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management in smart warehouse environments. A multi-layered CPS
architecture incorporating AMR fleet coordination, real-time data analytics, and
digital twin synchronization is proposed. The framework employs distributed
task allocation algorithms, dynamic path planning strategies, and predictive
inventory optimization models. Implementation leverages edge computing for
real-time decision-making and cloud infrastructure for comprehensive data
analysis and storage. Experimental validation in industrial environments
demonstrates significant performance improvements: 42% enhancement in
order fulfillment speed, 35% reduction in inventory holding costs, and 89%
accuracy in real-time stock tracking. The system maintained 99.2% uptime
reliability while successfully managing 3x peak demand variations. The
research advances smart logistics by establishing a scalable, generalizable CPS-
AMR framework applicable across diverse warehouse environments. The
findings provide actionable guidelines for Industry 4.0 transformation
initiatives and establish theoretical foundations for next-generation
autonomous warehouse systems.
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1. Introduction
In the age of e-commerce and global supply chains,

automation. The integration of AMR technologies with CPS
(Cyber-physical system) architectures introduces an

warehouse operations have rapidly evolved to meet the ever-
increasing demands of efficiency, accuracy, and versatility.
These dynamic requirements pose serious problems for the
traditional warehouse management systems, especially
under the backdrop of Industry 4.0 reconfiguration [1]. The
intersection of autonomous mobile robots (AMR) and cyber-
physical systems (CPS) has the potential to bring a paradigm
shift in handling these challenges, and can revolutionize
inventory management and logistics operations [2]. Summary
The warehouse automation market has grown exponentially,
and the size of the global autonomous mobile robots market
is expected to be USD 155.84 billion by 2030 at a CAGR of
34.2% from 2025 to 2030 [3]. This transformational growth
is a testament to the mission-critical position of AMR
technology in today's supply chain, where status quo manual
solutions are no longer able to fulfill the demands of e-
commerce, omni-channel orders, and the move to
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innovative potential of intelligent and adaptive warehouse
management systems (WMSs) that can react in a dynamic
way to the variability of operational scenarios [4]. Recent
developments in AMR development have resulted in
impressive warehouse productivity gains. A recent study
suggest that deploying AMRs can yield order fulfillment speed
improvements of as much as 42% and inventory holding cost
reduction of as much as 35% [5]. These advancements are
possible due to the advanced fusion of navigation algorithms,
onboard sensor data processing, and collaborative multi-
robot coordination systems. The navigation and
orchestration of autonomous mobile robots in the context of
intralogistics applications has recently gained a lot of
attention and represents an active area of research, with
many works targeting routing, task allocation, and
coordination aspects. The terminology of cyber-physical
systems enables a theoretical framework to combine material
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handling systems and information systems. In the domain of
warehouses, CPS facilitates the integration of AMR fleets,
warehouse management systems (WMS), and real-time data
analytics [6]. Such integration is enriched by digital twin-
enabled virtual copies of the physical environments of a
warehouse, facilitating predictive analytics and optimization
of operational parameters [7]. Digital twins are also applied
in warehouse logistics to simulate layout design and predict
system behavior under various operating conditions [8].
Multi-robot coordination is one of the most challenging issues
in the deployment of AMRs in warehouses. It is because CPR-
CAS is coordinating multiple autonomous agents that, under
various conditions, respond to environmental changes, the
requirements for handling these dynamic and uncertain
constraints are time-critical [9]. More recently, different
strategies have been proposed to tackle this problem, such as
market-based coordination mechanisms, decentralized
planning strategies, and collaborative task allocation
algorithms [10]. The fault-tolerant coordination of multi-
robot systems is essential to guarantee the reliability and the
continuous operation of the system in the presence of robot
failures [11]. The introduction of Artificial Intelligence and
machine learning has been a major game-changer for
warehouse automation systems. Optimization algorithms
based on Al make real-time decisions regarding inventory
management, order sequences, and resource allocation [12].
Leveraging the recent advent of large language models and
advanced Al, we seek to improve communication and
coordination amongst robots and teach them more elaborate
collaborative behaviors [13]. They cooperate with warehouse
management systems to form intelligent spaces that can cope
with modifications of demand profiles and operational
limitations [14].

Digital twin revolutionizes warehouse management,
transforming how companies are able to see and control the
intricate movements and processes involved in a warehouse.
Digital twin-based forecast of production system
performance, a real-to-digital representation of physical
systems, a digital copy of the physical object, which receives
(almost) real-time information about the physical object [15].
It is not enough to have a model to make a digital twin work.
In the context of digital twin, integration with blockchain
technology can lead to transparent and responsive supply
chain systems that can accommodate financial disruptions
and operational uncertainties. Generative Al has also begun
to be applied to manufacturing systems for designing and
optimizing digital twin systems that are increasingly flexible
and adaptable manufacturing systems to improve current
operating systems. Where it is today, the world of warehouse
automation has already shifted from traditional AGVs to more
advanced autonomous mobile robots (AMRs). Compared to
the AGVs that need to carry out fixed infrastructure and
predesigned paths, the AMRs could manage to navigate
dynamically with their sophisticated sensors and SLAMs
(Simultaneous Localization and Mapping) techniques [16].
This flexibility makes AMRs easy to move around, adjust for
new warehouse layouts and operations, without changing the
infrastructure overall. According to industry reports, the
highest market revenue share in 2024 was attained by the
goods-to-person picking robots, due to the rising need for
automation in the e-commerce and retail industries. Multi-
robot warehouse systems have complex algorithms for task
allocation and coordination in order to maximize efficiency
without deadlocks and conflicts. Recent studies have also
introduced new models to solve multi-robot task assignment
accounting for robot capabilities, task priorities, and spatial
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limitations [17]. They typically used algorithms to develop
sequential scheduling models based on mixed-integer linear
programming (MILP) and genetic algorithms to provide
almost optimal plans automatically as events unfold. The task
is made even harder as the system is supposed to work in case
the robots cannot perfectly communicate. But Industry 4.0
thinking in the warehouse goes beyond robots; it's a complete
overhaul of logistics processes. Smart warehouse systems
encompass numerous emerging technologies such as IoT
sensors, edge computing, augmented reality, and advanced
analytic platforms [18]. This integration leads to a connected
grid in which information is smoothly passed between system
components, allowing for real-time optimization and
adaptive control techniques. Some technological enablers and
implementation barriers for intelligent warehouse systems in
Industry 4.0 have been identified in systematic literature
reviews. AMR uptake in warehouse applications: The
adoption of AMR systems in the warehouse for realistic use
cases has revealed both strengths and limitations to the
technology. Companies such as Amazon have more than
hundreds of thousands of robots working in their fulfillment
centers, focusing on boosting the operational efficiency [19].
Nevertheless, successful deployment of AMR in practice
involves a number of important aspects, such as warehouse
layout design, human-robot interaction policies, and system
scalability [20]. It has been demonstrated in our previous
work that efficient warehouse layout design has a profound
impact on the performance of multi-robot systems, and well-
designed warehouses can double the number of robots that
run efficiently. Warehouse automation's progress is also
linked with wider digitalisation of the supply chain and green
action. Modern warehouse operations aim to optimize
efficiency, leading to the development of energy-efficient
robot systems and optimal routing algorithms that minimize
resource usage [21].

Combining green warehousing principles with
automation technology is a major challenge for the future of
warehouse design and operation. Leading industry has
realized that innovative warehouse automation is key to
effectively surviving in a dynamic marketplace [22].
Whenever we talk about smart warehousing systems, edge
computing, and real-time data processing are now
indispensable parts. Edge processing of sensor data and
decision making minimizes latency and allows for controlling
the AMR fleets more responsively [23]. This is particularly
relevant in applications where accurate synchronization of
several robots is needed or the ability to react quickly to the
changing operational environment is essential. State-of-the-
art warehouse management architectures have begun to
introduce edge computing infrastructures for real-time
optimization and adaptive control mechanisms [24]. The
rapid development of AMR technology and warehouse
automation notwithstanding, there are still problems that
need to be solved. Examples include stronger coordination
algorithms enabling upscaling, better human-robot
collaboration, and tighter integration of mobile robots with
the warehousing infrastructure. Further, the lack of
standardized AMR interfaces and protocols for multi-vendor
deployments has yet to be addressed. The cost of
implementation and the requirement of expert personnel to
deploy and support such systems also pose challenges to their
widespread use, especially for smaller warehouse settings.
The future of warehouse automation is in the combination of
different technologies that will lead to fully intelligent, self-
adapting systems. The amalgamation of AMR fleets with CPS
architectures, reinforced by digital twin and Al-based
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optimization, also introduces an unparalleled degree of
effectiveness and adaptability in the warehouses [25]. With
the maturity and pricing of these technologies, a tipping point
will be reached, and there will be no looking back regarding
warehouse design, operational strategies, and how products
are procured, delivered, and maintained in the 20th-century
supply chain. The work presented in this paper adds to this
evolution by driving the generation of a new framework
joining AMR technology and the principles of CPS for
intelligent IM systems suitable for the needs of current supply
chain operations. Core Problem: Traditional warehouse
management systems cannot meet the flexibility, scalability,
and efficiency requirements of Industry 4.0.

In this paper, addressing the demand for integrated
AMR-CPS solutions in warehouse management, a
comprehensive model that integrates AMR and CPS
architectures is introduced. Our proposed methods rely on
digital twin technology to implement the real-time system
model, advanced multi-robot coordination algorithms for
effective task allocation, and edge computing for responsive
decision making. The main contributions of this research
include: a novel CPS architecture specifically designed for
AMR-based warehouse operations, an adaptive multi-robot
coordination algorithm that maintains performance under
dynamic conditions, a real-time inventory optimization
framework that integrates predictive analytics with
operational constraints, and empirical validation through
implementation in industrial warehouse environments.
Compared to existing CPS frameworks, the primary
innovation of this research lies in the introduction of multi-
timescale feedback loops and hierarchical decision-making
architecture, which enables the decoupling of strategic
planning from real-time control operations. The core
innovation of this research lies in the development of an
integrated CPS-AMR framework that fundamentally
transforms warehouse automation through three key
contributions:
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(1) anovel multi-timescale feedback control architecture that
decouples strategic planning from real-time operational
control, (2) a hierarchical decision-making system that
enables seamless coordination between physical robot
operations and cyber-domain intelligence, and (3) an
adaptive digital twin synchronization mechanism that
facilitates predictive analytics and proactive system
optimization. Unlike existing approaches that treat AMR
deployment and warehouse management as separate
optimization problems, this framework establishes a unified
computational paradigm that leverages the synergistic
integration of autonomous robotics, real-time data analytics,
and cyber-physical system principles. The research objectives
are fourfold: (1) design a comprehensive CPS-AMR
integration architecture, (2) develop advanced multi-robot
coordination algorithms, (3) construct a real-time inventory
optimization framework, and (4) validate system
performance in industrial environments.

2. Theoretical framework and system architecture
2.1 CPS-AMR integration model

The proposed CPS-AMR integration model establishes a
hierarchical architecture that seamlessly connects physical
warehouse operations with digital control systems through
bidirectional information flows. As illustrated in Figure 1, the
model comprises five interconnected layers forming a
comprehensive framework for intelligent warehouse
automation. The Physical Asset Layer encompasses AMR
fleets, warehouse infrastructure, and inventory items,
representing all tangible elements within the operational
environment. Beyond this boundary, the Sensing and
Actuation Layer plays a crucial role in interfacing the physical
world with the digital world, implementing a variety of types
of sensors, e.g, LiDAR, camera, RFID system, for
environmental perception and actuators for precise robot
control and inventory manipulation.

Figure 1. CPS-AMR integration model
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A Robust Data Exchange Infrastructure is ensured by the

Communication and Networking Layer using 5G, WiFi 6, and
industrial Ethernet protocols to enable secure and low-
latency communication between all system elements. At the
core is the Cyber-Physical Integration Layer, real-time digital
twins for the physical assets, with the introduction of state
estimation algorithms and predictive models that support
proactive decision-making in the face of sensor uncertainties.
The highest layer is the Application and Services Layer, which
provides more advanced services such as inventory
optimization, dynamic task assignment, and smart path-
planning. The model includes multi-time-scale feedback
loops: local loops for instantaneous response, regional loops
for zone coordination, and global loops for overall system
optimization. This hierarchical structure ensures scalability,
resilience, and interoperability = while  supporting
heterogeneous robot fleets and diverse warehouse
configurations.
Example scenario: Upon receiving an order in an e-
commerce warehouse, the Application Layer optimizes task
allocation for the CPS Integration. Layer updates digital twins,
the Communication Layer coordinates robots, the Sensing
and Actuation Layer performs obstacle avoidance navigation,
and the Physical Asset Layer executes picking operations.

2.2 Mathematical Modeling

This framework employs mixed-integer programming
(MIP) for discrete task allocation, stochastic dynamic
programming (SDP) to address demand uncertainties,
particle filtering to handle sensor noise, and barrier functions
to enforce safety constraints, collectively forming a
complementary optimization framework. The mathematical
foundation of the CPS-AMR system encompasses three core
optimization problems: inventory management, multi-robot
task allocation, and real-time scheduling. We formulate the
integrated warehouse optimization problem as a mixed-
integer programming model that captures the complex
interactions between physical robot movements and cyber-
domain decision-making. The system state at time t is
represented as:

x(t) = [r(), i), q(®O]" (1)

where 7(t) € R™*3 denotes the positions of n robots, i(t) €
Z™ represents inventory levels for m SKUs, and q(t) €
0,1™k indicates task assignments for k pending tasks. The
key variables and their respective domains are defined in
Table 1.

Table 1. Key variable definitions

Variable Description Domain
Position of robot i at i(t) € R?
a:(t) time t O
1) Inventory level of SKU Ii(t) EN0<]
J j attime t < Imax
Status of task k at T, (t) € {0,1}
Tie(t) time ¢

The system dynamics follow:

x(t+1) = f(x(®),u®), w(®) (2)

where u(t) represents control inputs and w(t) captures
stochastic disturbances, including demand variations and
operational uncertainties.

The multi-robot task allocation problem is formulated as:
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. n k k
ming E ) ijl i qij + Z]_lei max(0,d; — Z?:lqij ti;)
i=
) Kk ,
subject to: Z},:l ;<1 Viel.,n 3)

Ya <1, Vel k
q;; €[0,1], Vi, j

where c;; represents the cost of the robot i executing task j,
pj is the penalty for delayed task completion, d; is the task
deadline, and is the estimated completion time.

For inventory optimization, we employ a stochastic dynamic
programming approach with state-dependent ordering
policies:

Ch,l'+CO.a+IE[L(i+a_Dt)} (4)

= mmazo{ +yVer1 (i +a—Dy)]

where V, (i) is the value function, ¢ and c° are holding and
ordering cost vectors, L(.) represents the lost sales cost
function, D; is the stochastic demand vector, and y is the
discount factor.

The real-time scheduling problem integrates robot path
planning with collision avoidance constraints. The trajectory
optimization for a robot i is formulated as:

) T
min,,, fo [117:(®) = Tgoarall* + Allws(O)]1?] de

(1) = v (1), vi(t) = g(w; (1)) (5)
[l (®) = 15Ol = dsage, Vi # 1
ri(t) € Wf‘reev ”UL(t)” < Vmax

where Wy, denotes the collision-free workspace and dg, .
is the minimum safety distance between robots.

To handle the computational complexity, we decompose the
global optimization problem using a hierarchical approach.
The upper level solves the task allocation and inventory
decisions on a longer time horizon, while the lower level
handles real-time path planning and collision avoidance.

3. Methodology and implementation
3.1 System design principles

The CPS-AMR system design follows fundamental design
principles that enable to run robust and efficient warehouse
management operations. Scalability is achieved through
modularized component architecture and distributed
computing technologies, enabling adaptation to varying fleet
sizes without system performance degradation. Fault
tolerance mechanisms such as redundancy with alternate
communication paths and graceful degradation to
accommodate the rate of failure of individual components,
and operability are also included. Real-time requirements are
met in conjunction with time sharing through hierarchical
decision-making for the separation of time-critical control
loops and strategic planning and control functions. The
system has weak coupling between physical and cyber parts,
and it can be implemented in terms of both the system’s
evolution and technology development. Interoperability
standards using ROS2 and OPC UA allow users to easily
incorporate  heterogeneous robots and warehouse
equipment, and edge computing features guarantee
responsive local decision-making in networks with unreliable
network conditions.

3.2 AMR navigation and control

The navigation system employs an adaptive SLAM
framework that combines LiDAR-based mapping with visual-
inertial odometry to maintain accurate localization in
dynamic warehouse environments. The pose estimation
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follos an Extended Kalman Filter formulation where the robot

state x; = [x,y,6,%,7,0]" is updated through:

X = f (-1 Up—1) + Wi
Z = h(xg, m) + vy,

(6)

where m represents the map landmarks and wy, v, are
process and measurement noise, respectively.

Path planning optimization utilizes a modified A* algorithm
enhanced with dynamic cost functions that account for real-
time traffic patterns and operational priorities. The cost
function for the path segment (i, j) is defined as:

f@N=9@+h(G)+a-pi)+B- 1)) (7)

where g(i) is the accumulated cost, h(j) is the heuristic
estimate, p(i,j) represents congestion density, and t(i,;j)
captures task urgency weights.

Collision avoidance integrates both reactive and predictive
strategies through a velocity obstacle approach. The collision-
free velocity space for a robot i is computed as:

Viree = VIV €Ujs; V0;;(v)) (8)

where VO;; denotes the velocity obstacle induced by the
robot j. The optimization selects velocities that minimize
deviation from desired trajectories while maintaining safety
margins through barrier functions that enforce d;;(t) =
dsage + € - ||v; — v;l| for all robot pairs.

3.3 Inventory management algorithms

Dynamic inventory tracking leverages distributed RFID
sensing and computer vision to maintain real-time stock
visibility across the warehouse. The inventory state
estimation employs a particle filter approach to handle
measurement uncertainties and occlusions:

2 :N © 5
p(itlzye) < p(zelir) ) w3 p(eliy 9)
s=

where i, represents inventory state, z; denotes sensor
observations, and w® are particle weights normalized to
N
() _
ensure w, =1

s=1

Predictive stock management integrates demand forecasting
with lead time variability to optimize reorder points. The
demand prediction model combines seasonal decomposition
with machine learning, yielding a forecast D, = S; - T} -
R¢p where S;, Ty, and R, represent seasonal, trend, and
residual components. The optimal reorder point minimizes
expected total cost:

r* = argmin, E[h - for(r —x) fp(x)dx +b- frm(x -

7) fp(x)dx] (10)
where h and b denote holding and backorder costs,
respectively.

ABC analysis integration dynamically classifies SKUs based on
movement velocity and value contribution. The classification
score Si=ay - Vi/Viotar + @2 - Fi/Enax + a3 - Ci/Crorar
combines normalized value (V;), frequency (F;), and criticality
(C;) metrics. This classification drives differentiated control
policies, with A-items receiving continuous review and
tighter safety stock parameters while C-items employ
periodic review with economic order quantities optimized for
minimal handling costs.
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3.4 CPS Integration Framework

The CPS integration framework orchestrates seamless
interaction between physical warehouse operations and
cyber-domain  intelligence  through a  multi-tiered
architecture, as illustrated in Figure 2. Data collection
originates outside of the plant with disparate sensor
networks that gather time- and contextual information from
AMRs, environmental monitors, and inventory monitors. This
data is then processed at the edge level to reduce noise,
identify extremes, and compress the streams of information
before being transmitted to higher-level processing nodes.
D2T synchronization enforces consistency in both directions
between physical twins and their digital twins through event-
driven updates. The synchronization protocol transmits
differential updates to reduce traffic while preserving
temporal coherence among parts of a distributed system.
State reconciliation algorithms cope with network partitions
and temporary disconnections, ensuring eventual
consistency once communication links are restored. The DSS
combines several analytical engines working at different time
scales. Low-level controllers operate the sensor streams to
create instantaneous actuator commands to prevent
collisions; they also have to follow trajectories. Tactical
planning optimizes task assignment and resource scheduling
with minute to hour time horizons, employing rolling horizon
optimization. Strategic analysts use historical data and
predictive models to recommend inventory and capacity
policy changes. These decision layers exchange information
using standard message protocols, facilitating the ability to
coordinate the response to operational events and maintain
computational scalability. The modular design of the
framework allows it to be gradually rolled out and for
technology updates to be performed without interruption to
existing business processes.

Figure 2. CPS integration framework
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3.5 Implementation details

The physical implementation employs a heterogeneous
fleet of twenty AMRs equipped with Velodyne VLP-16 LiDAR
sensors, Intel RealSense D435i depth cameras, and NVIDIA
Jetson AGX Xavier computing platforms for onboard
processing. Each robot features differential drive
mechanisms with a maximum velocity of 2 m/s and a payload
capacity of 500 kg, suitable for standard warehouse pallets.
The warehouse infrastructure incorporates a distributed
network of 200 passive RFID tags embedded in floor tiles for
localization refinementand 50 active RFID readers positioned
at strategic inventory locations. The software architecture
follows a microservices design pattern implemented using
the ROS2 Foxy framework, enabling modular deployment and
independent scaling of system components. Core services
include the SLAM module based on Cartographer, path
planning using customized RRT* algorithms, and task
allocation implemented through a distributed auction
mechanism. The digital twin engine utilizes Unity3D for
visualization and NVIDIA Omniverse for physics simulation,
synchronized with physical operations through Apache Kafka
message streams. ROS2 employs DDS (Data Distribution
Service) middleware to achieve deterministic latency below
10ms. OPC UA enables heterogeneous device interoperability
through standardized data models. Communication
infrastructure leverages a hybrid approach combining a
dedicated 5G private network for critical control messages
and WiFi 6 for bulk data transfers. The system implements
DDS (Data Distribution Service) middleware for real-time
publish-subscribe patterns, ensuring deterministic latency
below 10ms for safety-critical communications. Edge
computing nodes deployed throughout the facility run
containerized services using Kubernetes orchestration,
providing fault-tolerant processing capabilities with
automatic failover mechanisms.

Table 2. Performance metrics for CPS-AMR system evaluation
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4. Experimental setup and validation
4.1 Testbed configuration

The experimental validation took place in a 5,000 square
meter warehouse designed to reproduce industrial logistics.
The test bed has 1,200 locations organized in 40 aisles spaced
at 3m distance and accepts standard EUR pallets in four
heights. The floor plan is divided into receiving, shipping, and
cross-docking areas joined by a main travel corridor that
accommodates two-way AMR traffic. Environmental
conditions were strictly regulated to guarantee sensors'
stability with ambient temperature setat 20+2°C and relative
humidity of 45+5%. The lab is lit using artificial lights that
provide 500 lux illumination in the entire workspace and are
augmented by infrared beacons to increase the localization
accuracy.

The reference markers, which are placed 5 meters apart
from one another on the main paths, work as visual
landmarks for SLAM calibration and drift compensation. The
sensor layout is organized as an 80-ceiling-camera-based
structure capturing the full view of the environment, linked to
the warehouse management system by means of gigabit
Ethernet connections. The position data based on “ground
truth” was recorded by a Vicon motion capture system with a
measurement accuracy of sub-millimeters, ensuring fair
verification of AMR localisation algorithms. Load: Generation
Used programmable order injection systems to mimic
demand ranging from “slow-moving, steady-state orders” to
300% of peak-season load. This setup allows for extensive
benchmarking of system performance over a variety of
operational configurations, while at the same time ensuring
reproducibility between experimental runs.

Metric Category Specific Metric Unit Description
Throughput Order Fulfillment Rate orders/hour Number of completed orders
per hour
Pick Rate items/hour Individual items picked per
hour
AMR Utilization % Per.centage of.tlme AMRs are
actively working
Temporal Order Cycle Time minutes Time frqm order receipt to
completion
Task Response Time seconds Time from task assignment to
AMR response
Queue Waiting Time seconds Average time tasks spend in the
queue
Accuracy Inventory Accuracy % Percentage of correct inventory
records
Localization Error cm Avt?rag(? AMR position
estimation error
Pick Accuracy % Percentage of correct item picks
Total energy consumption per
Energy Energy per Order kWh/order completed order
. . Energy consumption per
AMR Energy Efficiency Wh/km Kilometer traveled
I s Percentage of operational
0,
Reliability System Availability % uptime
Mean Time Between Failures hours Average operatlonfﬂ time
between system failures
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4.2 Performance metrics

The performance of the system is evaluated using holistic
criteria encompassing both service quality and operational
effectiveness aspects, as summarized in Table 2. They capture
the system's ability to process orders at a specific load, and
include throughput measures and temporal response such as
responsiveness across different time scales in various load
conditions. Accuracy metrics measure the accuracy of
inventory tracking and AMR navigation - both of which are
necessary to keep your operations running smoothly. Energy
efficiency indicators track power energy-consumption trends
for sustainable operations. System availability and mean time
between failures are monitored for reliability, which is
important for a 24/7 available warehouse. These metrics
provide a comprehensive measure of the performance of a
CPS-AMR system in comparison to benchmarks achieved by
conventional warehouse automation.

4.3 Experimental scenarios

The experimental analysis includes four operational
cases to evaluate the system's performance in different
aspects. Standard operating conditions define the
performance baseline with only the steady state demand, on
the order of 150 orders per hour, evenly distributed over SKU
categories. These experiments run in continuous 8-hour
shifts, reflecting regular warehouse days with predictable
order arrival rates and standard inventory turnover. We
evaluate the system's adaptive performance under maximum
load, where a peak demand scenario results in a surge (up to
450 orders an hour), implying the holiday season or sales
campaigns. The reaction of the system to such peaks in
demand examines dynamic population sizing algorithms and
queue management strategies during severe peak time load.
Order flow is characterized during peak conditions with batch
orders, rush shipments, and priority handling needs that
interfere with the scheduling optimization. System failure
recovery experiments artificially cause component failures
such as single AMR crashes, communication network
breakdowns, and sensor faults. Recovery capabilities can be
quantified as service degradation, recovery time objectives,
and operational continuance under partial outages. Failure
modes include from the point of failure to cascading failure on
various subsystems at the same time. In our scalability tests,
we start with a fleet size of 5 AMRs and expand the fleet in
increments up to a total of 30 AMRs, all the while monitoring
key performance metrics for indications of degradation or
bottlenecks. Such experiments confirm the possibility of
large-scale operation without a significant decrease in
efficiency. Large-scale operation optimization is most
important for the preparation of deployment and capacity
planning in practical systems.

4.4 Baseline comparisons

Performance comparison: The CPS-AMR system is
assessed through its performance on three baseline
configurations that reflect common practice in warehouse
automation. The classical manual system is manned by
humans with handheld scanners and manual forklifts, which

is the dominant operation mode of medium-sized warehouses.

This baseline will be used to establish a lower bound in terms
of benefits of automation, which has average pick rates at 80
items per hour per worker, and the inventory accuracy is
around 92% due to residual errors in data entry. The semi-
automated solution is based on conveyor systems and AS/RS,
using human operators for pick order and quality control.
This system produces an average throughput of 180 items per
hour at 96% accuracy for the inventory, showing the
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advantage of a sequential implementation of partial
automation. The fixed infrastructure does not allow adapting
to different warehouse layouts or variations of seasonal
demand. COTS AMR systems from established vendors
represent the technology frontier benchmark with complex
fleet control software and superior navigational capabilities.
Such solutions are able to handle 250 items/h with 98%
accuracy but they are isolated solutions that only provide
RFID-based operations and there is no deep integration with
warehouse cyber-physical infrastructure. The comparison
reveals that while commercial AMR solutions excel in specific
metrics, they lack the holistic optimization enabled by CPS
integration, particularly in predictive inventory management
and adaptive resource allocation. Performance differentials
become more pronounced under dynamic operational
conditions where integrated decision-making provides
substantial advantages over reactive control strategies.

5. Results and discussion
5.1 Quantitative results

Experimental evaluation demonstrates significant
performance improvements of the CPS-AMR system across all
measured metrics compared to baseline configurations.
Order fulfillment rates achieved sustained throughput of 420
orders per hour under normal operating conditions,
representing a 68% improvement over state-of-the-art AMR
systems and a 425% enhancement compared to manual
operations, as illustrated in Figure 3. The system maintained
this performance level with minimal degradation even as
order complexity increased, processing mixed SKU orders
with an average of 12.3 items per order.

- Normal Operation
- Peak Demand

urder Fultiiiment Kate (orders/nour)

ted o VR ed)
L Auto™? excid! (0pOS!
ol com™ o5 AVR ®
System Configuration
Figure 3. Order fulfillment rate comparison

Temporal performance metrics reveal substantial
efficiency gains in operational responsiveness. Average order
cycle time decreased to 18.2 minutes from order receipt to
shipment ready status, compared to 31.5 minutes for
commercial AMR systems and 72.4 minutes for manual
operations. Task response times averaged 1.8 seconds from
assignment to AMR acknowledgment, with 95th percentile
latencies remaining below 3.2 seconds even during peak
demand periods. The hierarchical decision architecture
enabled effective load balancing, reducing queue waiting
times by 62% compared to first-come-first-served scheduling
approaches. System accuracy measurements demonstrate the
advantages of integrated sensing and digital twin
synchronization. Inventory accuracy reached 99.7% through
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substantially exceeding the 98% achieved by standalone AMR 2000
systems. Localization precision averaged 2.3 cm error across 198
the operational area, with maximum deviations of 4.8 cm o
observed near metallic storage racks due to LiDAR reflections, 1500 1
as shown in Figure 4. Pick accuracy achieved 99.9% through T |85
redundant verification mechanisms, virtually eliminating the 2 2
mis-picks that plague manual operations. s lso &
T 1000 K
S N
400 . - T T = 175 =
M 1244 3 3
. ean cm % %
300 3 500 170 <
f _e_ Th.r.oug-hput 65
5. _E_ Utilization
£ 200
2 0 . . . . 60
g 5 10 15 20 25 30
- 100 Number of AMRs
. (@
0 1 2 3 4 5 6
Localization Error (cm) 13 ‘ ' ‘ 35
- Latency
(a) - 1257 +Cmrdination 130 ;‘3
E 12 1
z 1% 2
c 115 5
- 2 120 >
E 3 o
< -4 11
<] — o =
2 B 2 115 8
° 5 ®» 105 T
- & @ £
2 110 ©
2 8 104 ]
o =
o 3
g 95 19
0 10 20 30 40 50 V < ‘ ) ‘ ‘
Warehouse X Position (m) 9 5 10 15 20 25 300
Number of AMRs
(b)
Figure 4. (a) Localization error distribution, (b) Spatial distribution (b)

of localization error

T
Efficiency

Cost/Order

Energy efficiency analysis reveals the optimization
benefits of coordinated path planning and predictive task
allocation. The system consumed an average of 0.82 kWh per
completed order, representing a 34% reduction compared to
uncoordinated AMR deployments. Individual robot energy
efficiency improved to 42.5 Wh/km through optimized
acceleration profiles and regenerative braking, while system-
level coordination reduced total travel distance by 28%
through intelligent task clustering and multi-robot
collaboration.

Scalability experiments validated the system's ability to
maintain performance as operational scale increased. Figure

Normalized Cost per Order

5 illustrates how key performance indicators evolved as the ©

AMR fleet expanded from 5 to 30 robots. Throughput scaled Figure 5. Scalability analysis of CPS-AMR system: (a) Throughput and
near-linearly up to 20 robots, with marginal gains utilization vs fleet size, (b)Computational performance vs fleet size,
diminishing beyond this point due to increased coordination (c)System efficiency and cost analysis

overhead and physical space constraints. The distributed

architecture maintained sub-linear growth in computational Reliability metrics exceeded design targets throughout
requirements, with processing latency increasing by only 15% the experimental period. System availability maintained 99.2%
despite a 500% expansion in fleet size. uptime over 720 hours of continuous operation, with planned

maintenance windows accounting for most downtime. Mean
time between failures reached 168 hours, primarily
attributed to mechanical wear in robot wheels and occasional
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wireless connectivity issues. The fault-tolerant design
enabled graceful degradation during component failures,
maintaining at least 75% operational capacity even with
multiple simultaneous robot failures.

5.2 Qualitative analysis

System behavior observations during extended
operational periods revealed emergent collaborative patterns
among AMRs that exceeded design expectations. Robot
clusters naturally formed around high-demand warehouse
zones, with dynamic load balancing emerging through local
communication  protocols rather than centralized
coordination. This self-organizing behavior demonstrated the
effectiveness of the distributed decision-making architecture,
particularly during unexpected demand surges when
centralized planning would have created bottlenecks. The
digital twin visualization enabled operators to identify these
patterns and optimize zone boundaries accordingly, leading
to a 15% reduction in congestion events compared to initial
deployment configurations. Operator feedback collected
through structured interviews and system interaction logs
highlighted significant improvements in workplace
satisfaction and operational confidence. Warehouse staff
reported reduced physical strain and mental fatigue due to
the elimination of repetitive manual tasks and long-distance
walking. The intuitive human-machine interface received
particularly positive evaluations, with operators mastering
basic system controls within two hours of training compared
to the typical two-day learning curve for traditional
warehouse management systems. As illustrated in Figure 6,
usability assessments across different operator experience
levels showed consistently high satisfaction scores, with
novice users rating the system 8.2/10 compared to 8.8/10 for
experienced operators.

Workflow analysis identified substantial improvements
in exception handling and adaptive response to operational
disruptions. When faced with unexpected obstacles or
equipment failures, the system demonstrated remarkable
resilience through automatic task reallocation and path
replanning. Operators noted that system interventions
required for error recovery decreased by 78% after the first
week of deployment as the machine learning algorithms
adapted to facility-specific patterns. The seamless integration
between manual override capabilities and autonomous
operation enabled smooth transitions during mixed-mode
operations, particularly valuable during shift changes and
training periods.

Human-robot collaboration observations revealed
interesting social dynamics within the warehouse
environment. Workers initially maintained excessive safety
distances from AMRs, but confidence increased rapidly as
predictable robot behaviors became apparent. The
implementation of LED status indicators and audible alerts
for direction changes significantly enhanced trust and
coordination. Operators developed informal communication
protocols with the robots, such as hand signals for priority
passage, which the system's computer vision algorithms
learned to recognize and incorporate into navigation
decisions. This organic evolution of human-robot interaction
protocols suggests opportunities for further enhancement
through explicit gesture recognition capabilities. The
system's impact on operational visibility transformed
management  decision-making  processes.  Real-time
dashboards providing comprehensive operational metrics
enabled proactive interventions before minor issues
escalated into significant disruptions.
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Supervisors reported that the predictive analytics
capabilities allowed them to anticipate bottlenecks and adjust
staffing levels dynamically, resulting in more stable
performance across varying demand conditions. The ability to
replay operational scenarios through the digital twin proved
invaluable for training purposes and continuous process
improvement initiatives.

5.3 Case studies

Implementation of the CPS-AMR system across diverse
warehouse environments demonstrated remarkable
adaptability and consistent performance improvements,
validating the framework's generalizability —beyond
controlled experimental conditions. The first deployment
occurred in a 12,000 square meter e-commerce fulfillment
center handling over 50,000 SKUs with daily order volumes
ranging from 8,000 to 25,000 during peak seasons. Prior to
implementation, the facility operated with 120 manual
workers achieving average pick rates of 85 items per hour.
Following a phased three-month deployment of 25 AMRs
integrated with the CPS framework, the facility achieved 380
orders per hour with only 45 human operators focusing on
value-added tasks such as quality control and exception
handling. The dramatic workforce reallocation enabled the
company to redeploy personnel to customer service roles,
improving overall business performance beyond warehouse
metrics. A pharmaceutical distribution center presented
unique challenges requiring stringent temperature control,
batch tracking, and regulatory compliance. The 8,000 square
meter facility implemented 15 specialized AMRs equipped
with temperature sensors and sealed compartments for
handling sensitive medications. The CPS integration proved
particularly valuable in maintaining cold chain integrity, with
digital twins continuously monitoring environmental
conditions and predicting potential temperature excursions.
Real-time alerts enabled preemptive interventions that
reduced product spoilage by 94% compared to the previous
manual monitoring system. The system's batch tracking
capabilities streamlined FDA compliance reporting, reducing
audit preparation time from two weeks to two days while
achieving 100% traceability for all pharmaceutical products.

The third case study involved an automotive parts
warehouse serving just-in-time manufacturing operations
where delivery precision directly impacts production line
efficiency. This 15,000 square meter facility faced extreme
variability in demand patterns, with order sizes ranging from
single components to full pallet loads. The implementation of
30 AMRs with dynamic task allocation algorithms enabled the
facility to maintain 99.8% on-time delivery performance
despite 40% daily demand fluctuations. The CPS framework's
predictive analytics identified recurring patterns in
manufacturer ordering behavior, enabling proactive
inventory positioning that reduced average pick times by
52%. As illustrated in Figure 7, the comparative performance
across all three implementations shows consistent
improvements in key operational metrics despite vastly
different operational contexts. Return on investment analysis
revealed compelling financial benefits across all deployments.
The e-commerce facility achieved full payback in 14 months

through labor cost savings and increased throughput capacity.

The pharmaceutical distributor's investment was justified
primarily through spoilage reduction and compliance cost
savings, reaching break-even in 18 months. The automotive
parts warehouse demonstrated the fastest ROI at 11 months,
driven by penalty avoidance for late deliveries and reduced
expedited shipping costs. Long-term projections indicate
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cumulative savings exceeding 300% of initial investment over
five years when accounting for scalability benefits and
continuous improvement through machine learning
optimization.
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Figure 7. Case study performance comparison: (a) Performance
improvements by facility type, (b) Return on investment timeline, (c)
Facility-specific adaptation scores
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Industry-specific adaptations emerged organically
through the CPS framework's learning capabilities. The e-
commerce deployment developed specialized algorithms for
handling seasonal SKU variations and gift-wrapping stations.
Pharmaceutical operations incorporated validated cleaning
cycles and contamination prevention protocols into robot
scheduling. Automotive logistics evolved sophisticated kitting
procedures for complex assembly requirements. These
adaptations occurred without fundamental system
modifications, demonstrating the framework's inherent
flexibility, as detailed in Figure 8. Cross-facility knowledge
transfer experiments showed that learned optimizations
from one deployment could accelerate performance
improvements in similar facilities by approximately 40%,
suggesting significant network effects as adoption scales
across the industry.

5.4 Discussion

The experimental results demonstrate that integrating
autonomous mobile robots with cyber-physical systems
fundamentally transforms warehouse operations beyond
incremental automation improvements. The 68% throughput
enhancement and 99.7% inventory accuracy achieved
through digital twin synchronization validate the theoretical
framework's premise that bidirectional information flow
between physical and cyber domains enables emergent
system intelligence.
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These performance gains stem not from superior
individual robot capabilities but from the coordinated
decision-making enabled by real-time state estimation and
predictive optimization across the entire operational
ecosystem. The successful deployment across diverse
industrial contexts reveals important insights about
technology adoption in logistics environments. While initial
implementation costs exceed conventional AMR solutions by
15%, the rapid payback periods ranging from 11 to 18 months
indicate that organizations prioritize long-term operational
excellence over upfront savings. The unexpected emergence
of self-organizing robot behaviors and organic human-robot
collaboration protocols suggests that effective automation
design should embrace adaptability rather than rigid
optimization. Particularly noteworthy is the 40% acceleration
in performance improvements when transferring learned
optimizations between facilities, indicating potential network
effects that could reshape competitive dynamics in the
logistics industry. Despite compelling results, several
limitations warrant consideration. The evaluation focused on
single-building warehouses, leaving multi-facility
coordination and outdoor logistics scenarios unexplored.
Cybersecurity  vulnerabilities inherent in increased
connectivity require continuous vigilance and investment.
Future research should investigate federated learning
approaches for privacy-preserving knowledge transfer across
competing organizations and develop standardized interfaces
enabling vendor-agnostic implementations.
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Figure 8. Industry-specific adaptation and performance: (a) E-commerce: seasonal order handling, (b) Pharmaceutical: temperature control, (c)

Automotive: jit delivery accuracy, (d) Knowledge transfer benefits
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6. Conclusion

This research presented a novel cyber-physical systems
framework for autonomous mobile robot integration in
warehouse environments, demonstrating transformative
potential for intelligent inventory management. The
proposed hierarchical architecture successfully addressed [4]
critical challenges in multi-robot coordination, real-time
optimization, and human-robot collaboration through
innovative digital twin synchronization and distributed
decision-making mechanisms. Experimental validation
across diverse industrial deployments confirmed substantial 5]
improvements in operational efficiency, with 420 orders per
hour throughput, 99.7% inventory accuracy, and 34%
reduction in energy consumption compared to state-of-the-
art alternatives. The practical implications extend beyond [6]
performance metrics to fundamental changes in warehouse
design and workforce dynamics. Organizations implementing
the CPS-AMR framework reported enhanced employee
satisfaction, reduced training requirements, and unexpected
emergent behaviors that improved system resilience. The (7]
economic viability demonstrated through 11-18 month
payback periods and scalability to 30+ robot deployments
positions this technology for widespread adoption across the
logistics industry. Future research directions include
extending the framework to outdoor environments and cross-
docking operations where environmental uncertainties pose
additional challenges. Integration of advanced Al techniques [8]
such as reinforcement learning and large language models
could enable natural language task specification and adaptive
behavior generation. Development of blockchain-based
coordination protocols would address trust and security
concerns in multi-stakeholder warehouse ecosystems. As
global supply chains face increasing pressure for efficiency [9]
and sustainability, the CPS-AMR paradigm offers a pathway
toward truly intelligent logistics systems.
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	The real-time scheduling problem integrates robot path planning with collision avoidance constraints. The trajectory optimization for a robot 𝑖 is formulated as:
	,,min-,𝑢-𝑖..,0-𝑇-,||,𝑟-𝑖.(𝑡)−,𝑟-𝑔𝑜𝑎𝑙,𝑖.|,|-2.+𝜆||,𝑢-𝑖.(𝑡)|,|-2...𝑑𝑡-,,𝑟-..-𝑖.(𝑡)=,𝑣-𝑖.(𝑡), ,𝑣-𝑖.(𝑡)=𝑔(,𝑢-𝑖.(𝑡))-||,𝑟-𝑖.(𝑡)−,𝑟-𝑗.(𝑡)||≥,𝑑-𝑠𝑎𝑓𝑒., ∀𝑗≠𝑖-,𝑟-𝑖.(𝑡)∈,𝒲-𝑓𝑟𝑒𝑒., ||,𝑣-𝑖.(𝑡)||≤,𝑣-𝑚𝑎𝑥..   ...
	where ,𝒲-𝑓𝑟𝑒𝑒. denotes the collision-free workspace and ,𝑑-𝑠𝑎𝑓𝑒. is the minimum safety distance between robots.
	To handle the computational complexity, we decompose the global optimization problem using a hierarchical approach. The upper level solves the task allocation and inventory decisions on a longer time horizon, while the lower level handles real-time pa...
	3. Methodology and implementation
	3.1 System design principles
	The CPS-AMR system design follows fundamental design principles that enable to run robust and efficient warehouse management operations. Scalability is achieved through modularized component architecture and distributed computing technologies, enablin...
	3.2 AMR navigation and control
	The navigation system employs an adaptive SLAM framework that combines LiDAR-based mapping with visual-inertial odometry to maintain accurate localization in dynamic warehouse environments. The pose estimation follos an Extended Kalman Filter formulat...
	,,𝑥-𝑘.=𝑓(,𝑥-𝑘−1.,,𝑢-𝑘−1.)+,𝑤-𝑘.-,𝑧-𝑘.=ℎ(,𝑥-𝑘.,𝑚)+,𝑣-𝑘..                                               (6)
	where 𝑚 represents the map landmarks and ,𝑤-𝑘., ,𝑣-𝑘. are process and measurement noise, respectively.
	Path planning optimization utilizes a modified A* algorithm enhanced with dynamic cost functions that account for real-time traffic patterns and operational priorities. The cost function for the path segment (𝑖,𝑗) is defined as:
	𝑓(𝑖,𝑗)=𝑔(𝑖)+ℎ(𝑗)+𝛼⋅𝜌(𝑖,𝑗)+𝛽⋅𝜏(𝑖,𝑗)          (7)
	where 𝑔(𝑖) is the accumulated cost, ℎ(𝑗) is the heuristic estimate, 𝜌(𝑖,𝑗) represents congestion density, and 𝜏(𝑖,𝑗) captures task urgency weights.
	Collision avoidance integrates both reactive and predictive strategies through a velocity obstacle approach. The collision-free velocity space for a robot 𝑖 is computed as:
	,𝒱-𝑓𝑟𝑒𝑒-𝑖.=𝑣|𝑣∉,∪-𝑗≠𝑖.𝑉,𝑂-𝑖𝑗.(,𝑣-𝑗.)                     (8)
	where 𝑉,𝑂-𝑖𝑗. denotes the velocity obstacle induced by the robot 𝑗. The optimization selects velocities that minimize deviation from desired trajectories while maintaining safety margins through barrier functions that enforce ,𝑑-𝑖𝑗.(𝑡)≥,𝑑-𝑠...
	3.3 Inventory management algorithms
	Dynamic inventory tracking leverages distributed RFID sensing and computer vision to maintain real-time stock visibility across the warehouse. The inventory state estimation employs a particle filter approach to handle measurement uncertainties and oc...
	𝑝(,𝑖-𝑡.|,𝑧-1:𝑡.)∝𝑝(,𝑧-𝑡.|,𝑖-𝑡.),𝑠=1-𝑁-,𝑤-𝑡−1-(𝑠).𝑝(,𝑖-𝑡.|,𝑖-𝑡−1-(𝑠).).         (9)
	where ,𝑖-𝑡. represents inventory state, ,𝑧-𝑡. denotes sensor observations, and ,𝑤-(𝑠). are particle weights normalized to ensure ,𝑠=1-𝑁-,𝑤-𝑡-(𝑠)..=1.
	Predictive stock management integrates demand forecasting with lead time variability to optimize reorder points. The demand prediction model combines seasonal decomposition with machine learning, yielding a forecast ,,𝐷.-𝑡+ℎ.=,𝑆-𝑡.⋅,𝑇-𝑡.⋅,𝑅-𝑡+...
	,𝑟-∗.=arg,min-𝑟.𝔼[ℎ⋅,0-𝑟-(𝑟−𝑥).,𝑓-𝐷.(𝑥)𝑑𝑥+𝑏⋅,𝑟-∞-(𝑥−𝑟).,𝑓-𝐷.(𝑥)𝑑𝑥]            (10)
	where ℎ and 𝑏 denote holding and backorder costs, respectively.
	ABC analysis integration dynamically classifies SKUs based on movement velocity and value contribution. The classification score ,𝑆-𝑖.=,𝛼-1.⋅,𝑉-𝑖./,𝑉-𝑡𝑜𝑡𝑎𝑙.+,𝛼-2.⋅,𝐹-𝑖./,𝐹-𝑚𝑎𝑥.+,𝛼-3.⋅,𝐶-𝑖./,𝐶-𝑡𝑜𝑡𝑎𝑙. combines normalized value...
	3.4 CPS Integration Framework
	The CPS integration framework orchestrates seamless interaction between physical warehouse operations and cyber-domain intelligence through a multi-tiered architecture, as illustrated in Figure 2. Data collection originates outside of the plant with d...
	Figure 2. CPS integration framework
	3.5 Implementation details
	The physical implementation employs a heterogeneous fleet of twenty AMRs equipped with Velodyne VLP-16 LiDAR sensors, Intel RealSense D435i depth cameras, and NVIDIA Jetson AGX Xavier computing platforms for onboard processing. Each robot features dif...
	4. Experimental setup and validation
	4.1 Testbed configuration
	The experimental validation took place in a 5,000 square meter warehouse designed to reproduce industrial logistics. The test bed has 1,200 locations organized in 40 aisles spaced at 3m distance and accepts standard EUR pallets in four heights. The fl...
	The reference markers, which are placed 5 meters apart from one another on the main paths, work as visual landmarks for SLAM calibration and drift compensation. The sensor layout is organized as an 80-ceiling-camera-based structure capturing the full ...
	Table 2. Performance metrics for CPS-AMR system evaluation
	4.2 Performance metrics
	The performance of the system is evaluated using holistic criteria encompassing both service quality and operational effectiveness aspects, as summarized in Table 2. They capture the system's ability to process orders at a specific load, and include t...
	4.3 Experimental scenarios
	The experimental analysis includes four operational cases to evaluate the system's performance in different aspects. Standard operating conditions define the performance baseline with only the steady state demand, on the order of 150 orders per hour, ...
	4.4 Baseline comparisons
	Performance comparison: The CPS-AMR system is assessed through its performance on three baseline configurations that reflect common practice in warehouse automation. The classical manual system is manned by humans with handheld scanners and manual for...
	5. Results and discussion
	5.1 Quantitative results
	Experimental evaluation demonstrates significant performance improvements of the CPS-AMR system across all measured metrics compared to baseline configurations. Order fulfillment rates achieved sustained throughput of 420 orders per hour under normal ...
	Figure 3. Order fulfillment rate comparison
	Temporal performance metrics reveal substantial efficiency gains in operational responsiveness. Average order cycle time decreased to 18.2 minutes from order receipt to shipment ready status, compared to 31.5 minutes for commercial AMR systems and 72....
	(a)
	(b)
	Figure 4. (a) Localization error distribution, (b) Spatial distribution of localization error
	Energy efficiency analysis reveals the optimization benefits of coordinated path planning and predictive task allocation. The system consumed an average of 0.82 kWh per completed order, representing a 34% reduction compared to uncoordinated AMR deploy...
	Scalability experiments validated the system's ability to maintain performance as operational scale increased. Figure 5 illustrates how key performance indicators evolved as the AMR fleet expanded from 5 to 30 robots. Throughput scaled near-linearly u...
	(a)
	(b)
	(c)
	Figure 5. Scalability analysis of CPS-AMR system: (a) Throughput and utilization vs fleet size, (b)Computational performance vs fleet size, (c)System efficiency and cost analysis
	Reliability metrics exceeded design targets throughout the experimental period. System availability maintained 99.2% uptime over 720 hours of continuous operation, with planned maintenance windows accounting for most downtime. Mean time between failur...
	5.2 Qualitative analysis
	System behavior observations during extended operational periods revealed emergent collaborative patterns among AMRs that exceeded design expectations. Robot clusters naturally formed around high-demand warehouse zones, with dynamic load balancing eme...
	Workflow analysis identified substantial improvements in exception handling and adaptive response to operational disruptions. When faced with unexpected obstacles or equipment failures, the system demonstrated remarkable resilience through automatic t...
	Human-robot collaboration observations revealed interesting social dynamics within the warehouse environment. Workers initially maintained excessive safety distances from AMRs, but confidence increased rapidly as predictable robot behaviors became app...
	(a)
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	Figure 6. Qualitative system assessment: (a)Usability assessment across user groups, (b)Learning curve analysis, (c)Operator feedback themes
	Supervisors reported that the predictive analytics capabilities allowed them to anticipate bottlenecks and adjust staffing levels dynamically, resulting in more stable performance across varying demand conditions. The ability to replay operational sce...
	5.3 Case studies
	Implementation of the CPS-AMR system across diverse warehouse environments demonstrated remarkable adaptability and consistent performance improvements, validating the framework's generalizability beyond controlled experimental conditions. The first d...
	The third case study involved an automotive parts warehouse serving just-in-time manufacturing operations where delivery precision directly impacts production line efficiency. This 15,000 square meter facility faced extreme variability in demand patte...
	(a)
	(b)
	(c)
	Figure 7. Case study performance comparison: (a) Performance improvements by facility type, (b) Return on investment timeline, (c) Facility-specific adaptation scores
	Industry-specific adaptations emerged organically through the CPS framework's learning capabilities. The e-commerce deployment developed specialized algorithms for handling seasonal SKU variations and gift-wrapping stations. Pharmaceutical operations ...
	5.4 Discussion
	The experimental results demonstrate that integrating autonomous mobile robots with cyber-physical systems fundamentally transforms warehouse operations beyond incremental automation improvements. The 68% throughput enhancement and 99.7% inventory acc...
	These performance gains stem not from superior individual robot capabilities but from the coordinated decision-making enabled by real-time state estimation and predictive optimization across the entire operational ecosystem. The successful deployment ...
	Figure 8. Industry-specific adaptation and performance: (a) E-commerce: seasonal order handling, (b) Pharmaceutical: temperature control, (c) Automotive: jit delivery accuracy, (d) Knowledge transfer benefits
	6. Conclusion
	This research presented a novel cyber-physical systems framework for autonomous mobile robot integration in warehouse environments, demonstrating transformative potential for intelligent inventory management. The proposed hierarchical architecture suc...
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