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The convergence of artificial intelligence (AI) and LEAN manufacturing principles presents
unprecedented opportunities for operational excellence while introducing complex risk
management and sustainability challenges. Addressing the critical research gap in
quantitative AI-LEAN integration models. This research develops an integrated framework
for implementing Al-driven big data analytics in LEAN manufacturing equipment R&D,
addressing the critical gap between technological capabilities and sustainable manufacturing
practices. We used three research methods: theoretical modelling, empirical validation with
the SECOM semiconductor dataset, and 12-month field testing across three manufacturing
facilities. This mixed-methods approach quantifies the synergistic effects of AI-LEAN
integration. The framework incorporates hierarchical risk taxonomy, real-time anomaly
detection algorithms achieving 93.5% accuracy, and multidimensional sustainability metrics.
Results demonstrate substantial improvements: 36.1% increase in overall equipment
effectiveness, 58.9% reduction in setup times, and 31.4% decrease in carbon footprint,
energy intensity reduced by 30%, employee safety incidents decreased by 67%, and job
satisfaction increased by 15%, achieving synergistic optimization of environmental benefits
and social value. Risk prediction models achieved 91-96% accuracy across different
categories, while maintaining sub-50ms inference times for real-time applications. The Al-
enhanced system outperformed traditional LEAN implementations by 1.81x in continuous
improvement rates and achieved payback in 13 months versus 23 months for conventional
approaches. Financial analysis reveals 319.4% ROI over five years, validating the economic
viability alongside environmental benefits. This research establishes a replicable paradigm
for sustainable smart manufacturing, demonstrating that advanced analytics can
simultaneously enhance operational efficiency, risk management, and environmental
stewardship while preserving LEAN's human-centric values.

1. Introduction
The manufacturing

industry

continuous improvement approaches. Although LEAN has

is undergoing a dominated industrial improvement methodologies since the

transformation, where the fusion of Industry 4.0 technologies
and traditional Lean manufacturing is fundamentally
changing production concepts. The introduction of lean
manufacturing equipment research and development (R&D)
with artificial intelligence (AI) and big data Analytics marks a
significant paradigm shift with potential unprecedented
efficiency gains, and an associated set of remarkably complex
risk management and sustainability challenges [1]. With
more companies targeting Al-based solutions, recent
research shows that 78% of companies have implemented Al
in at least one business function, compared to 55% a year
ago.1 The rise of Al has made it essential to consider holistic
frameworks that strike a proper balance between innovation
and minimizing risk, alongside ensuring sustainable practices
[2]. The rise of LEAN manufacturing in the era of Industry 4.0
has led to an overhaul of traditional waste reduction and
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1990s, the combined integration of Al and digital technologies
is creating what researchers call Lean Industry 4.0 —a socio-
technical model that involves humans and Al in a system,
along with various digital technologies [3]. This integration
has enabled manufacturers to achieve productivity
increments of 6% or greater per year when appropriately
implemented; however, the rapid pace of technology
adoption often outpaces the development of necessary
governance [4]. The difficulty then is not just to implement
new technology and products productively in interaction with
Al and LEAN methods, but to make Al and these LEAN
methods work together profitably, while still working with
the environment. Integrating Al and big data into the field of
manufacturing equipment R&D is challenging, and the issues
extend beyond technical concerns. An accompanying study
reveals that 45% of manufacturers believe a lack of
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knowledge is the primary obstacle, and 44% encounter
difficulties integrating Al solutions with their production
facilities [5]. They become even more complex when
addressing modern manufacturing, where Al-based demand
forecasting systems interact with just-in-time production
systems, reducing forecast errors by 20% to 50% while
mitigating the risks associated with small buffers and short
response lead times [6]. Additionally, when introducing Al
into equipment development processes, it is essential to
consider the quality of data input, the system's
interoperability, and the preservation of tacit knowledge that
is inherently encoded in conventional LEAN activities [7].
Despite growing interest in AI-LEAN integration, current
research reveals significant limitations that hinder both
theoretical advancements and practical implementations.
The existing literature lacks comprehensive mathematical
models that can quantify the synergistic effects between Al-
LEAN and dynamic learning. Existing frameworks merely
treat risk control, sustainability assessment, and operational
optimization as discrete problems rather than integrated
dimensions. Furthermore, there remains a dearth of long-
term studies featuring rigorous controlled experimental
comparisons across diverse manufacturing environments.

The increasing focus on risk management and
sustainability in the context of smart manufacturing mirrors
the more general changes in society and regulation. The EU’s
Al Act, which commenced in August 2024, represents the
world's first-ever comprehensive legal framework for Al,
where systems have been classified according to risk levels
and specific requirements have been set for high-risk uses [8].
Likewise, sustainability reporting has evolved from a
voluntary to a mandatory framework, with the Corporate
Sustainability Reporting Directive mandating extensive
environmental impact assessments [9]. Manufacturers are
under more scrutiny than ever to prove that we are not just
efficient, but we are also socially responsible, and we can be
ethical in Al deployment [10].

New Al-based analytics in manufacturing is a fast-paced,
high-investment area of research, but not without its
challenges. Predictive maintenance, quality control, and
supply chain optimization are becoming popular tasks of
machine learning algorithms. On some systems, about 30% of
equipment downtime is being reduced by Al-driven
predictive analytics [11]. Deep learning methods in pattern
recognition for defect detection and process optimization,
and reinforcement learning are being further investigated for
dynamic production scheduling in complex manufacturing
scenarios [12]. However, the literature also emphasizes
continued concerns with respect to model interpretability,
patient privacy, and the possibility of algorithmic bias in the
decision-making process [13]. LEAN principles in the
equipment development process have long been centered on
waste reduction, standard work, and continuous
improvement. Recent works show that Al can support these
principles with real-time optimization of the value stream and
data-driven kaizen [14]. The connection of Al to LEAN has
given rise to hybrid mechanisms that preserve the human-
based approach of LEAN and combine it with the analytics of
Al systems [15]. It is essential to emphasize that Al visual
management systems and digital and on-board systems have
shown a significant improvement in response time and
problem-solving [16]. The risk assessment for smart
manufacturing systems has been developed to address the
specific issues associated with Al integration. The NIST Al
Risk Management Framework, released in 2023 and
subsequently expanded by specific profiles for generative Al,
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offers structured paths for identifying, assessing, and
mitigating Al-related risks [17]. These models stress the
importance of ongoing monitoring, stakeholder engagement,
and having clear lines of accountability [18]. Centralized
governance, risk, and compliance software is used in
manufacturing institutions, as organizations have numerous
departments in which the Al is deployed [19]. Sustainability
measures and strategies in industrial R&D aren’t just about
the environment anymore - the scope has broadened to
include social and economic aspects as well. New studies are
suggesting combined sustainability indicators that include
energy consumption, utilization of resources, carbon
footprint, and social impact [20]. Al is being used to optimize
these multiple objectives at once, but trade-offs exist between
competing sustainability goals and production efficiency
goals [21]. Notwithstanding these advances, the review of the
literature identifies some research gaps where Al meets LEAN
manufacturing and sustainable development. The studied
fields are usually handled separately, which dismisses the
intricate connections and possible synergies [22]. There is a
paucity of empirical data regarding the long-term effects of Al
implementation on the LEAN culture and culture-related
workforce dynamics, as well as of integrated frameworks that
facilitate the handling of technical, operational, and strategic
risk factors in Al-based manufacturing contexts [23].

This study constructs an integrated framework that aims
to integrate risk control and sustainability strategies into the
research and development environment of AI-LEAN
integration equipment. It establishes a hierarchical risk
classification system, identifying key risk factors inherent in
the technological, operational, strategic, and ethical
dimensions of Al-lean manufacturing convergence.
Concurrently, the research develops a multidimensional
sustainability assessment indicator system to quantify the
environmental, economic, and social impacts of Al integration
initiatives on performance. The study also develops proactive
risk mitigation strategies that leverage the technological
advantages of Al systems while adhering to the core principle
of continuous improvement within the lean manufacturing
philosophy. The scope is confined to the R&D phase of
manufacturing equipment, employing a mixed-methods
approach that integrates theoretical modelling, empirical
validation using the SECOM semiconductor dataset, and
comprehensive 12-month field implementation verification
across multiple manufacturing environments. This study
makes an innovative contribution to the manufacturing
science literature through its multidimensional approach,
advancing both theoretical understanding and practical
application of intelligent manufacturing systems. It proposes
a comprehensive theoretical framework that explicitly
integrates risk management and sustainability perspectives,
addressing a key gap in existing literature where these
domains are typically treated separately. The investigation
quantifies Al-Lean synergies through mathematical
modelling, establishing an operational performance
assessment model for systematically evaluating and
optimizing integrated systems. It provides empirically
validated implementation guidelines that demonstrate how
advanced analytical techniques can simultaneously enhance
operational efficiency, risk control capabilities, and
environmental management standards while upholding the
core human-centered values of lean manufacturing. The
framework's replicability and 319.4% return on investment
within five years establish a new paradigm for sustainable
smart manufacturing transformation, achieving a balance
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between technological advancement and organizational and
environmental responsibility.

2. Literature review
2.1 AI-LEAN integration in industry 4.0

Recent investigations have demonstrated significant
progress in integrating artificial intelligence with LEAN
manufacturing principles within Industry 4.0 paradigms.
Powell [1] explored the emerging roles of artificial
intelligence in lean manufacturing, emphasizing the need for
digitalization with a human touch. Tashkinov [21] proposed
an interdisciplinary approach combining lean manufacturing
principles with artificial intelligence to improve production
system efficiency. Shahin [7] demonstrated that integrating
Lean Manufacturing tools with artificial intelligence
represents a revolutionary approach to optimizing
production processes, reducing waste, and enhancing
efficiency, where Al algorithms excel in pattern recognition,
data analysis, and decision-making, offering more precise,
data-driven solutions for manufacturing challenges. Saad [24]
conducted a systematic review of the literature on Industry
4.0 and Lean Manufacturing integration, providing scholars
with a better understanding of existing research and
contributing to the definition of clear topics for future
research opportunities. Saraswat [3] investigated the
technological integration of lean manufacturing with Industry
4.0 toward lean automation through a systematic review.

2.2 Predictive maintenance and smart manufacturing

applications

Predictive = maintenance represents a critical
convergence area where Al capabilities complement LEAN
total productive maintenance principles. Ucar [25] reviewed
recent developments in Al-based predictive maintenance,
focusing on key components, trustworthiness, and future
trends. Recent systematic multi-sector mapping reveals that
within  smart manufacturing contexts, predictive
maintenance approaches can decrease downtimes, reduce
operational costs, and increase productivity, improving
system performance and decision-making across diverse
manufacturing sectors. Achouch [26] provided a
comprehensive overview of predictive maintenance in
Industry 4.0, examining models and challenges while
highlighting that data-driven predictive maintenance
constitutes a cutting-edge solution with growing interest in
modern manufacturing. Recent advances in smart
manufacturing have demonstrated unified predictive
maintenance platforms that leverage data warehousing,
Apache Spark, and machine learning, addressing the
heightened complexity in machinery and equipment used
within collaborative manufacturing landscapes while
presenting significant risks associated with equipment
failures.

2.3 Sustainability integration and research gaps

Despite growing  emphasis on sustainable
manufacturing, systematic integration of sustainability
metrics with AI-LEAN frameworks remains limited. Ghaithan
[27] investigated the integrated impact of circular economy,
Industry 4.0, and lean manufacturing on sustainability
performance. Ciliberto [28] presented a sustainable lean
manufacturing recipe for Industry 4.0 that enables a
transition to a circular economy. Machado [29] identified
interlinks between Industry 4.0 technologies and sustainable
operations, discussing influences on sustainable business
models and effects on lean manufacturing practices, while
noting convergence about desirable features relating to being
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flexible, reconfigurable, low cost, adaptive, agile, and lean.
Recent studies examining relationships between lean
manufacturing, Industry 4.0, and sustainability reveal that
while Industry 4.0 shows a strong correlation with
sustainability pillars, the relationship between lean
manufacturing and sustainability dimensions is not
conclusive. Kipper [30] demonstrated that Industry 4.0 and
lean manufacturing practices contribute to sustainable
organizational performance in Indian manufacturing
companies, achieving improvements in operational metrics
while supporting environmental objectives. However, studies
in the Mexican maquiladora industry reveal that while lean
manufacturing tools are being applied in production lines,
few investigations have examined the relationships with
comprehensive sustainability dimensions that encompass
social, economic, and environmental aspects. Research gaps
identified include the absence of comprehensive risk
taxonomies specific to AI-LEAN integration, limited
quantification of sustainability synergies, and a lack of long-
term empirical validation across multiple manufacturing
contexts. Buer [31] demonstrated complementary effects of
lean manufacturing and digitalization on operational
performance.

3. Methodology
3.1 Theoretical framework development

We developed a theoretical framework for AI-LEAN
integration. This framework combines proven LEAN
principles with advanced Al methodologies. This integration
necessitates careful consideration of how traditional
continuous improvement paradigms can be enhanced
through machine learning capabilities while preserving the
human-centric values fundamental to LEAN philosophy. Our
framework construction begins with the mathematical
formalization of LEAN-AI synergies, proceeds through risk
categorization specific to intelligent manufacturing systems,
and culminates in a multidimensional sustainability
assessment model. The integration of LEAN principles with
Al-driven analytics represents a paradigm shift from reactive
to predictive operational management. Traditional LEAN
methodologies focus on waste elimination through visual
management and standardized work. The traditional value
stream efficiency (VSE) formula: nVSM = Value-added time
(VAT)/Total lead time (LT) [32]. While AI introduces
capabilities for pattern recognition and optimization at scales
beyond human cognitive capacity. We propose an enhanced
value stream efficiency model that incorporates Al
optimization factors:

VSEy ="IX (1+7) X0 X ¢ )

where VSE,; denotes the Al-enhanced value stream
efficiency, VAT represents value-added time in the
production process, LT indicates total lead time including
processing and waiting periods, y is the Al-driven
improvement factor ranging from 0 to 0.8, 6 represents the
data quality coefficient (0 to 1), and ¢ denotes the human-Al
collaboration effectiveness factor (0.5 to 1.5).

The Al-driven improvement factor y captures the
incremental efficiency gains achieved through machine
learning applications [33] and is calculated through the
weighted sum across k=1 to 5 dimensions:

¥ = Zier @ X P X (1 — ety (2)

where «a; represents the potential improvement in LEAN
waste category k (overproduction, waiting, transport,
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overprocessing, inventory), 5, denotes the Al applicability
factor for waste type k, A, is the learning rate coefficient, and
t represents the time since Al implementation. 1 — e ! is
the index convergence term, modelling the temporal
evolution of learning effects. The core distinction between Al-
enhanced models and traditional LEAN efficiency
assessments lies in dynamic modelling capabilities. This
formulation introduces learning effect modelling through the
exponential convergence term 1 —e~%!, capturing the Al
system's progressive improvement trajectory over time,
whereas traditional LEAN methods rely on static efficiency
level assumptions. Simultaneously, its five-dimensional
summation structure provides a multifaceted comprehensive
evaluation, offering greater breadth than conventional single-
metric approaches. The parameterized learning rate A; for
each dimension permits heterogeneous convergence speeds
across different improvement aspects, grounded in empirical
observational data rather than uniform theoretical
assumptions. Mathematically, this method constitutes a
multidimensional extension of empirical learning curve
models, incorporating temporal dynamics beyond traditional
static computations. However, it fundamentally represents a
parametric refinement of existing LEAN efficiency
assessment approaches rather than a foundational
theoretical breakthrough.

Based on 12 months of manufacturing site validation,
this modeling approach demonstrated significant
improvements over traditional LEAN efficiency assessments
across three manufacturing plants: predictive accuracy
increased from 78% using conventional methods to 89%,
while response times were reduced from several hours for
manual evaluations to real-time computation. However, the
method requires a minimum of six months' historical data for
parameter A, calibration to operate effectively. The practical
efficacy of this mathematical extension is highly contingent
upon the digital maturity of the manufacturing environment
and the caliber of available data.

Traditional LEAN Layer

‘ Value Stream Mapping 58 & Visual Management

‘ Continuous Flow ’ ‘ Standardized Work ’

[ Kaizen Culture ]

\
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In settings with inadequate digital infrastructure or
limited data acquisition capabilities, its advantages over
conventional methods may be markedly diminished or even
negligible. Consequently, its applicability is subject to clear
technical and environmental constraints. As illustrated in
Figure 1, the integrated framework creates synergistic value
through the convergence of traditional LEAN methodologies
and Al capabilities. This framework validates the core
research hypothesis across three tiers. The traditional lean
layer (value stream mapping, 5S visual management,
continuous flow, standardized work, improvement culture)
preserves fundamental lean production principles. The Al-
Augmented layer (predictive analytics, computer vision
quality control, process mining, optimization algorithms,
machine learning) delivers intelligent analytical capabilities.
While the synergistic integration zone (data-driven
improvement, Al-enhanced VSM, predictive maintenance)
achieves its organic combination. The enhanced
manufacturing performance formula (1) directly quantifies
this synergy. The prominent role of the human-machine
collaboration factor ¢ underscores the study's key argument
that human-machine collaboration is pivotal to the system's
success. The human-AlI collaboration factor ¢ plays a crucial
role in determining overall system effectiveness [34] and is
modeled as:

¢ =05+05xtanh(k X (T +E + A — 1.5)) (3)

where T represents the trust level in Al systems (0-1), E
denotes employee engagement with Al tools (0-1), A
indicates the adequacy of Al training programs (0-1), and k is
a scaling constant typically set to 2. 1.5 is the threshold
parameter, when the sum of T, E and A exceeds 1.5, the
collaborative effect begins to increase significantly.

Al Enhancement Layer

[ Predictive Analytics ][ Computer Vision QC ]

[ Process Mining ] [ Optimization Algorithms ]

(et |
/

Synergistic Integration Zone

Data-Driven
Kaizen

Al-Enhanced
VSM

Predictive
Maintenance

!

Enhanced Manufacturing Performance

VSE(Al) = (VAT/LT) x (1+y) x 6 x @
Efficiency x Innovation x Quality x Collaboration

Figure 1. Integrated LEAN-AI framework for manufacturing excellence
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This formula employs the hyperbolic tangent function (tanh)
to model the nonlinear characteristics of human-machine
collaboration, yielding an output range approximately
between [0,1]. When the sum of the three input variables is
low, the collaboration factor approaches 0.5 (neutral state);
when the sum of the input variables is high, the collaboration
factor gradually approaches 1 (optimal collaboration state).
This S-shaped curve characteristic aligns with the observed
critical point effect in human-machine collaboration. The risk
taxonomy for Al-enabled manufacturing systems extends
beyond traditional operational hazards to encompass
emerging vulnerabilities specific to intelligent systems. Our
comprehensive risk assessment framework categorizes
threats across multiple dimensions, as presented in Table 1.
This classification encompasses 12 specific risk categories
across four dimensions: technical, operational, strategic, and
ethical. Each risk category is quantitatively assessed through
severity (S), probability of occurrence (P), and an Al
amplification factor (F). Cybersecurity threats within
technical risks exhibit the highest Al amplification factor (1.9),
reflecting the unique security challenges faced by Al systems.
Algorithm bias within ethical risks demonstrates the highest
Al amplification factor (2.0), highlighting the critical
importance of transparency in Al decision-making. This
classification system directly validates the scientific rigor of
the risk aggregation model in Formula (4). The distribution of
Al amplification factors Fi within the range of 1.3-2.0
confirms the dual impact characteristic of Al technology on
traditional manufacturing risks. The aggregate risk score [35]
for an Al-enabled manufacturing system incorporates both
traditional risk factors and Al-specific amplification effects:

Raggregate = Z?:lwi XS XPxFx(1+a) (4)

where R ggregate TEPresents the total risk score, w; denotes
the weight assigned to risk category i, S; is the severity rating
(1-5 scale), P; indicates probability of occurrence (0-1), F;
represents the Al amplification factor (1-2), and o; is the
interconnectedness coefficient capturing risk propagation
effects.
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This formula quantifies the amplification or mitigation effects
of Al technology on different risk categories through the F;
factor (ranging from 1 to 2), while capturing risk propagation
characteristics within intelligent manufacturing systems via
the o; coefficient. This approach, which simultaneously
incorporates the impact of Al technology and system
interconnection effects into quantitative risk assessment,
remains relatively underutilized in existing LEAN risk
management literature. It provides manufacturing
enterprises with a more comprehensive risk quantification
tool; however, its effectiveness hinges on the accurate
calibration of parameters and the digital maturity of the
manufacturing environment. The sustainability assessment
model construction addresses the triple bottom line of
environmental, economic, and social performance within the
context of AI-LEAN integration. Our multidimensional
sustainability index incorporates both direct and indirect
impacts of Al implementation:

SIAI—LEAN =ag X Escore + aEC X Ecscore + ag X Sscore +

Asynergy (5)

where SI,;_;pan represents the integrated sustainability
index, ag , ag, , and ag are weighting factors for
environmental, economic, and social dimensions, respectively
(summing to 1), and Agypergy captures the synergistic effects
of AI-LEAN integration.

The environmental sustainability score incorporates energy
efficiency, waste reduction, and carbon footprint metrics:

E =
score — 3

— 1 [Ebaseline_EAI + Wreduced Cavoided X 100 (6)
Epaseline Weotal CpTOjECtEd

where Epgseiine and Ey; represent energy consumption
before and after Al implementation, W,..4yc.q denotes waste
eliminated through Al optimization, W;,;,; is the total waste
generated, Cyypiqeq TEPTEsents carbon emissions prevented,
and Cprojectea indicates projected emissions without
intervention.

Table 1. Comprehensive risk taxonomy for Al-enabled manufacturing systems

Risk category Risk type Description Severity (S) Probability (P) Al factor (F)
Technical risks | Data integrity Corrupted, incomplete, or biased 5 0.4 1.8
training datasets affecting model
performance
Model drift Degradation of Al model accuracy 4 0.6 1.6
over time due to changing conditions
System integration Compatibility issues between Al 3 0.5 1.3
systems and legacy infrastructure
Cybersecurity Adversarial attacks, model poisoning, 5 0.3 1.9
unauthorized data access
Operational risks | Process disruption False positives/negatives leading to 3 0.4 1.4
unnecessary interventions
Quality variance Inconsistent product quality due to Al 4 0.3 1.5
decision variability
Maintenance errors Incorrect predictive maintenance 4 0.2 1.4
scheduling causing failures
Strategic risks Technology Rapid Al advancement rendering 3 0.7 1.7
obsolescence current systems outdated
Regulatory compliance Non-compliance with emerging Al 5 0.5 1.8
governance regulations
Vendor dependency Over-reliance on specific Al 3 0.6 1.5
technology providers
Ethical risks Algorithmic bias Discriminatory outcomes affecting 4 0.4 2.0
workforce or product allocation
Transparency deficit Lack of explainability in AI decision- 3 0.8 1.9
making processes
Workforce displacement | Job losses due to Al automation 5 0.5 1.6
without reskilling programs
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As depicted in Figure 2, the sustainability assessment
framework captures the interconnected nature of
environmental, economic, and social dimensions. The
multidimensional sustainability assessment framework
systematically  illustrates the integrated AI-LEAN
methodology's combined impact across environmental,
economic, and social dimensions, directly validating this
study's core proposition that Al-enhanced LEAN
manufacturing achieves synergistic optimization of multiple
sustainability objectives. Through its clear visual design, this
framework reveals the interconnections between dimensions:
the environmental dimension's energy efficiency, waste
reduction, and carbon footprint metrics correspond to the
environmental sustainability score E.,., the economic
dimension's ROI enhancement, cost reduction, and
productivity gains reflect the economic sustainability
modelling, while the social dimension's employee wellbeing,
safety improvements, and skills development mirror the
social impact assessment. Of particular significance are the
two Synergy indicators in the diagram, directly
corresponding to the synergy term, quantifying the additional
benefits generated by the integrated approach. This
framework provides a theoretical explanation for multiple

outcomes observed in empirical validation—including a 31.4%

reduction in carbon footprint, a 319.4% five-year ROI, and a
significant increase in employee satisfaction—demonstrating
that AI-LEAN integration transcends the limitations of
traditional single-objective optimization to achieve systemic
improvements in sustainable manufacturing.

RO Enhancement
Productivity Gains

Energy Efficiency

Waste Reduction

Carbon Footprint

Environmental Economic

E_score Ec_score

AI-LEAN
Synergy Sustainability Syrersy

Social

S_score

{ Workforce Wellbeing J [ Safety Enhancement } { Skill Development J

Figure 2. Multidimensional sustainability assessment framework

The synergy term quantifies the additional benefits
arising from the integrated approach:

Asynergyz A X \/Escore X E€score X Sscore X (1 — e_”t) (7)

where A represents the synergy coefficient (typically 0.1-0.3),
u is the maturity rate constant, and t denotes time since
implementation.
The economic sustainability score incorporates return on
investment, operational cost reduction, and productivity
improvements:

NPV, C Pgai
Al saved + Wprod % _gain 8)

Ecscore = Wror X

cost
Iinitial Chaseline Ppaseline

where NPV,; represents the net present value of Al
investment, I;;tiq; 1S the initial investment, C,, 04 denotes
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cost savings achieved, Cpgseiine 1S the baseline operational
cost, Pyqin indicates productivity improvement, and wgoy,
Weost» Wproa are the respective weighting factors. The social
sustainability dimension encompasses workforce impact,
safety improvements, and community benefits:

n
Sscore = %Z}_I(VV] X S] X D] X (1 + C])) (9)
where W, represents workforce wellbeing metrics for the
stakeholder group j , S; denotes safety improvement
indicators, D; indicates skill development and employability
enhancement, C; captures community benefit factors, and is
the number of stakeholder groups considered.

This theoretical framework provides the foundation for
empirical investigation and practical implementation of Al-
LEAN integration systems that balance operational excellence
with risk management and sustainability imperatives. The
mathematical formulations enable quantitative assessment
and optimization of system performance across multiple
dimensions, supporting evidence-based decision-making in
the digital transformation of manufacturing operations.

3.2 Data collection and processing

Multi-source data acquisition in AI-LEAN integration
integrates heterogeneous streams from sensor networks,
historical repositories, quality systems, and energy monitors.
Manufacturing equipment sensors generate high-frequency
vibration, temperature, and pressure data following adaptive
sampling [36] protocols:

fs(®) = frase X (1 +a X [Vx(t)]) (10)

where f;(t) denotes sampling frequency, fpqse represents
baseline rate, @ is the adaptation coefficient, and |Vx(t)|
indicates signal gradient magnitude.

Historical R&D data encompassing CAD models, simulation
results, and testing reports provides longitudinal insights for
predictive modelling. Quality control metrics from automated
inspection systems and energy consumption records enable a
comprehensive performance assessment. Data preprocessing
addresses heterogeneity through standardized pipelines
incorporating outlier detection, missing value imputation,
and noise filtering. Feature engineering [37] extracts domain-
specific representations:

F = [ftime ® ffreq D fstat] € R? (1

where F represents a feature vector, fiime, ffreq, fstar denote
time-domain, frequency-domain, and statistical features,
respectively, and @ indicates concatenation. R¢ denotes a d-
dimensional real vector space, indicating the mathematical
properties of the final eigenvector.

3.3 Al-Driven analytics architecture

The Al-driven analytics architecture for LEAN
manufacturing employs hierarchical machine learning
models selected based on data characteristics and
computational constraints. Model selection follows multi-
criteria [38] optimization:
[M* = arg maxyer [0 ACC(M) + wzﬁ + w3 INT(M)] (12)
where M* represents the optimal model, M denotes model
space, ACC(M) indicates accuracy, T(M) represents

inference time, INT(M) measures interpretability, and ﬁ

denotes reasoning efficiency. In addition, w;, w, and w;
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correspond respectively to the weighting coefficients for
accuracy, computational efficiency, and interpretability.
Deep learning architectures leverage convolutional neural
networks for visual inspection and recurrent networks for
temporal pattern recognition. The CNN architecture [39]
processes manufacturing images through:

hD = g(W® x« hO 4+ p®) (13)

where h(® denotes layer [ activations, W® represents
convolutional kernels, b®) is the bias term for layer [, *

indicates a convolution operation, and ¢ is activation function.

Predictive risk analytics employs ensemble methods [40]
combining gradient boosting and neural networks for robust
forecasting:

R(t+7) = Y\, aifuXe) + B+ gn(Xo) (14)

where R(t + ) predicts risk at time t + 1, f;, represents k-th
base learner, gyy denotes neural network predictor, K
denotes the total number of base learners, a; denotes the
weight coefficient of the kth basic learner, £ is the weight
coefficient of the neural network predictor, and X; indicates a
feature vector.

Real-time anomaly detection utilizes adaptive thresholding
with statistical process control [41]:

_ (Lif|x; — pe| > koy

A =170 stherwise (15)
where A(x;) is an anomaly indicator, y;, o; represent the
dynamic mean and standard deviation, x; denotes the current
observed value, and k is the control limit coefficient.

Based on 12 months of field validation and SECOM dataset
analysis, the mathematical extension developed in this study
demonstrates performance improvements over traditional
LEAN models under specific conditions. Empirical validation
results indicate: Overall equipment effectiveness increased
by 36.1% (compared to the traditional LEAN baseline), setup
time decreased by 58.9% (achieved through Al optimization),
and risk prediction accuracy reached 91-96% (across
different risk categories). These improvements provide
quantitative evidence supporting the practical value of Al-
enhanced models.

The effectiveness of this mathematical extension hinges
on five critical technical conditions: the data quality
coefficient 6 must exceed 0.6 to ensure input data integrity
and accuracy; the human-machine collaboration effect factor
@ must remain within the [0.5, 1.5] range; at least six months
of historical data accumulation is required for accurate
calibration of the learning rate parameter A, ; the
manufacturing environment must possess foundational
sensor networks and data acquisition capabilities; and
operators must receive appropriate training in Al tool usage.
Failure to meet these conditions will directly impact the
model's predictive accuracy and optimization effectiveness.

From a methodological perspective, this represents a
parametric refinement of existing LEAN efficiency
assessment methods rather than a fundamental theoretical
breakthrough. In manufacturing environments lacking the
aforementioned technical conditions, its advantages over
traditional methods may significantly diminish or even
vanish, indicating clear technical boundaries and
environmental constraints on its applicability. Figure 3
illustrates the hierarchical architecture integrating multiple
Al paradigms. This architecture supports the parallel
deployment of four Al methods through multi-source fusion
at the data input layer (sensor streams, image data, time
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series, event logs): classical machine learning provides high
interpretability, deep learning handles complex patterns,
ensemble methods enhance robustness, and statistical
methods ensure real-time responsiveness.

3.4 Risk control framework

The risk control framework for AI-LEAN integration
employs systematic identification, quantification, and
mitigation strategies addressing technical, operational, and
strategic dimensions. Risk identification methodology
integrates  failure mode analysis with Al-specific
vulnerabilities, encompassing system failures, data quality
degradation, process variations, human errors, market
volatility, and regulatory compliance challenges. The
comprehensive risk score incorporates probability, impact,
and Al amplification factors:

n;
Reotar = Xiz1 Wiz_ 1Pij X Iy X (1 + aarip) (16)
j=

where R;,.4; represents the aggregate risk score, w; denotes
category weight (technical, operational, strategic), P;;
indicates the probability of risk j in category i, I;; represents
impact severity (1-5 scale), and ay ;; is the Al amplification
factor (0-1).

Risk assessment employs Monte Carlo simulation [42] for
uncertainty quantification:

VaR, = infx:P(L>x)<1-1 (17)

where VaR; represents Value-at-Risk at confidence level 7,
and L denotes loss distribution.

Mitigation  strategies  follow  hierarchical control
implementation, prioritizing prevention over detection. The
risk reduction effectiveness is modeled as:

RR=1-[T;_,(1 = m X c) (18)

where RR indicates risk reduction ratio, 1, represents the
effectiveness of control k, and ¢, denotes implementation
completeness.

Figure 4 presents the hierarchical risk control framework,
which integrates the identification, assessment, and
mitigation phases. This three-tiered architecture forms a
complete risk management loop, spanning from risk
identification (across technical, operational, and strategic
dimensions) to risk assessment quantification (probability
analysis P (0-1), impact severity (1-5), Al amplification factor
(0-1)), and risk mitigation strategies (preventive, detective,
corrective, adaptive), forming a complete risk management
closed loop. This directly corresponds to the implementation
framework of the risk aggregation model in Formula (4).

3.5 Sustainability evaluation metrics

Sustainability evaluation in AI-LEAN integration
encompasses environmental, economic, and social
dimensions through quantitative metrics, enabling
comprehensive performance assessment [43].
Environmental impact indicators measure resource
efficiency, emissions reduction, and waste minimization
achieved through Al optimization:

Bi—

n

Eony = Z w; G225 % 100 (19)
i=1 B

where E,,,, represents the environmental performance score,

w; denotes weight for the indicator i, B; and 4; indicate

baseline and Al-optimized values, respectively.
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Economic sustainability [44] measures incorporate
return on investment, operational cost reduction, and
productivity gains:

Socon = @ X ROI + B x 25 4y x 22 (20)
Co Py

where S,.,, represents the economic sustainability score,
ROI indicates return on Al investment, AC denotes cost
savings, AP represents productivity improvement, Cy, P, are
baseline values, and «, 3, y are weighting factors.

Social sustainability factors encompass workforce wellbeing,
skill development, and safety improvements. The integrated
sustainability index synthesizes all dimensions:

Slintegrated = 3\/Eemi X Secon X Ssocial X (1 + X P) (21)

where Sliptegratea represents the holistic sustainability index,
Ssociar denotes social performance score, A is synergy
coefficient, and p represents inter-dimensional correlation.
Table 2 demonstrates the improvements achieved by Al-
LEAN integration in environmental and social sustainability.
Environmental metrics reveal a 30.0% reduction in energy
consumption per unit of output, a 31.4% decrease in carbon
footprint, and a 23.6% increase in waste recycling rates.
Regarding social indicators, the safety incident rate decreased
by 66.7%, employee satisfaction increased by 14.7%, and staff
turnover rate fell by 50.4%. These figures validate that Al-
LEAN integration can simultaneously achieve operational
optimization and sustainable development objectives.

4. Experiment
4.1 Experimental setup

The experimental validation utilized the publicly
available SECOM dataset from semiconductor manufacturing,
containing 1567 instances with 591 sensor measurements
collected from actual production processes. This dataset,
widely used in manufacturing analytics research, captures
real-time sensor data from semiconductor fabrication,
including temperature, pressure, and flow measurements
across multiple production stages. Additionally, we
incorporated the steel plates fault dataset from Northeastern
University, containing 1941 samples with 27 features
describing manufacturing defects in steel production,
providing comprehensive quality control scenarios. The
selection of the SECOM dataset was based on three technical
considerations: providing sufficient feature dimensions for
complex Al algorithms, meeting the training sample
requirements for deep learning, and serving as an established
benchmark for manufacturing analysis research. However,
significant limitations exist: the high-precision cleanroom
environment of semiconductor manufacturing, its complex
multi-stage processes, and its inherent differences from
typical LEAN manufacturing characteristics—such as high-
mix low-volume production, rapid changeovers, and human-
machine collaboration.
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Whilst the steel plate defect dataset supplements
discrete manufacturing scenarios, it fails to adequately
represent the continuous flow and pull-based production
principles characteristic of LEAN manufacturing. The
specificity of these datasets constitutes a significant
methodological  constraint  affecting the  model's
generalization capability across manufacturing
environments. To mitigate this limitation, we implemented a
transfer learning approach, fine-tuning and calibrating the
base model trained on SECOM features using on-site data
from three manufacturing plants. This involved feature
mapping between SECOM sensor data and industrial process
parameters, model calibration based on facility-specific
failure modes, and validation assessments across
manufacturing environments. For real-time manufacturing
data, collaboration with three medium-scale manufacturing
facilities in the Midwest region provided access to production
data streams under non-disclosure agreements. These
facilities, producing automotive components, electronic
assemblies, and metal fabrication products respectively,
contributed 18 months of historical data encompassing
sensor readings, quality inspection results, and energy
consumption records. Data collection followed standard
industrial protocols with sampling rates matching typical
manufacturing environments: vibration sensors at 1-10 kHz,
temperature monitors at 1 Hz, and quality measurements at
batch completion intervals.

The hardware environment consisted of standard
industrial computing infrastructure commonly deployed in
manufacturing settings. Edge devices included Siemens
SIMATIC IPC547G industrial computers for data collection
and preliminary processing at the machine level. Central
processing utilized Dell PowerEdge R750 servers with dual
Intel Xeon Gold processors and 256GB RAM, reflecting typical
on-premise manufacturing IT deployments. The software
stack comprised open-source tools, including Apache Spark
3.2.0 for distributed processing, scikit-learn 1.0.2, and
TensorFlow 2.8.0 for machine learning implementations,
ensuring reproducibility without proprietary dependencies.
Baseline establishment involved analyzing six months of
historical data to capture normal operating conditions and
seasonal variations. Performance metrics included standard
manufacturing KPIs: Overall Equipment Effectiveness (OEE),
First Pass Yield (FPY), Mean Time Between Failures (MTBF),
and energy consumption per unit produced. The control
group selection utilized production lines that manufactured
similar products but maintained traditional operations, with
matching performed based on historical performance
variance to ensure statistical validity. The experimental
design accounted for common manufacturing variables,
including shift patterns, operator experience levels, and
preventive maintenance schedules, documenting these
factors to enable accurate performance attribution and
ensure research reproducibility.

Table 2. Detailed environmental and social sustainability indicator system

Key indicator Baseline value Actual achievement Improvement rate
Environmental metric
Energy consumption per unit (kWh/unit) 4.20 2.94 -30.0%
Carbon footprint (kg CO>/unit) 2.80 1.92 -31.4%
Waste recycling rate (%) 72.0 89.0 +23.6%
Social Indicators
Safety incident rate (incidents/1000h) 12 0.4 -66.7%
Employee satisfaction (score) 6.8 7.8 +14.7%
Employee turnover rate (%) 12.5 6.2 -50.4%
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Basic details of the three partner factories: Factory A
specializes in automotive component manufacturing (daily
output: 2,400 units; baseline OEE: 72.3%), Factory B in
electronic assembly manufacturing (daily output: 8,500 units;
baseline OEE: 69.8%), and Factory C in metal processing
manufacturing (daily output: 1,200 units; baseline OEE:
74.1%). Each facility established three experimental lines and
three control lines, matched by equipment age (+2 years),

historical performance variance (0 < 5%), and operational
shifts to ensure the validity of the control groups.

implementation progress and performance enhancements,
directly supporting core experimental findings such as the
36.1% OEE improvement.

4.3 Performance evaluation

The performance evaluation of the AI-LEAN integration
system encompassed a comprehensive assessment across
risk  prediction accuracy, operational efficiency
improvements, and sustainability metrics. Risk prediction
models demonstrated robust performance across multiple
evaluation criteria, with particular emphasis on minimizing
false negatives that could lead to critical failures. The
evaluation utilized stratified k-fold cross-validation to ensure
model generalizability across different operating conditions
and production scenarios.

Figure 6 comprehensively illustrates LEAN efficiency
improvements achieved through Al implementation. The
waste reduction radar chart (Figure 6a) demonstrates
substantial reductions across all waste categories, with
inventory waste reduced by 55% and defects by 62%. Lead
time distribution analysis (Figure 6b) shows not only a 36.7%
reduction in average lead time but also significantly reduced
variability, indicating more predictable and reliable delivery
performance. The quality improvement trajectory (Figure 6c)
reveals consistent month-over-month improvements, with
defect rates declining from 3.2% to 0.3% over the 12-month
period. Process-wise efficiency analysis (Figure 6d) indicates

4.2 Implementation process

The implementation of the AI-LEAN integration
framework followed a systematic approach spanning 12
months, progressing through data integration, model
development, risk system deployment, and sustainability
tracking. Initial activities focused on establishing a
comprehensive data collection infrastructure across the
manufacturing facility. Edge computing devices were
installed at 47 critical production points, establishing secure
data pipelines that connected legacy equipment with modern
analytics platforms. Integration challenges arose from
heterogeneous communication protocols, necessitating
custom adapter development for Modbus, OPC-UA, and
proprietary interfaces from equipment manufacturers such
as Siemens, Fanuc, and Mitsubishi.
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achieved at each stage. The data integration stage achieved
97.3% completion within 2.5 months, exceeding the target of
a 95% data capture rate. Subsequently, Al model training
commenced using accumulated data streams, with parallel
development of quality prediction, anomaly detection, and
process optimization algorithms. The overlapping nature of
the implementation stages, as shown in Figure 5a, reflects the
iterative approach adopted to ensure continuous
improvement while maintaining production stability. Figure
5b illustrates the corresponding cumulative effects: OEE and
quality improvements steadily rose to 134% and 132%,
respectively, while energy consumption decreased to 72%.
The temporal alignment between the two figures
demonstrates  the causal relationship between

reduction achievement; (b)Lead time distribution comparison,
(c)Quality improvement trajectory, (d)Process-wise efficiency
improvements

LEAN performance metrics quantitatively validate the
operational improvements achieved through Al-enhanced
methods, with all six key indicators significantly surpassing
industry benchmarks (Table 3). Overall equipment
effectiveness rose from 68.2% to 92.8% (+36.1%), setup time
decreased from 45 minutes to 18.5 minutes (-58.9%),
inventory turnover reached 18.3 times (+123.2%), pre-
production lead time was compressed to 9.5 days (-36.7%),
while space utilization and labor productivity increased by
18.3% and 36.3% respectively. The Al system's optimization
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algorithms simultaneously consider both production
efficiency and resource consumption, identifying
improvement opportunities that are often overlooked by
traditional methods. This achieves synergistic benefits of
enhanced operational efficiency and reduced environmental
impact, directly supporting the core hypothesis of this
research that AI-LEAN integration can overcome the
limitations of traditional single-objective optimization.
Statistical analysis indicates that the experimental group
significantly outperformed the control group across all key
metrics (p<0.05) (Table 4). Analysis of inter-factory
variations revealed the most pronounced improvements in
automotive component factories (OEE increase of 24.7%),
followed by electronics assembly plants (OEE increase of
19.8%), with metal processing factories showing a smaller yet
still significant gain (OEE increase of 17.9%). These
disparities were primarily attributed to differences in digital
foundations and implementation challenges across the
factories.

Figure 7 presents comprehensive sustainability
performance metrics demonstrating the environmental
benefits of Al integration. The daily energy consumption
profile (Figure 7a) reveals Al-optimized load balancing that
reduces peak demand by 25% while maintaining production
output. This optimization is particularly beneficial for shift
transitions, where energy waste is traditionally prevalent.
Carbon footprint analysis (Figure 7b) shows reductions
across all emission sources, with electricity-related emissions
decreasing by 33% through intelligent equipment scheduling
and predictive maintenance, preventing energy-intensive
failures. The resource efficiency trends (Figure 7c)
demonstrate consistent improvements that exceed initial
targets, with energy efficiency showing the strongest gains, at
44% improvement over the baseline.

Table 3 LEAN performance metrics summary
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The comprehensive sustainability impact assessment
quantified in Table 5 demonstrates the significant
environmental benefits achieved through the AI-LEAN
integration, with substantial improvements across all six
environmental metrics.
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Figure 7. Sustainability performance analysis: (a) Daily energy
consumption profile, (b)Carbon footprint reduction by source,
(c)Resource efficiency improvement trends

Metric category Baseline Month 6 Month 12 Improvement Industry Benchmark
Overall equipment 68.2 81.5 92.8 +36.1% 85.0
Effectiveness (%)
Setup time (minutes) 45.0 32.0 18.5 -58.9% 25.0
Inventory turns 8.2 12.5 18.3 +123.2% 12.0
Production lead time 15.0 11.2 9.5 -36.7% 12.0
(days)
Space utilization (%) 72.0 78.5 85.2 +18.3% 80.0
Labor productivity 24.5 29.8 33.4 +36.3% 28.0
(units/hour)

Table 4 Comparison of key indicators between the control group and experimental group at the end of the 12-month implementation period

Indicator Control group Experimental group Improvement rate Statistical significance
mean mean
OEE (%) 76.4 92.8 +21.5% p<0.001
Setup time (min) 42.0 18.5 -55.9% p<0.001
Inventory turnover rate 9.1 18.3 +101.1% p<0.001
Energy consumption 4.15 2.94 -29.2% p<0.01
(kWh/unit)
Defect rate (%) 2.8 0.3 -89.3% p<0.001
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Table 5. Comprehensive sustainability impact assessment
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Environmental Indicator Unit Reduction Achieved Annual Savings CO, Equivalent (tons)
Electricity consumption MWh -31.2% 2,847 1,423
Natural gas usage Therms -28.5% 145,000 815
Water consumption Gallons -29.7% 1.2M 45
Hazardous waste kg -52.3% 8,400 126
VOC emissions kg -36.7% 3,200 89
Solid waste to landfill tons -48.9% 425 638

Electricity consumption decreased by 31.2% (annual
savings of 2,847 MWh), natural gas usage fell by 28.5%

(saving 145,000 terms), water consumption dropped by 29.7%

(saving 1.2 million gallons), hazardous waste and VOC
emissions were reduced by 52.3% and 36.7% respectively,
and solid waste sent to landfill decreased by 48.9%. This
equates to an annual reduction of 3,136 tons of CO2 equivalent,
directly supporting the core research statement of a 31.4%
reduction in carbon footprint. In terms of social sustainability,
the AI-LEAN integration has significantly enhanced the
working environment and employee well-being. The safety
incident rate decreased from 1.2 incidents per thousand
hours at baseline to 0.4 incidents per thousand hours (a 67%
reduction), primarily attributable to the real-time monitoring
provided by the Al early-warning system. Employee job
satisfaction rose from 6.8 points to 7.8 points (a 15%
increase), reflecting how intelligent systems have alleviated
the physical strain of repetitive tasks. Regarding skills
development, annual training hours per employee increased
from 32 to 45 hours, with 41% of staff obtaining certification

in Al tool operation. Employee turnover decreased from 12.5%

to 6.2%, indicating that technological advancement did not
trigger mass unemployment but rather enhanced job appeal.

4.4 Comparative analysis

The comparative analysis between AI-LEAN integration
and traditional approaches reveals fundamental differences
in capability, scalability, and performance outcomes.
Traditional LEAN implementations rely heavily on human
observation, manual data collection, and periodic
improvement cycles, whereas the Al-enhanced system
enables continuous optimization through real-time data
analysis and predictive capabilities. This comparison
encompasses operational metrics, implementation timelines,
and resource requirements across multiple manufacturing
environments. Figure 8 provides a comprehensive
comparison between traditional and Al-driven LEAN
implementations. The performance improvement trajectories
(Figure 8a) demonstrate that while traditional LEAN follows
a logarithmic improvement curve with diminishing returns,
Al-driven approaches achieve rapid initial gains followed by
sustained improvement through continuous learning. The
capability assessment (Fig. 8b) reveals Al's superior
performance in real-time optimization and predictive
capabilities, though traditional LEAN maintains advantages in
human engagement aspects.
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Figure 8. Traditional vs Al-driven LEAN performance comparison
(a)Performance improvement trajectories; (b)Capability assessment
comparison (c)Implementation effort comparison; (d)Return on
investment progression

Implementation effort distribution (Figure 8c) shows
that Al-driven systems require greater upfront investment in
planning and training but significantly reduce ongoing
optimization efforts. The ROI analysis (Figure 8d) indicates
that despite higher initial costs, Al-driven implementations
achieve payback two quarters earlier and deliver 2.7x higher
returns over three years.

As shown in Table 6, comparative metrics between
traditional LEAN and Al-driven LEAN validate the AI-
enhanced approach's significant advantage across all key
performance dimensions. The Al-driven method achieved
improvement factors ranging from 1.45x to 30.4x in waste
identification rate (94% vs 65%), issue response time (8.3
minutes vs 4.2 hours), cycle time reduction (2-4 weeks vs 3-
6 months), and data utilization (87% vs 15%). All metrics
demonstrate statistically significant improvements (p<0.001
to p<0.05). Notably, the continuous improvement rate
increased from 2.1% per month to 3.8% per month (1.81x
improvement).

Figure 9 presents a comprehensive financial analysis of
the Al-driven LEAN implementation. The cost structure
analysis (Figure 9a) reveals that while initial hardware and
software investments are substantial, ongoing operational
costs remain manageable, accounting for approximately 20%
of the first-year investment.
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Table 6. Traditional LEAN vs Al-driven LEAN comparative metrics

Performance Metric Traditional LEAN Al-Driven LEAN Improvement Factor Statistical
Significance
Waste identification rate 65% 94% 1.45x p<0.001
Response time to issues 4.2 hours 8.3 minutes 30.4x p<0.001
Improvement cycle time 3-6 months 2-4 weeks 6.5x p<0.001
Data utilization 15% 87% 5.8x p<0.001
Predictive accuracy N/A 91.3% N/A -
Continuous improvement 2.1%/month 3.8%/month 1.81x p<0.05
rate
Employee training hours 40 hrs/year 85 hrs/year 2.13x p<0.01
Sustainable improvements 73% 96% 1.32x p<0.01
Table 7. Five-year financial impact summary
Financial Metric Year 1 Year 2 Year 3 Year 4 Year 5 5-year total
Implementation Costs ($K) 1,480 318 318 318 318 2,752
Operational Savings ($K) 1,020 1,280 1,450 1,580 1,680 7,010
Quality Benefits ($K) 420 480 520 550 570 2,540
Risk Mitigation Value ($K) 180 220 250 270 285 1,205
Sustainability Credits ($K) 130 145 160 170 180 785
Net Annual Benefit ($K) 270 1,807 2,062 2,252 2,397 8,788
ROI (%) 18.2 122.1 139.3 152.2 162.0 319.4
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Figure 9. Comprehensive cost-benefit analysis: (a)lmplementation cost structure, (b)Cumulative benefit streams, (c)NPV sensitivity analysis,

(d)Payback period comparison
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Benefit stream analysis (Figure 9b) demonstrates
diversified value creation across multiple categories, with
productivity improvements contributing the largest share,
but quality and inventory benefits providing significant
additional value. NPV sensitivity analysis (Figure 9c¢) confirms
robust positive returns across a wide range of discount rates,
with positive NPV maintained even under pessimistic
scenarios for discount rates up to 18%. The payback
comparison (Figure 9d) shows that despite a higher initial
investment, Al-driven implementation achieves payback in
13 months compared to 23 months for traditional approaches,
primarily due to accelerated benefit realization.

Table 7 validates the economic viability of Al-driven
LEAN, demonstrating cumulative net benefits of 8,788K over
five years. The return on investment (ROI) escalates from
18.2% in the inaugural year to 162.0%, culminating in a five-
year total of 319.4%. This rate of return substantially
surpasses the typical 150-200% benchmark achieved by
conventional LEAN methodologies, directly substantiating
the core economic argument that AI-LEAN integration
generates synergistic benefits.

5. Conclusion

This research demonstrates the transformative potential
of AI-LEAN integration for manufacturing equipment R&D
through an integrated framework addressing risk control and
sustainability. Experimental validation shows Al-enhanced
systems achieve 91-96% risk prediction accuracy with 30-
fold faster response times, while delivering substantial
operational improvements: 36.1% increase in equipment
effectiveness, 36.7% reduction in lead times, and 123.2%
improvement in inventory turns. Sustainability outcomes
include 31.4% carbon footprint reduction and 48.9%
decrease in solid waste, demonstrating that operational
excellence and environmental stewardship are mutually
reinforcing. The framework contributes empirical evidence
for AI-LEAN synergies while balancing technical
sophistication with human-centric values, addressing
workforce displacement concerns. The compelling 319% ROI
over five years validates economic viability alongside
environmental benefits, presenting a case for industry-wide
transformation toward Al-driven sustainable manufacturing.
However, significant limitations exist in the reliance on public
datasets (SECOM, steel plate defects) that inadequately
represent authentic LEAN manufacturing environments,
limiting generalizability to typical LEAN contexts. Future
research should establish comprehensive LEAN-specific
datasets encompassing multi-industry environments and
human-machine collaboration patterns, explore cross-sector
applicability, investigate integration with emerging
technologies, and examine long-term societal implications of
widespread AI-LEAN adoption.
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