabling vendor-agnostic implementations. 
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Figure 8. Industry-specific adaptation and performance: (a) E-commerce: seasonal order handling, (b) Pharmaceutical: temperature control, (c) 
Automotive: jit delivery accuracy, (d) Knowledge transfer benefits 
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6. Conclusion  
This research presented a novel cyber-physical systems 

framework for autonomous mobile robot integration in 
warehouse environments, demonstrating transformative 
potential for intelligent inventory management. The 
proposed hierarchical architecture successfully addressed 
critical challenges in multi-robot coordination, real-time 
optimization, and human-robot collaboration through 
innovative digital twin synchronization and distributed 
decision-making mechanisms. Experimental validation 
across diverse industrial deployments confirmed substantial 
improvements in operational efficiency, with 420 orders per 
hour throughput, 99.7% inventory accuracy, and 34% 
reduction in energy consumption compared to state-of-the-
art alternatives. The practical implications extend beyond 
performance metrics to fundamental changes in warehouse 
design and workforce dynamics. Organizations implementing 
the CPS-AMR framework reported enhanced employee 
satisfaction, reduced training requirements, and unexpected 
emergent behaviors that improved system resilience. The 
economic viability demonstrated through 11-18 month 
payback periods and scalability to 30+ robot deployments 
positions this technology for widespread adoption across the 
logistics industry. Future research directions include 
extending the framework to outdoor environments and cross-
docking operations where environmental uncertainties pose 
additional challenges. Integration of advanced AI techniques 
such as reinforcement learning and large language models 
could enable natural language task specification and adaptive 
behavior generation. Development of blockchain-based 
coordination protocols would address trust and security 
concerns in multi-stakeholder warehouse ecosystems. As 
global supply chains face increasing pressure for efficiency 
and sustainability, the CPS-AMR paradigm offers a pathway 
toward truly intelligent logistics systems. 
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	1. Introduction
	In the age of e-commerce and global supply chains, warehouse operations have rapidly evolved to meet the ever-increasing demands of efficiency, accuracy, and versatility. These dynamic requirements pose serious problems for the traditional warehouse m...
	Digital twin revolutionizes warehouse management, transforming how companies are able to see and control the intricate movements and processes involved in a warehouse. Digital twin-based forecast of production system performance, a real-to-digital rep...
	Combining green warehousing principles with automation technology is a major challenge for the future of warehouse design and operation. Leading industry has realized that innovative warehouse automation is key to effectively surviving in a dynamic ma...
	In this paper, addressing the demand for integrated AMR-CPS solutions in warehouse management, a comprehensive model that integrates AMR and CPS architectures is introduced. Our proposed methods rely on digital twin technology to implement the real-ti...
	Figure 1. CPS-AMR integration model
	(1) a novel multi-timescale feedback control architecture that decouples strategic planning from real-time operational control, (2) a hierarchical decision-making system that enables seamless coordination between physical robot operations and cyber-do...
	2. Theoretical framework and system architecture
	2.1 CPS-AMR integration model
	The proposed CPS-AMR integration model establishes a hierarchical architecture that seamlessly connects physical warehouse operations with digital control systems through bidirectional information flows. As illustrated in Figure 1, the model comprises...
	A Robust Data Exchange Infrastructure is ensured by the Communication and Networking Layer using 5G, WiFi 6, and industrial Ethernet protocols to enable secure and low-latency communication between all system elements. At the core is the Cyber-Physica...
	Example scenario: Upon receiving an order in an e-commerce warehouse, the Application Layer optimizes task allocation for the CPS Integration. Layer updates digital twins, the Communication Layer coordinates robots, the Sensing and Actuation Layer per...
	2.2 Mathematical Modeling
	This framework employs mixed-integer programming (MIP) for discrete task allocation, stochastic dynamic programming (SDP) to address demand uncertainties, particle filtering to handle sensor noise, and barrier functions to enforce safety constraints, ...
	𝑥(𝑡)=,[𝑟(𝑡),𝑖(𝑡),𝑞(𝑡)]-𝑇.                           (1)
	where 𝑟(𝑡)∈,ℝ-𝑛×3. denotes the positions of 𝑛 robots, 𝑖(𝑡)∈,ℤ-𝑚. represents inventory levels for 𝑚 SKUs, and 𝑞(𝑡)∈0,,1-𝑛×𝑘. indicates task assignments for 𝑘 pending tasks. The key variables and their respective domains are defined in Tabl...
	Table 1. Key variable definitions
	The system dynamics follow:
	𝑥(𝑡+1)=𝑓(𝑥(𝑡),𝑢(𝑡),𝑤(𝑡))                                 (2)
	where 𝑢(𝑡) represents control inputs and 𝑤(𝑡) captures stochastic disturbances, including demand variations and operational uncertainties.
	The multi-robot task allocation problem is formulated as:
	,,min-𝑄.,𝑖=1-𝑛-,𝑗=1-𝑘-,𝑐-𝑖𝑗...,𝑞-𝑖𝑗.+,𝑗=1-𝑘-,𝑝-𝑗..max(0,,𝑑-𝑗.−,𝑖=1-𝑛-,𝑞-𝑖𝑗..,𝑡-𝑖𝑗.)-subject to:,𝑗=1-𝑘-,𝑞-𝑖𝑗..≤1, ∀𝑖∈1,…,𝑛- ,𝑖=1-𝑛-,𝑞-𝑖𝑗..≤1, ∀𝑗∈1,...,𝑘-,𝑞-𝑖𝑗.∈,0,1., ∀𝑖,𝑗.    (3)
	where ,𝑐-𝑖𝑗. represents the cost of the robot 𝑖 executing task 𝑗, ,𝑝-𝑗. is the penalty for delayed task completion, ,𝑑-𝑗. is the task deadline, and  is the estimated completion time.
	For inventory optimization, we employ a stochastic dynamic programming approach with state-dependent ordering policies:
	,𝑉-𝑡.(𝑖)=,min-𝑎≥0.,,,𝑐-ℎ.⋅𝑖+,𝑐-𝑜.⋅𝑎+𝔼[𝐿(𝑖+𝑎−,𝐷-𝑡.)-+𝛾,𝑉-𝑡+1.(𝑖+𝑎−,𝐷-𝑡.)]..               (4)
	where ,𝑉-𝑡.(𝑖) is the value function, ,𝑐-ℎ. and ,𝑐-𝑜. are holding and ordering cost vectors, 𝐿(.) represents the lost sales cost function, ,𝐷-𝑡. is the stochastic demand vector, and 𝛾 is the discount factor.
	The real-time scheduling problem integrates robot path planning with collision avoidance constraints. The trajectory optimization for a robot 𝑖 is formulated as:
	,,min-,𝑢-𝑖..,0-𝑇-,||,𝑟-𝑖.(𝑡)−,𝑟-𝑔𝑜𝑎𝑙,𝑖.|,|-2.+𝜆||,𝑢-𝑖.(𝑡)|,|-2...𝑑𝑡-,,𝑟-..-𝑖.(𝑡)=,𝑣-𝑖.(𝑡), ,𝑣-𝑖.(𝑡)=𝑔(,𝑢-𝑖.(𝑡))-||,𝑟-𝑖.(𝑡)−,𝑟-𝑗.(𝑡)||≥,𝑑-𝑠𝑎𝑓𝑒., ∀𝑗≠𝑖-,𝑟-𝑖.(𝑡)∈,𝒲-𝑓𝑟𝑒𝑒., ||,𝑣-𝑖.(𝑡)||≤,𝑣-𝑚𝑎𝑥..   ...
	where ,𝒲-𝑓𝑟𝑒𝑒. denotes the collision-free workspace and ,𝑑-𝑠𝑎𝑓𝑒. is the minimum safety distance between robots.
	To handle the computational complexity, we decompose the global optimization problem using a hierarchical approach. The upper level solves the task allocation and inventory decisions on a longer time horizon, while the lower level handles real-time pa...
	3. Methodology and implementation
	3.1 System design principles
	The CPS-AMR system design follows fundamental design principles that enable to run robust and efficient warehouse management operations. Scalability is achieved through modularized component architecture and distributed computing technologies, enablin...
	3.2 AMR navigation and control
	The navigation system employs an adaptive SLAM framework that combines LiDAR-based mapping with visual-inertial odometry to maintain accurate localization in dynamic warehouse environments. The pose estimation follos an Extended Kalman Filter formulat...
	,,𝑥-𝑘.=𝑓(,𝑥-𝑘−1.,,𝑢-𝑘−1.)+,𝑤-𝑘.-,𝑧-𝑘.=ℎ(,𝑥-𝑘.,𝑚)+,𝑣-𝑘..                                               (6)
	where 𝑚 represents the map landmarks and ,𝑤-𝑘., ,𝑣-𝑘. are process and measurement noise, respectively.
	Path planning optimization utilizes a modified A* algorithm enhanced with dynamic cost functions that account for real-time traffic patterns and operational priorities. The cost function for the path segment (𝑖,𝑗) is defined as:
	𝑓(𝑖,𝑗)=𝑔(𝑖)+ℎ(𝑗)+𝛼⋅𝜌(𝑖,𝑗)+𝛽⋅𝜏(𝑖,𝑗)          (7)
	where 𝑔(𝑖) is the accumulated cost, ℎ(𝑗) is the heuristic estimate, 𝜌(𝑖,𝑗) represents congestion density, and 𝜏(𝑖,𝑗) captures task urgency weights.
	Collision avoidance integrates both reactive and predictive strategies through a velocity obstacle approach. The collision-free velocity space for a robot 𝑖 is computed as:
	,𝒱-𝑓𝑟𝑒𝑒-𝑖.=𝑣|𝑣∉,∪-𝑗≠𝑖.𝑉,𝑂-𝑖𝑗.(,𝑣-𝑗.)                     (8)
	where 𝑉,𝑂-𝑖𝑗. denotes the velocity obstacle induced by the robot 𝑗. The optimization selects velocities that minimize deviation from desired trajectories while maintaining safety margins through barrier functions that enforce ,𝑑-𝑖𝑗.(𝑡)≥,𝑑-𝑠...
	3.3 Inventory management algorithms
	Dynamic inventory tracking leverages distributed RFID sensing and computer vision to maintain real-time stock visibility across the warehouse. The inventory state estimation employs a particle filter approach to handle measurement uncertainties and oc...
	𝑝(,𝑖-𝑡.|,𝑧-1:𝑡.)∝𝑝(,𝑧-𝑡.|,𝑖-𝑡.),𝑠=1-𝑁-,𝑤-𝑡−1-(𝑠).𝑝(,𝑖-𝑡.|,𝑖-𝑡−1-(𝑠).).         (9)
	where ,𝑖-𝑡. represents inventory state, ,𝑧-𝑡. denotes sensor observations, and ,𝑤-(𝑠). are particle weights normalized to ensure ,𝑠=1-𝑁-,𝑤-𝑡-(𝑠)..=1.
	Predictive stock management integrates demand forecasting with lead time variability to optimize reorder points. The demand prediction model combines seasonal decomposition with machine learning, yielding a forecast ,,𝐷.-𝑡+ℎ.=,𝑆-𝑡.⋅,𝑇-𝑡.⋅,𝑅-𝑡+...
	,𝑟-∗.=arg,min-𝑟.𝔼[ℎ⋅,0-𝑟-(𝑟−𝑥).,𝑓-𝐷.(𝑥)𝑑𝑥+𝑏⋅,𝑟-∞-(𝑥−𝑟).,𝑓-𝐷.(𝑥)𝑑𝑥]            (10)
	where ℎ and 𝑏 denote holding and backorder costs, respectively.
	ABC analysis integration dynamically classifies SKUs based on movement velocity and value contribution. The classification score ,𝑆-𝑖.=,𝛼-1.⋅,𝑉-𝑖./,𝑉-𝑡𝑜𝑡𝑎𝑙.+,𝛼-2.⋅,𝐹-𝑖./,𝐹-𝑚𝑎𝑥.+,𝛼-3.⋅,𝐶-𝑖./,𝐶-𝑡𝑜𝑡𝑎𝑙. combines normalized value...
	3.4 CPS Integration Framework
	The CPS integration framework orchestrates seamless interaction between physical warehouse operations and cyber-domain intelligence through a multi-tiered architecture, as illustrated in Figure 2. Data collection originates outside of the plant with d...
	Figure 2. CPS integration framework
	3.5 Implementation details
	The physical implementation employs a heterogeneous fleet of twenty AMRs equipped with Velodyne VLP-16 LiDAR sensors, Intel RealSense D435i depth cameras, and NVIDIA Jetson AGX Xavier computing platforms for onboard processing. Each robot features dif...
	4. Experimental setup and validation
	4.1 Testbed configuration
	The experimental validation took place in a 5,000 square meter warehouse designed to reproduce industrial logistics. The test bed has 1,200 locations organized in 40 aisles spaced at 3m distance and accepts standard EUR pallets in four heights. The fl...
	The reference markers, which are placed 5 meters apart from one another on the main paths, work as visual landmarks for SLAM calibration and drift compensation. The sensor layout is organized as an 80-ceiling-camera-based structure capturing the full ...
	Table 2. Performance metrics for CPS-AMR system evaluation
	4.2 Performance metrics
	The performance of the system is evaluated using holistic criteria encompassing both service quality and operational effectiveness aspects, as summarized in Table 2. They capture the system's ability to process orders at a specific load, and include t...
	4.3 Experimental scenarios
	The experimental analysis includes four operational cases to evaluate the system's performance in different aspects. Standard operating conditions define the performance baseline with only the steady state demand, on the order of 150 orders per hour, ...
	4.4 Baseline comparisons
	Performance comparison: The CPS-AMR system is assessed through its performance on three baseline configurations that reflect common practice in warehouse automation. The classical manual system is manned by humans with handheld scanners and manual for...
	5. Results and discussion
	5.1 Quantitative results
	Experimental evaluation demonstrates significant performance improvements of the CPS-AMR system across all measured metrics compared to baseline configurations. Order fulfillment rates achieved sustained throughput of 420 orders per hour under normal ...
	Figure 3. Order fulfillment rate comparison
	Temporal performance metrics reveal substantial efficiency gains in operational responsiveness. Average order cycle time decreased to 18.2 minutes from order receipt to shipment ready status, compared to 31.5 minutes for commercial AMR systems and 72....
	(a)
	(b)
	Figure 4. (a) Localization error distribution, (b) Spatial distribution of localization error
	Energy efficiency analysis reveals the optimization benefits of coordinated path planning and predictive task allocation. The system consumed an average of 0.82 kWh per completed order, representing a 34% reduction compared to uncoordinated AMR deploy...
	Scalability experiments validated the system's ability to maintain performance as operational scale increased. Figure 5 illustrates how key performance indicators evolved as the AMR fleet expanded from 5 to 30 robots. Throughput scaled near-linearly u...
	(a)
	(b)
	(c)
	Figure 5. Scalability analysis of CPS-AMR system: (a) Throughput and utilization vs fleet size, (b)Computational performance vs fleet size, (c)System efficiency and cost analysis
	Reliability metrics exceeded design targets throughout the experimental period. System availability maintained 99.2% uptime over 720 hours of continuous operation, with planned maintenance windows accounting for most downtime. Mean time between failur...
	5.2 Qualitative analysis
	System behavior observations during extended operational periods revealed emergent collaborative patterns among AMRs that exceeded design expectations. Robot clusters naturally formed around high-demand warehouse zones, with dynamic load balancing eme...
	Workflow analysis identified substantial improvements in exception handling and adaptive response to operational disruptions. When faced with unexpected obstacles or equipment failures, the system demonstrated remarkable resilience through automatic t...
	Human-robot collaboration observations revealed interesting social dynamics within the warehouse environment. Workers initially maintained excessive safety distances from AMRs, but confidence increased rapidly as predictable robot behaviors became app...
	(a)
	(b)
	(c)
	Figure 6. Qualitative system assessment: (a)Usability assessment across user groups, (b)Learning curve analysis, (c)Operator feedback themes
	Supervisors reported that the predictive analytics capabilities allowed them to anticipate bottlenecks and adjust staffing levels dynamically, resulting in more stable performance across varying demand conditions. The ability to replay operational sce...
	5.3 Case studies
	Implementation of the CPS-AMR system across diverse warehouse environments demonstrated remarkable adaptability and consistent performance improvements, validating the framework's generalizability beyond controlled experimental conditions. The first d...
	The third case study involved an automotive parts warehouse serving just-in-time manufacturing operations where delivery precision directly impacts production line efficiency. This 15,000 square meter facility faced extreme variability in demand patte...
	(a)
	(b)
	(c)
	Figure 7. Case study performance comparison: (a) Performance improvements by facility type, (b) Return on investment timeline, (c) Facility-specific adaptation scores
	Industry-specific adaptations emerged organically through the CPS framework's learning capabilities. The e-commerce deployment developed specialized algorithms for handling seasonal SKU variations and gift-wrapping stations. Pharmaceutical operations ...
	5.4 Discussion
	The experimental results demonstrate that integrating autonomous mobile robots with cyber-physical systems fundamentally transforms warehouse operations beyond incremental automation improvements. The 68% throughput enhancement and 99.7% inventory acc...
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