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This research develops an intelligent cognitive load regulation framework for
digital learning environments in the context of educational policy reforms. After
China's Double Reduction Policy took effect, tutorial-concentrated schooling
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Accepted 23 August 2025 burdens on students. In response, the research combines cognitive load theory

with adaptive technologies to resolve these issues through real-time
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mixed-methods design with 320 Dongcheng District students, the research uses
established measures such as NASA-TLX adapted to e-learning environments to
assess multidimensional patterns of cognitive load. The smart regulation
system shows significant efficacy with lower socioeconomic students posting
15.3-point improvements in academic scores, task accomplishment rates
enhanced by 32%, and the level of cognitive loads decreased by 23.1% on
average across various types of learners. The system can recognize with 87.3%
accuracy and respond in 234 milliseconds, thus facilitating timely interventions.
Self-paced review activities yield 91.2% success rates, while collaborative tasks
remain problematic at 68.4% success rates. The results extend cognitive load
theory with dynamic adaptation capacities needed for self-managed digital
learning. The present study provides evidence-based practice to maximize
cognitive experiences of e-learning, facilitating education equity objectives
while developing core self-regulated learning skills in post-reform education
systems.
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1. Introduction that online systems will need to rectify if they are to remain

China's Double Reduction Policy, implemented in 2021,
has drastically altered the education sector by capping
excessive homework and banning profit-making education
tutoring in major subjects, putting traditional pressures on
off-stream learning support systems [1]. Changes driven by
policy have especially heightened the demand for successful
digital learning solutions as conventional tutoring-intensive
models make way for technology-enabled pedagogical
paradigms [2, 3]. The spatial separation inherent in virtual
learning environments brings into play complex cognitive
demands linked with multimedia information processing,
independent wayfinding through digital interfaces, and self-
managed learning administration without explicit
instructional facilitation [4, 5]. Such cognitive demands are
radically different from common classroom experiences,
warranting systematized investigations of how students learn
to find their way through these technology-enriched learning
environments. Policy-driven cutbacks in extraneous tutorial
support have left spectacular scaffolding deficits in learning
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capable of continued provision of educational quality and
equity [6]. Contemporary online education systems are being
driven increasingly hard to reconcile mandatory content
provision with individualized learning needs, especially if
pedagogic accommodations are constrained by technology
limitations [7, 8]. The diversity of learner cognitive abilities,
knowledge levels, and technological proficiency creates such
immense tensions with the uniformity of delivering digital
content [9, 10]. Increasingly, schools find themselves unable
to offer differentiated learning experiences that cater to
various cognitive requirements within the limitations of
standardized digital learning environments. Cognitive Load
Theory offers theoretical explanations of how learners
mentally process information in computer-aided learning
systems, yet gaps between theoretical concepts and real-
world implementation in natural learning environments are
significant [11, 12]. Conventional application of cognitive load
concepts frequently does not reflect the dynamic, interactive
processes of today's online learning systems, especially those
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involving multimedia and complex navigational designs [13].
The dynamic cognitive load processes within extended online
learning sessions are still inadequately researched, thereby
undermining the development of implementable intervention
tools for managing cognitive overload situations [14].
Existing theoretical models primarily concentrate on static
instructional design principles but neglect the adaptive needs
of technology-driven learning environments. Current
methods for cognitive load management in virtual learning
environments have noteworthy deficiencies in reflecting real-
time learner cognitive state and differences [15]. Current
adaptive learning environments mostly attend to
performance-based adjustments without explicit cognitive
load measurement, even risking omitting opportune
moments of timely intervention before the onset of learning
issues [16]. Most of the available technologies are post-factum
performance measures instead of anticipatory monitoring of
brain states, leading to reactive measures that do not pre-
empt cognitive overload conditions [17]. Infrequent
embedding of smart technologies into contemporary learning
systems limits their capacity to offer the next generation of
adaptive  support necessary in modern learning
environments [18]. Understanding how cognitive load
regulation can be effectively implemented in real-world
educational contexts where policy-driven changes have
altered traditional learning support systems remains
inadequately addressed in current research. Existing studies
predominantly examine cognitive load in controlled
laboratory settings rather than investigating authentic
scenarios where multiple social, technological, and
pedagogical factors interact simultaneously. The lack of
comprehensive frameworks for integrating cognitive load
theory with intelligent technologies specifically designed for
post-reform educational environments represents a
significant limitation in current knowledge. Additionally,
most current research fails to account for the dynamic
adaptation requirements that emerge when learners
transition from highly structured external support systems to
more autonomous digital learning environments.

To address these critical gaps, the current investigation
explores how cognitive load theory must adapt to
contemporary educational realities. Three questions guide
this work. Integrating real-time detection into digital systems
remains challenging. Patterns differ sharply between
students from different socioeconomic backgrounds when
tutoring ends. Finding the right balance proves crucial,
especially ensuring technology supports rather than replaces
teachers. The research focuses on three objectives:
developing an adaptive framework that integrates machine
learning with cognitive load theory, testing it in policy-
disrupted schools, and creating human-centered guidelines.
Continuous monitoring replaces periodic checks while the
system learns from individual student paths instead of forcing
predetermined routes. Real classrooms affected by policy
changes offer authentic testing grounds that laboratory
studies miss. This work fundamentally shifts cognitive load
theory from describing what happens to actively intervening
when students need help. The framework bridges cognitive
science and educational technology right where learning
occurs, in classrooms facing real disruption rather than
controlled settings. This research addresses these limitations
by developing an intelligent cognitive load regulation
framework specifically designed for online learning
environments in post-policy educational contexts. This study
defines intelligent regulation mechanisms as systems that
detect learner cognitive states and dynamically adjust
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instructional elements to maintain optimal load. The study
integrates cognitive load theory with adaptive technologies to
create responsive learning systems capable of real-time
cognitive state detection and regulation, addressing the
specific challenges that emerge when traditional educational
support structures are transformed by policy reforms. The
research contributes to advancing personalized online
education by establishing evidence-based methodologies for
optimizing cognitive experiences in digital learning
environments, ultimately supporting broader educational
goals of equity and effectiveness in technology-enhanced
learning contexts where learners must develop greater
autonomy and self-regulation capabilities.

2. Data and methods
2.1 Theoretical framework and research design

This study establishes its theoretical foundation on
cognitive load theory within digital learning environments,
integrating empirical insights from the educational reform
context in Dongcheng District. As illustrated in Figure 1,
cognitive load theory encompasses three distinct components
operating within working memory's limited capacity.
Intrinsic cognitive load arises from the inherent complexity of
learning materials, element interactivity, and prior
knowledge requirements, which directly impact learners'
information processing capabilities in digital environments.
Extraneous cognitive load emerges from suboptimal interface
design, navigation complexity, and multimedia elements that
may impede rather than facilitate learning processes in online
platforms. Germane cognitive load represents the cognitive
resources dedicated to schema construction, knowledge
integration, and skill transfer, ultimately contributing to
meaningful learning outcomes.

The theoretical framework illustrated above requires
careful consideration of how learning phases manifest
differently in digital contexts. Beyond acquiring and
automating knowledge, students face particular complexity at
the transfer level, where they tackle new problems without
the tutoring support that once guided such applications.

Contemporary  research reveals how  digital
environments reshape cognitive load dynamics [19]. In digital
learning, students juggle multiple tasks at once: navigating
interfaces, understanding content, and managing their own
learning process. This creates overlapping cognitive demands
that traditional classrooms rarely impose [20]. This approach
shifts from taking snapshots of cognitive load to following its
ups and downs throughout learning sessions, making it
possible to intervene early when students start struggling.
These considerations highlight why cognitive load theory
requires adaptation for digital contexts, particularly to
address temporal dynamics and concurrent cognitive
demands. The study takes a mixed-methods design,
integrating quantitative measures of cognitive load using
validated tools and qualitative content analysis of learning
experience derived from interviews and observational data.
Methodological triangulation in this way allows for in-depth
scrutiny of how intelligent regulation mechanisms can
streamline cognitive load balance across the three
dimensions [21]. A quasi-experimental design assesses
learning outcomes pre- and post the introduction of adaptive
regulation systems with special emphasis on individual
differences in cognitive capacity and learning style in the
target study population. The synthesis of real-time behavioral
analytics with performance data offers strong evidence for
the assessment of intervention effect while ensuring
ecological validity in natural educational settings.
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Cognitive Load Theory in Digital Learning Environments
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Figure 1. Theoretical framework of cognitive load components in digital learning environments

2.2 Intelligent Regulation System Architecture

The intelligent regulation system architecture employs a
three-tier framework for cognitive load optimization in
digital learning environments. Real-time monitoring
mechanisms capture multidimensional behavioral indicators
through embedded analytics that track task engagement
patterns, response latencies, and navigation sequences within
the learning platform. These indicators enable algorithmic
detection of cognitive states, including attention fluctuation,
fatigue onset, and comprehension difficulties, providing
continuous assessment beyond periodic performance
evaluations [22]. The monitoring infrastructure processes
streaming data through edge computing nodes to minimize
latency, ensuring timely intervention when cognitive
overload indicators emerge.

The adaptive regulation algorithms utilize learner
profiles constructed from behavioral patterns and
socioeconomic stratifications identified in the Dongcheng
District study, where students' adaptation to reduced
tutoring support revealed distinct cognitive load patterns
across different demographic groups. The system implements
hierarchical difficulty adjustment through content
decomposition strategies that segment complex materials
into cognitively manageable units, with granularity
determined by real-time performance feedback [23].
Reinforcement learning works well for personalized
pathways since Q-learning can balance familiar and
challenging content as students progress. This adaptive
approach avoids the need for pre-labeled data that limits
supervised methods.

The scaffolding engine generates contextual support
through natural language processing, delivering explanations,
hints, and worked examples calibrated to momentary
comprehension gaps identified through error pattern
analysis. Multimodal data fusion integrates disparate
information streams through ensemble learning methods
that synthesize behavioral, performance, and self-reported
indicators into unified cognitive load estimates. The fusion
architecture employs temporal convolutional networks to
capture time-dependent patterns in clickstream data, while
attention mechanisms weight the relative importance of
different modalities based on task characteristics [24]. For
processing lengthy clickstream data, TCNs work better than
recurrent networks. They avoid the memory fade that occurs
when LSTMs attempt to recall patterns from hours earlier in

a learning session. Performance metrics incorporate the
assessment framework established in the parent study,
enabling direct comparison with traditional learning
outcomes. Self-report instruments embedded within the
platform collect subjective cognitive load ratings through
validated scales, providing calibration points for algorithmic
predictions. This comprehensive approach enables nuanced
detection of cognitive states that inform intervention timing
and intensity, particularly crucial for learners adapting to
reduced external support structures in the post-reform
educational landscape. This parallels how cognitive load
theory describes human learning—multiple information
streams processed separately, then integrated. The
algorithms essentially mimic this natural process, handling
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different data types through specialized methods before
combining results. Table 1 shows how different algorithms
performed during testing, which led to choosing the ensemble
method. The ensemble combining RL's adaptive decisions,
TCN's temporal patterns, and gradient boosting's error
correction achieved the best balance across all metrics,
justifying the additional complexity.

Table 1. Algorithm performance comparison

Method Accuracy Latency Adaptability
Q-learning (RL) 86.7% 241ms 0.92
Random Forest 82.1% 178ms 0.71

LSTM 87.9% 423ms 0.78
Ensemble o
(adopted) 88.3% 267ms 0.89

Model validation employed stratified 5-fold cross-
validation, where each fold served as a validation set once,
while the remaining 80% was used for training. After
selecting the best model through cross-validation, the final
performance was evaluated on a held-out test set (15% of the
total data).

2.3 Data collection and analytical procedures

The data collection protocol builds upon the
foundational dataset from the Double Reduction Policy
impact study, which documented tutoring participation
declining from 75% to 40% and family education spending
averaging 30% of household income. This dramatic shift in
educational support patterns provides the context for
examining how intelligent cognitive load regulation can
address emerging learning challenges. As shown in Table 2,
the research maintains the original sample of 320 students
across grades 4-9. The multidimensional assessment
framework incorporates insights from the initial Double
Reduction Policy evaluation (50 parents and 20 educators
from the original Dongcheng District study), which was later
expanded to include 280 parents and 45 teachers during the
six-month intelligent system implementation phase to track
adaptation patterns in the post-tutoring era. The
multidimensional assessment framework incorporates the
NASA Task Load Index adapted for e-learning environments,
which demonstrates robust psychometric properties for
measuring cognitive load across six dimensions, including
mental demand, physical demand, temporal demand,
performance, effort, and frustration levels. While the NASA-
TLX was adapted for digital display, its core items remained
unchanged. Previous implementations in similar e-learning
contexts reported strong reliability (a¢ > 0.85) [25],

supporting its use without redundant revalidation. Data
collection occurred in three phases aligned with the academic
calendar, capturing baseline measurements, mid-term
adjustments, and end-of-year outcomes. Students completed
cognitive load assessments immediately following digital
learning sessions, ensuring ecological validity of self-reported
measures. The protocol tracked engagement patterns
averaging 4.37 hours per week of platform usage, revealing
substantial variation across socioeconomic strata identified
in the parent study. Semi-structured interviews with parents
explored perceptions of their children's adaptation to
reduced tutoring support, while educator observations
documented classroom manifestations of cognitive load
during technology-mediated instruction [26].
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Table 2. Participant demographics and data analysis methods

Characteristic Students Parents Educators Analysis
(n=320) (n=50) (n=20) Method
4-9 (M=6.7, Descriptive
Grade Level SD=1.5) i i statistics
Low:
Low: 31.6%, 32.0%,
Socioeconomic Middle: Middle: Stratified
Status 43.1%, High: 42.0%, i analysis
25.3% High:
26.0%
Prior Tutoring 73.4% 92.0% 95.0% Chi-square
Participation (n=235) involved observed test
NASA-TLX
. fore- Semi- Classroom Mixed-
Cognitive Load : .
Measurement learning .structgred observation methOt.is
(n=312 interviews protocol analysis
complete)
4.37
Digital hrs/week Time-
Learning (SD=1.42, - - series
Engagement range: 1.5- analysis
8.2)
. Standardized Repeated
Academic
Performance test scores - - measures
(pre/post) ANOVA

Note: Data collected between September 2021 and June 2022,
building upon the original Double Reduction Policy impact study.
NASA-TLX = National Aeronautics and Space Administration Task
Load Index, adapted for educational contexts to measure cognitive
load in digital learning environments.

Analytical procedures employ hierarchical linear
modeling nested students within classrooms within schools,
controlling for individual (prior performance, device access),
classroom (technology infrastructure), and school-level
(socioeconomic composition) variables. Propensity score
matching balanced comparison groups, while sensitivity
analyses confirmed robustness. The mixed-methods
approach integrates quantitative metrics from standardized
assessments with thematic analysis of qualitative data,
enabling triangulation of cognitive load indicators. Machine
learning algorithms process behavioral trace data to identify
patterns predictive of cognitive overload, though human
judgment remains central to intervention decisions.
Statistical analyses control for prior tutoring participation
rates and socioeconomic factors, ensuring that observed
effects reflect genuine cognitive load variations rather than
confounding variables inherent in the post-policy educational
landscape.

Given the sensitive nature of collecting cognitive and
behavioral data from minors, ethical considerations were
paramount throughout the study. Working with underage
students meant taking extra precautions. The consent process
involved parents first, then students separately. Data security
went beyond basics with facial data processed and deleted
within hours. Parents could review their child's participation
anytime, while built-in alerts caught signs of academic or
emotional strain.
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3. Results
3.1 Identification of cognitive load characteristics in

digital learning

The identification of cognitive load characteristics
among Dongcheng District students reveals distinct patterns
that reflect the profound impact of transitioning from
traditional tutoring-intensive education to technology-
mediated learning environments following the Double
Reduction Policy implementation. As illustrated in Figure 2a,
cognitive load distribution demonstrates a clear
socioeconomic gradient, with students from lower
socioeconomic backgrounds experiencing mean cognitive
load scores of 68.4 (SE=2.39), significantly higher than their
middle-class peers at 58.2 (SE=1.74) and high-income
counterparts at 52.7 (SE=2.14). This disparity becomes
particularly pronounced when students engage with digital
learning platforms requiring simultaneous management of
multiple information sources, interface navigation, and self-
regulated learning strategies previously scaffolded by
external tutoring support.

(a) Cognitive Load Distribution by Socioeconomic Background
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Figure 2. Cognitive Load Distribution Patterns in Dongcheng District
Students. (a) Cognitive Load Distribution by Socioeconomic
Background; (b) Individual Differences in Cognitive Load Perception
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Figure 2b shows that cognitive load perception varies
significantly within groups, not just between socioeconomic
categories. Individual differences in digital literacy, online
experience, and metacognitive awareness create diverse
cognitive load profiles within demographic groups. Students
from lower socioeconomic backgrounds display the widest
distribution range, suggesting that limited access to
technological resources at home amplifies individual
differences in adapting to digital learning environments.
Median cognitive load scores in horizontal bars show that
although statistically significant differences appear at the
group level, there is considerable overlap between
distributions, indicating the multifaceted nature of factors
influencing cognitive load over and above economic status
alone. Temporal comparison of variation of cognitive load
over learning stages, shown in Figure 3, portrays a typical U-
shape pattern consistent with the skill acquisition theory in
virtual learning systems. The early phase of learning shows
the highest levels of cognitive load, reaching near 75, which
indicates students' difficulties with the new content,
concurrently adjusting to new computer interfaces as well as
self-paced learning demands. This maximum level of
cognitive load is consistent with the period shortly after the
policy start, when students were deprived of formal tutoring
support and had the twofold challenge of learning subject
matter and learning to employ the technology. The gradual
trend downwards during the acquisition of skills stage
reflects productive construction of cognitive schemas and
automation of procedural knowledge with steady levels of
load averaging 62 weeks, 5-10.

% Cognitive Load Variations Across Learning Phases
T T T T T

Initial Learning Skill Development Mastery Transfer

80 -

Cognitive Load Score
3 3
T T

o
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30 L I L I L I I

2 4 6 8 10 12 14 16
Weeks

Figure 3. Temporal variations in cognitive load across learning
phases during digital learning adaptation

The mastery level illustrates the lowest values of
cognitive load, around 50, that show a good balance of digital
learning strategies and content knowledge structures.
However, the transfer level (defined as the cognitive demands
when applying learned concepts to novel contexts) reveals a
different pattern. When students tried applying what they
learned to new situations during the transfer phase, a notable
shift in cognitive load occurred. This revealed just how
dependent they had been on tutors walking them through
difficult problems. The pattern specifically influences
learners who have been used to repetitive drilling methods
typical for classical tutoring, since they now have to build
flexible problem-solving approaches without external
guidance. The return of cognitive load during transfer tasks
highlights the necessity for attaining adaptive expertise over
routine proficiency in computer-based instruction. These
patterns confirm what the theoretical framework predicted
about transfer-level challenges in post-tutoring digital
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environments. Analysis of environment-specific factors for
the digital environment identifies particular sources of
cognitive challenge not found in the conventional classroom.
Split-attention effects result as learners toggle between
instructional video, digital textbook, and practice interface
screens, generating extraneous cognitive load with a
disproportionate impact on students with lower working
memory capacity. The lack of timely instructor feedback and
peer collaboration in asynchronous online courses adds more
contextually relevant cognitive load to students because they
need to actively build meaning via self-explaining and
monitoring by metacognition. Machine learning algorithms
monitoring students' patterns of interaction detect vital
points of cognitive overload via rapid switching between
resources, long pause times, and patterns of errors, providing
intervention points for focused interventions. The results
illustrate that cognitive load in post-policy e-learning
environments is multidimensional in nature as it is affected
by socioeconomic characteristics, time learning phases, and
technology-specific requirements. Elucidation of such trends
allows for the creation of intelligent support systems that
modify instructional design dynamically according to real-
time cognitive state detection, with the ultimate aim of
enabling more equitable learning outcomes within
heterogeneous populations of students adjusting to policy
change in education.

3.2 Validation of the intelligent regulation mechanism
effectiveness

The verification of smart cognitive load control
mechanisms has shown significant improvements in learning
outcomes among Dongcheng District students transitioning
to independent digital learning following the implementation
of the Double Reduction Policy. As shown in Figure 4a,
scholastic performance is significantly improved across all
the socioeconomic cohorts after the introduction of
individualized cognitive load control. The largest
improvements were registered by lower socioeconomic
status students, who had previously depended to a large
extent on tutoring assistance, at 15.3 points, as opposed to
10.4 and 8.7 points for middle-class and more affluent
students, respectively. Informal feedback from parents
consistently highlighted the financial relief of having
affordable learning support, while teachers noted improved
persistence among previously struggling students. As shown
in Table 3, quantitative improvements align with qualitative
feedback across key metrics. This differential improvement
pattern suggests that intelligent regulation mechanisms
particularly benefit learners who lost the most support under
the new policy framework, thereby contributing to
educational equity goals.

Learning efficiency metrics, presented in Figure 4b,
demonstrate the system's effectiveness in optimizing task
completion across diverse learning activities. Problem-
solving tasks show the most dramatic improvement, with
completion rates increasing from 52% to 78% while reducing
time investment by 38%. Classroom observations revealed
students spending significantly less time in unproductive
struggle, with teachers commenting that the system's
scaffolding appeared well-timed to maintain productive
challenge without causing frustration. This enhancement
proves particularly valuable for students transitioning from
rote memorization approaches typical of traditional tutoring
to more analytical thinking required in self-directed learning
environments. Video learning and interactive tasks exhibit
completion rate improvements exceeding 85%, indicating
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that the system successfully maintains student engagement
across multiple content modalities without the external
motivation previously provided by tutors.

Table 3. Integration of quantitative and qualitative evidence

Qualitative

Quantitative Finding Evidence

Convergence

Parents report

financial relief

from affordable
Al support

Low-SES: +15.3 points Strong

Teachers observe
reduced time in
unproductive
struggle

Task completion:

520678% Strong

Students
experience
timely support Strong
before
frustration

Response time: 234ms

Learners report
decreased
confusion and
anxiety

Load reduction: >22% Moderate

The adaptive nature of the regulation system
accommodates different learning styles effectively, as shown
in Figure 4c. While all learner types experience cognitive load
reductions exceeding 22%, satisfaction ratings reveal
nuanced responses to system interventions. Most satisfied
are auditory learners (4.5), possibly a spin-off from audio
feedback facilities offered by the system, replacing the verbal
instructions of teachers. Physically-based learners, in spite of
all their big cognitive load savings from 75 to 58, are less
satisfied (4.1), which indicates computer settings continue to
pose a problem for physically-based learning modes. The
results set out how multimodal support is imperative to
overcoming varied learning requirements in online teaching
contexts.

System performance measures, as articulated in Table 4,
confirm the technical reliability required to support mass-
scale education change. 87.3% accuracy in identifying
cognitive load confirms safe detection of struggling student
moments, and a 234-millisecond response time provides
timely intervention before frustration or disengagement. The
8.7% false positive rate is far below the industry benchmark,
reducing interruptions to learning flow. These technological
advancements become even more relevant when taking into
account the 320 students impacted, 75% of whom had
previously relied on outside tutoring to be supported
academically.

The application of intelligent regulation mechanisms
holds transformation potential beyond the provision of
improved performance delivery. Metacognitive awareness is
cultivated in learners through system feedback, with the
learners progressively internalizing self-regulation strategies
formerly scaffolded by tutors. The 82.4% adaptation accuracy
attests to the fact that personalized interventions are highly
coupled to individual learning pathways, precipitating
autonomous learning competencies essential to long-term
academic achievement. The 99.2% system availability
guarantees support continuity with little disruption, allaying
fears of the effects of the digital divide on learning continuity.
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Figure 4. Effects of intelligent cognitive load regulation on learning
Outcomes. (a) Academic achievement before and after regulation, (b)
Learning efficiency and task completion analysis, (c) Cognitive load
optimization effects on different learner types

These validation findings demonstrate that intelligent
cognitive load management indeed closes the support gap
generated by policy-driven educational reform. The synthesis
of enhanced academic performance, efficiency of learning,
and strong technical performance forms the basis of
deployability in larger student cohorts experiencing
equivalent transitions from conventional tutoring-dependent
paradigms to technology-facilitated self-study learning
environments. This triangulation demonstrates how
quantitative improvements translate to lived experiences—
efficiency gains reflect reduced frustration, accuracy metrics

November 2025] Volume 04 | Issue 04 | Pages 205-215

capture responsive support, and performance improvements
embody renewed learning confidence.

Table 4. System accuracy and responsiveness evaluation results

Performance Standard Benchmark
. Value L .
Metric Deviation Comparison

Cognitive Load o 0 +12.5% vs.

Detection Accuracy 87.3% £3.2% baseline

i - 0,

Res_p(.)nse Time 234 +45 68% vs.

(milliseconds) manual

. Industry

0, 0,
False Positive Rate 8.7% +2.1% standard: 15%
i 0,
AdapFa.tlon 82.4% +4.5% +18.3 A) VS.
Precision static
User State
Prediction F1- | 0.856 +0.034 Above 0.8
threshold
Score
System Uptime 99.2% +0.3% Me.ets SLA
requirements

Note: System evaluated using data from 320 students in Dongcheng
District following Double Reduction Policy implementation, with
particular focus on supporting students who previously relied on
tutoring services (pre-policy participation rate: 75%).

3.3 Evaluation of educational practice application
effectiveness

The analysis of pedagogical practice applications in
Dongcheng District offers comprehensive insights into
stakeholder adaptation amid the adoption of smart cognitive
load management systems in the post-Double Reduction
Policy era. The critique integrates feedback from 320
students, 45 educators, and 280 parents who together
experience the paradigm shift from tutoring-dependent
learning to independent learning with the support of
technology.

As can be seen in Figure 5a, multi-stakeholder
acceptance levels record steady enhancement during the six-
month implementation duration. Student acceptance went up
from 65.3% to 82.4%, indicating a gradual adjustment to
independent learning spaces once contained by extensive
tutoring sessions. Teacher acceptance showed the greatest
improvement, from 58.2% to 78.6%, despite initial resistance
based on fears of technological incorporation undermining
entrenched pedagogical traditions. Parents maintained the
highest acceptance levels throughout, increasing from 72.4%
to 85.2%, driven by relief at finding cost-effective alternatives
to the expensive private tutoring services described in the
foundational study. Longitudinal patterns of satisfaction,
graphed in Figure 5b, reveal rich adaptation dynamics within
stakeholder groups. The curve for teacher satisfaction shows
maximum volatility, dipping to a low point of 2.8 during the
third month before increasing to 4.1, with a showing of an
episode of maximum adaptation where teachers grappled to
balance algorithmic suggestion and professional intuition.
This temporary slump is seconded by qualitative evidence
from teacher interviews identifying issues in having
confidence in automated detection systems for specific
student needs previously covered by face-to-face tutoring
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sessions. Student satisfaction demonstrates consistent
improvement from 3.2 to 4.2, modest oscillation indicating
the phase of transitioning from active recipient of tutoring to
proactive self-regulated learner.

(a) Multi-stakeholder System Acceptance Comparison
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82.4%
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Figure 5. Stakeholder acceptance and satisfaction analysis for an
intelligent cognitive load regulation system (a) Multi-stakeholder
system acceptance comparison, (b) Long-term usage satisfaction and
feedback trends

Note: Data collected from 320 students, 45 teachers, and 280 parents
in Dongcheng District schools during the six-month implementation
period following the Double Reduction Policy, which resulted in
tutoring participation declining from 75% to 40%. Initial data (Month
1) represents baseline measurements when families were adapting
to reduced tutoring support, while current data (Month 6) reflects
post-implementation outcomes with intelligent system support.
Satisfaction ratings based on a 5-point Likert scale. Shaded areas in
panel (b) represent 95% confidence intervals.

System applicability analysis by varying teaching
contexts, as depicted in Table 5, presents valuable insights
into the differential effectiveness of the intelligent regulation
mechanisms. Self-study review exercises have the highest
ranking in effectiveness rating (9.1/10) with a rate of
achievement of 91.2%, precisely meeting independent study
skill development requirements of students lost through the
provision of structured tutoring. Math problem-solving
proficiency (8.7/10, 86.3% pass rate) is especially notable
given the subject's prominence in the middle of Chinese
academic examinations and previous intense emphasis on
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after-school supplementary instruction averaging 4-6 hours a
week.

Table 5. System applicability analysis in different teaching scenarios

Teaching Effectiveness Implementation Adaptation Success
Scenario Score Challenges Requirements Rate
Mathematics 8.7/10 High Enhanced 86.3%
Problem computational algorithm
Solving load for complex optimization
problems
Language 7.9/10 Nuanced feedback NLP model 78.5%
Learning for writing tasks integration
Science 7.2/10 Limited hands-on VR/AR 72.8%
Experiments simulation component
development
Collaborative 6.8/10 Group dynamics Multi-user state 68.4%
Projects complexity tracking
Self-paced 9.1/10 Minimal - well- Minor UI 91.2%
Review suited adjustments
Exam 8.5/10 Stress factor Anxiety 84.7%
Preparation consideration detection
module

Note: Effectiveness scores based on performance metrics of 320
Dongcheng District students transitioning from tutoring-dependent
to self-directed learning.

The significant performance difference between group
and individual learning performance implies both promise
and limitations of existing technology solutions. Exam
preparation situation scenarios demonstrate superior
performance (8.5/10, 84.7% pass rate), whereas
collaborative learning demonstrates the worst performance
(6.8/10, 68.4% pass rate), which mirrors the difficulty of
simulating peer learning interactions that occurred
organically within tutoring center settings. Science
experiments share the same limitations (7.2/10, 72.8%
success rate), which implies experiential learning
components need creative solutions around existing system
limitations to offset decreased hands-on direction. The
careful assessment confirms that effective cognitive load
management systems perfectly fill support gaps caused by
policy-driven education transformation. Language learning
exercises (7.9/10, 78.5% correct) are moderately successful
with natural language processing support but cannot entirely
substitute spontaneous corrective feedback that was always
offered by human tutors. The evidence indicates that although
technology-based  solutions cannot substitute for
individualized attention in conventional tutoring, they
provide scalable, fair alternatives that foster key independent
learning competencies. The upward trend of stakeholder
satisfaction, with differentiated effectiveness for different
teaching contexts, supports smart regulation systems as the
path forward for sustainable education practices in the post-
policy era.

4. Discussion

This research contributes to cognitive load theory by
showing its dynamic application in policy-reformed
education technology-mediated learning environments.
Adaptive regulation mechanisms expand Sweller's model
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[15] from static instructional design to include real-time
adaptive capabilities that adjust to learners' dynamically
changing states of cognitive load. Traditional research has
focused on pre-set sequencing of content, and this research
divulges the processes of how machine learning algorithms
most effectively redistribute load in real time, with detection
accuracy 12.5% higher than traditional approaches. The
results clarify how tailored regulation supports extensive
learning through the sustenance of cognitive load in optimal
ranges, avoiding frustration caused by overload and
disengagement due to underload. Pedagogic innovations
close structural cracks opened up by the Double Reduction
Policy disruption of conventional tutoring circuits. Unlike
studies of the incorporation of technology into ancillary tools
[27], this study investigates environments where digital
measures become vital supports to learning. The recorded
teacher transformation from peddlers of knowledge to
facilitators of learning reflects more profound pedagogic
transformations than are normally reported on in studies of
online education. A shift in acceptance from 58.2% to 78.6%
by teachers within six months implies long-term professional
growth can overcome adoption issues, as documented by
Chen et al. [4], if evidence translates into concrete student
gains for the post-tutoring learning environments.

Differential learning performance in teaching
environments tests the pedagogical suitability of technology.
Self-directed activities with 91.2% success are set against
68.4% effectiveness for collaborative projects, while
confirming Kirschner and De Bruyckere's incredulity [28]
regarding technology's incompetence to fully replicate social
processes of learning. This differential is especially critical in
post-tutoring environments where peer-to-peer interactions
previously prevalent in tutoring facilities need to be recreated
virtually. While people's task performance adheres to
cognitive load theory principles for managing complexity, the
conclusions highlight necessities for innovative solutions that
facilitate  collective knowledge construction under
technological constraints. Ethical implications of ongoing
cognitive monitoring range from privacy to learner agency
and algorithmic control. Although Williamson [29] addresses
surveillance capitalism in general, substituting Al for human
tutors brings in distinctive ethical facets. The trade-off of
assisting  underprivileged students and eschewing
technological dependence needs to be approached with
sensitivity. Personalization based on data needs to
acknowledge that learning entails affective, social, and
creative aspects that are impenetrable to algorithmic
simplification, especially when technology replaces human
pedagogical relationships.

Many limitations restrict generalizability. The one-
district urban sample can hardly represent China's diverse
educational landscapes, particularly rural regions with poor
infrastructure [30]. Expanding the system faces several
challenges. The NLP components are trained on Chinese text,
requiring a complete redesign for other languages. Rural
schools with limited bandwidth (<10 Mbps) cannot support
real-time features. Future work should develop offline-
capable versions while maintaining core functionality. The
six-month timeframe cannot identify plateau effects or
sustainability concerns raised by longitudinal research.
Assessment of cognitive load may not capture sophisticated
digital learning processes, especially metacognitive growth
and transfer capabilities. These limitations necessitate
caution in extrapolating findings to outside settings without
considering local technological readiness and cultural
learning cultures.
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Future work needs to conduct multi-site studies in
varying contexts with external validity. Longitudinal studies
following entire education cycles would determine whether
technology-mediated regulation engenders true autonomy or
new dependency. New technology integration could resolve
existing collaborative learning bottlenecks. Studies need to
investigate the wider implications of algorithmic educational
support to make sure efficiency gains do not compromise
humanistic values built into holistic education. Cross-cultural
implementations need to be pursued as cognitive patterns
will differ across education systems. The key question is
whether smart systems can aid education equity in building
twenty-first-century skills without undermining human
factors that characterize unique learning experiences during
the era of the digital economy.

5. Conclusion

This study demonstrates that intelligent cognitive load
regulation mechanisms effectively optimize learning
outcomes in digital environments following educational
policy reforms. The research reveals significant
improvements across multiple dimensions: students from
lower socioeconomic backgrounds achieved 15.3-point gains
in academic performance, task completion rates increased by
32%, and cognitive load levels decreased by an average of
23.1% across different learner types. The 87.3% detection
accuracy and 234-millisecond response time validate the
technical feasibility of real-time cognitive state monitoring in
educational contexts. These findings extend cognitive load
theory by incorporating dynamic adaptation capabilities
essential for self-directed digital learning environments. The
investigation contributes both theoretical insights and
practical  frameworks for educational technology
implementation in post-tutoring contexts. The documented
transformation of 320 Dongcheng District students from
tutoring-dependent to self-regulated learners provides
empirical evidence for technology-mediated educational
equity. While limitations exist regarding single-district
sampling and a six-month duration, the positive trajectory of
stakeholder satisfaction (rising from 3.2 to 4.2 for students)
suggests  sustainable  adoption  potential. = Future
developments should focus on enhancing collaborative
learning support, addressing the current 68.4% effectiveness
rate, and expanding cross-regional validation. The
convergence of cognitive science and educational technology
demonstrated here offers promising pathways for scaling
personalized learning support while maintaining pedagogical
quality in the digital transformation of education.
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