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In a flexible manufacturing system (FMS), scheduling jobs and tools across non-
identical machines, integrating automated guided vehicles (AGVs), and
considering multi-objective functions, constitutes a significant obstacle for
typical mathematical optimization techniques. Herein, we consider scheduling
jobs, tools, and AGVs in an FMS that consists of three non-identical machines.
The multi-objective functions targeted are tooling cost minimization and
makespan reduction. The non-identical machines' processing rates are
specified in the ratio of 1:1.2:1.4. Each of the tools (T1, T2, and T3) is available
in a single mode, with T1 being more expensive than T2, which is more
expensive than T3. To address such a complex optimization problem, we use a
Recurrent Neural Network (RNN) and an Improved version to obtain near-
optimum solutions and evaluate such algorithms' comparative performance.
The average computation time to determine the optimal sequence was reduced
from 10.33 minutes to 6.24 minutes (for a 4-job problem) as we employed the
Improved RNN algorithm instead of the RNN algorithm.

1. Introduction

Simulated Annealing (MOSA), which emphasized the
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Flexible Manufacturing Systems (FMS) represent an
advanced manufacturing paradigm characterized by
adaptability to varying production tasks and dynamic
operational requirements. In such environments, jobs with
heterogeneous processing demands are scheduled on non-
identical machines, and integrating Automated Guided
Vehicles (AGVs) for intra-facility material transport
introduces an additional layer of complexity. Scheduling in
FMS becomes a multi-objective optimization problem,
typically aiming to minimize performance metrics such as
makespan (i.e., the total time to complete all jobs) and tooling
cost. Flexible Manufacturing Systems (FMS) represent a
cornerstone of modern Industry 4.0 environments due to
their adaptability, efficiency, and ability to handle diverse
production requirements. However, the scheduling of jobs in
such systems is particularly challenging when non-identical
machine speeds, single-copy tool constraints, and Automated
Guided Vehicle (AGV) coordination are jointly considered.
These interdependent factors transform scheduling into a
multi-objective, combinatorial optimization problem, where
minimizing makespan must be balanced against tooling cost
and system resource utilization. Metaheuristics have been
applied to flexible manufacturing systems (FMS) scheduling
for a long time. Early studies employed Multi-Objective
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importance of weight vectors in balancing multi-criteria
optimization [1]. Building upon evolutionary paradigms, a
Constraint-Based Genetic Algorithm (CBGA) introduced novel
operators that efficiently solved machine loading problems
with reduced computational effort [2]. Subsequently, an
Adaptive Genetic Algorithm (AGA) was designed for
integrated job and Automated Guided Vehicle (AGV)
scheduling, achieving superior performance in minimizing
penalty costs and improving utilization compared with
conventional Gas [3]. Similarly, a genetic algorithm (GA)
approach, implemented as a spreadsheet add-in, was used to
solve the complex problem of simultaneously scheduling
machines and automated guided vehicles (AGVs) within
flexible manufacturing systems (FMS) to minimize the total
completion time, also known as the makespan [4]. A more
recent advancement is the Modified Genetic Algorithm
(MGA), which incorporates a three-parent crossover and
mutation operator to improve population diversity and avoid
premature convergence. By leveraging the Giffler-Thompson
procedure, MGA generated active feasible schedules and
demonstrated superior makespan performance across
various problem sizes. Although computation time increased
with larger instances, MGA consistently achieved optimal or
near-optimal solutions [5].
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Abbreviations

FMS Flexible Manufacturing System

AGV Automated Guided Vehicle

MOSA Multi-Objective Simulated Annealing

CBGA Constraint-Based Genetic Algorithm

AGA Adaptive Genetic Algorithm

MGA Modified Genetic Algorithm

DE Differential Evolution

WGA Weighted genetic algorithm

NSGA-II Non-dominated Sorting Genetic
Algorithm II

PLS Pareto Local Search

PSO Particle Swarm Optimization

VNS Variable Neighborhood Search

ILS Iterated Local Search

MILP Mixed Integer Linear Programming

KCSA Knowledge-Based Cuckoo Search
Algorithm

RL Reinforcement learning

HMAPPO Hybrid Multi-Agent Proximal Policy
Optimization

MARL Multi-Agent Reinforcement Learning

Other evolutionary techniques include the Differential
Evolution (DE) algorithm for solving the scheduling problem
and the optimal sequences of machines and AGVs, specifically
to minimize makespan [6]. Multi-objective algorithms,
including the weighted genetic algorithm (WGA), non-
dominated sorting genetic algorithm (NSGA-II), and Pareto
local search (PLS), were used to model and solve a broad class
of scheduling problems, including flexible job shop and flow
shop scheduling problems [7]. Hybrid approaches have been
extensively explored to capture interdependencies in FMS
scheduling. An effective hybrid multi-objective genetic
algorithm for scheduling machines and AGVs in FMS was
developed to optimize multiple conflicting objectives like
makespan, mean flow time, and mean tardiness [8]. An
integrated scheduling model with an improved particle
swarm optimization (PSO) algorithm was developed, which
uses the makespan of jobs as the optimization objective and
the utilization ratios of machines and AGVs as evaluation
factors [9].

Other notable hybrid methods include a novel control
strategy for avoiding deadlock and collisions in zone-
controlled AGVS, using coloured Petri nets to model the
dynamics of AGVS, and implementing the control strategy
[10]. A novel multi-objective formulation for AGV scheduling
in cyclic flexible flow shops was introduced and evaluated
using efficient local search heuristics, Variable Neighborhood
Search (VNS), and Iterated Local Search (ILS) with different
job scheduling rules, and provides a detailed performance
analysis using the hypervolume indicator, highlighting the
VNS approach as generally preferable due to its speed [11].

Parallel to metaheuristics, exact optimization methods
have also been developed. A new mixed integer linear
programming (MILP) model was proposed for the
simultaneous scheduling of machines and Automated Guided
Vehicles (AGVs) in FMS environments [12]. Further, a multi-
objective mixed-integer linear programming model was
formulated to formulate a scheduling problem with pickup
and delivery in a matrix manufacturing workshop with multi-
variety and small-batch production, aiming to maximize
customer satisfaction while minimizing distribution cost [13].
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While MILP guarantees optimality, scalability remains a
significant limitation for larger scheduling instances. Bio-
inspired algorithms have enriched FMS scheduling research
with novel solution strategies. A novel knowledge-based
cuckoo search (KCSA) algorithm designed to tackle complex
flexible job shop scheduling problems. By integrating
reinforcement learning and hybrid heuristics, KCSA provides

a robust and efficient solution that adaptively controls

parameters and guides the search process, leading to superior

performance [14]. With the rising complexity of dynamic FMS

environments, reinforcement learning (RL) has emerged as a

promising paradigm. A Hybrid Multi-Agent Proximal Policy

Optimization (HMAPPO) framework was developed for real-

time scheduling in dynamic partial no-wait flexible job shops,

achieving improved job completion rates, reduced tardiness,
and superior Pareto trade-offs compared with MOPSO, NSGA-

11, and dispatching rules [15]. Extending this direction, Multi-

Agent Reinforcement Learning (MARL) was applied for joint

job and AGV scheduling, with tailored action decoding and

reward structures. MARL achieved over 10% performance
improvement compared to traditional RL and genetic
programming approaches, while exhibiting robustness

against disturbances [16].

Recently, neural-network-based methods have been
explored to address scalability and adaptability in FMS
scheduling. A Recurrent Neural Network (RNN)-Genetic
Algorithm (GA) framework was proposed for non-identical
machine scheduling, with a focus on minimizing makespan.
Comparative experiments across three RNN models
demonstrated that RNN Phase 3 achieved 99.8% accuracy
with an average computational time of 4.02 minutes,
outperforming GA in scalability and effectiveness across
varying job sizes. The algorithm calculates the number of
possibilities to find the optimal solution by applying an
equation [17]. This indicates the growing potential of RNN-
based frameworks for integrated and adaptive scheduling.
The above shows that while metaheuristics and hybrid
approaches provide efficient approximations, they often lack
adaptability in dynamic environments. Exact MILP
formulations guarantee optimality but are computationally
infeasible for large-scale problems. Recent advances in deep
reinforcement learning and multi-agent systems demonstrate
strong potential for real-time, adaptive, and disturbance-
resilient scheduling. However, integrating machine, tool, and
AGV scheduling under multi-objective constraints remains
underexplored, providing the key motivation for the present
work. This research proposes a Recurrent Neural Network
(RNN) and an Improved RNN framework for integrated job,
tool, and AGV scheduling to address these limitations. Unlike
traditional metaheuristics, RNNs inherently capture
sequential dependencies and can learn non-linear
interrelationships  across operations, making them
particularly suitable for dynamic scheduling problems. The
Improved RNN introduces a probabilistic filtering mechanism
that prunes low-value machine-job combinations, thereby
reducing computational complexity without compromising
solution quality. The key objectives of this work are:

e To develop an RNN-based framework for integrated
scheduling jobs, tools, and AGVs in FMS with non-identical
machines.

e To propose and evaluate an improved RNN algorithm that
minimizes makespan and tooling costs with reduced
computational overhead.

This contribution enhances the use of Al-driven methods in

manufacturing scheduling while offering a scalable

framework for intelligent, data-driven production systems.
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The research paper contributes to the collective scheduling of
Jobs, tools, and AGVs in an FMS involving non-identical
machines. The problem has not been addressed in the
available literature. The major innovation is establishing an
Improved Recurrent Neural Network (RNN) that utilizes
probabilistic filtering to minimize computational overhead
while maintaining solution quality. The direction is to balance
the makespan and tooling costs with realizable single-copy
tool and AGV constraints.

2. Problem formulation

The Flexible Manufacturing System (FMS) under
consideration consists of non-identical machines, each
capable of processing a variety of jobs. However, job
processing is constrained by the capabilities of machines and
the availability of specific tools required to complete
individual operations. The non-identical nature of the
machines is reflected in their processing speed, defined in a
ratio of 1:1.2:1.4 for machines M1, M2, and M3, respectively.
This depicts that the non-identical machine M1 has a faster
processing speed than the non-identical machine M2, which
in turn has a faster processing speed than M3. It consists of 4
jobs, three tool types, and 2 AGVs. Each non-identical
machine can perform all operations; each job comprises
multiple operations requiring a specific tool type. Only one
copy of each tool type is available, reflecting the high tooling
cost constraint. No two machines can use the same tool
simultaneously. Two Automated Guided Vehicles (AGVs),
AGV1 and AGV2, are responsible for transporting jobs from
the Load/Unload (L/U) station to the designated machines
and returning for the next job.

3. Assumptions

e The operation sequence, required tools, and processing
times are predetermined.

e The tool requirements and operation sequences vary
across jobs.

e Ajob must be completed entirely on a single machine, with
all its operations performed on one visit.

¢ No job preemption is allowed; once an operation starts, it
must be completed without interruption.

e Machines and tools can handle only one job at a time.

e Tools are centrally managed and become available shortly
after completion of an operation (minimal tool return
time).

e AGV routing and wait times are considered while ensuring
no overlap in job transportation.

e AGVs are assumed to be identical in efficiency and can
transport only one job at a time.

Each job must be allocated to a single machine. Hence, the
objective is to schedule job (ji) to machine (m;) while utilizing
the required tools (tx), preventing tool conflicts. This involves
coordinating the processing of ] jobs across M non-identical
machines while utilizing a shared set of T tool types for
various operations. The aim is to establish an integrated
schedule for the jobs in a flexible manufacturing system with
non-identical machines, in an optimal sequence, by
minimizing the makespan and tooling cost.

4. DATA set generation

This study employed a synthetically generated dataset
because publicly available real-world datasets for integrated
FMS scheduling (involving non-identical machines, single-
copy tools, and AGV coordination) are extremely limited.
Industrial data are often proprietary and not openly shared
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due to confidentiality constraints. To ensure that the
synthetic dataset is representative of realistic shop-floor
conditions, the following considerations were applied during
its construction: (i) machine processing times were drawn
from uniform distributions (1-20 units) and then scaled
according to machine speed ratios of 1:1.2:1.4, which reflect
typical non-identical machine performance differences
reported in literature; (ii) AGV travel times were sampled
from the range of 1-15 units, consistent with reported intra-
shop transport durations; and (iii) tool usage was restricted
to single copies, with cost multipliers aligned to relative
tooling costs found in manufacturing practice. Most FMS
scheduling studies rely on synthetic datasets because real-
world data are rarely accessible due to industrial
confidentiality.

4.1 Creation of the processing time data and tool
allocation dataset

Figure 1 illustrates the algorithm developed for
estimating the processing time of machines and assigning
appropriate tools to each operation. The data generation
procedure is structured to simulate 500 distinct job records,
each composed of multiple operations with associated
parameters. To initiate the process, a loop iterates over 500
job records. The number of operations for each job is
determined probabilistically: 75% of the jobs contain three
operations, 20% contain two operations, and the remaining
5% consist of a single operation. This count is stored in a
variable denoted as N. A corresponding number of operations
is generated based on the value of N. Each operation's
processing time is randomly sampled from a uniform integer
distribution between 1 and 20 and stored in the variable
Dops. Simultaneously, each operation is randomly assigned a
tool, and the tool type is stored in the variable Tops.

A critical constraint is imposed to ensure that tool
assignments are unique within each job; no tool is repeated
across operations belonging to the same job. Placeholder
values marked as 'X' are appended in cases where the number
of operations is fewer than three, thereby standardizing the
record length. Additionally, to simulate processing across
different machines, the generated processing times are scaled
by multiplication factors of 1.2 and 1.4 and stored in separate
rows, thereby modeling variability in machine performance.
Each job record comprises four such jobs, and a unique hash
is computed for traceability and sorting purposes. The
finalized dataset is sorted based on this hash and exported in
a  structured format to a CSV  file titled
'Outcome_ProcessingTime.csv'. Table 1 provides a
representation of the generated dataset.

4.2 Creation of the AGV travel duration dataset

Figure 2 presents the algorithm synthesizing the
Automated Guided Vehicle (AGV) travel duration dataset. The
algorithm operates through an iterative process over 500
synthetic records, each simulating potential AGV travel
durations across four distinct locations: M1, M2, M3, and L/U
(Load/Unload station). For each iteration, a 4x4 matrix
represents the travel durations between every pair of source
and destination locations. Each element within the matrix
denotes the time required for the AGV to traverse from one
location to another. The travel duration values are generated
using a uniformly distributed random integer from 1 to 15,
thereby modeling realistic variability in transit times due to
environmental or operational factors.
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Figure 1. Creation of the processing time data and tool allocation data

Table 1. Processing time and tool allocation data

Hash Record Machine Job Operation - 1 Operation - 2 Operation - 3 Total
number number number
2011 20 1 1 10(3) 19(2) X 29
2012 20 1 2 15(2) X X 15
2013 20 1 3 7(3) 8(2) 4(1) 19
2014 20 1 4 3(1) 14(2) 15(3) 32
2021 20 2 1 12.0(3) 22.8(2) X 34.8
2022 20 2 2 18.0(2) X X 18
2023 20 2 3 8.4(3) 9.6(2) 4.8(1) 22.8
2024 20 2 4 3.6(1) 16.8(2) 18.0(3) 38.4
2031 20 3 1 14.0(3) 26.6(2) X 40.6
2032 20 3 2 21.0(2) X X 21
2033 20 3 3 9.8(3) 11.2(2) 5.6(1) 26.6
2034 20 3 4 4.2(1) 19.6(2) 21.0(3) 44.8
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Figure 2. Creation of the AGV travel duration dataset

However, when the source and destination locations are
identical, the corresponding matrix entry is assigned a value
of 0, representing a null travel time. After completing all
iterations, the resulting dataset, comprising 500 such
matrices, is compiled and stored in a structured file named
'‘Outcome_AGVDuration.csv'. Table 2 provides an illustrative
excerpt of the generated dataset, capturing the temporal
dynamics of AGV mobility across manufacturing system
locations.

Table 2. AGV travel duration data

::r;(;)r:r L/U M1 M2 M3
20 L/U 0 5 8 11
20 M1 11 0 13 11
20 M2 15 14 0 11
20 M3 15 5 14 0

Single-job transport capacity is considered here. It is also
typical in shop floors where AGVs are designed to carry
pallets, fixtures, or part bins individually, ensuring safety and
preventing tool/job damage during transit. While this
modeling choice simplifies AGV scheduling, it still captures
the essential bottleneck behavior of transport resources
under contention. We acknowledge that more advanced AGVs
with heterogeneous speeds, multi-load capabilities, and
dynamic routing are increasingly being introduced in smart
factories. Incorporating such heterogeneity would increase
the scalability of the scheduling model and remain an
important direction for future research. Nonetheless, by
focusing on the identical single-load AGV case, this work
addresses a realistic baseline scenario widely applicable in
current manufacturing systems while keeping the scheduling
model computationally tractable.

4.3 Cost Data Generation

Figure 3 outlines the algorithm employed for generating
cost data, wherein the cost associated with processing each
operation is computed based on three primary factors: the
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processing time, the tool assigned to the operation, and the
machine on which it is executed. The cost estimation model
adopts a parametric approach, wherein the processing time is
multiplied by a specific cost multiplier, contingent on the
tool-machine combination. These multiplier values are
referenced from Table 3.

Reading the values form
outcome_machine.csv

record = 1 Storing the data in an

No— | excel file named
outcome_cost.csv

——» if row < 6001

Tool Number (Tno)
1 2 3
record = record + 1 Yes
’§ 1 3 2 1
2z
Fetching the current row R § 3 2 2 133 0.67
S E
* 2 3 1 0.67 0.33

Extracting the machine
number from R = MNo

Appending Costg to new

No T
coloumn =4 row RN
coloumn = coloumn + 1
|
| Costg = PTime x Multiplier |<—
Yes . .
Extracting the processing
v time form C = PTime
‘ Fetching the current Cell C ‘ 4
Extracting the tool number
form C = TNo
No
Appending 'X' to the new
row RN
Yes
Figure 3. Cost data generation
Table 3. Multiplier Matrix for the cost calculation
M1 M2 M3

T1 3 2 1
T2 2 1.33 0.67
T3 1 0.67 0.33

The cost data generation process utilizes input from the
previously generated dataset, 'Outcome_ProcessingTime.csv',
which consists of 500 unique input configurations. Each
configuration encapsulates the processing times of four jobs,
evaluated on three non-identical machines, resulting in 12
rows per configuration, and 6000 rows overall. The algorithm
is initialized by setting a row counter to 1 and extracting the
corresponding machine number from the current row. For
each row, the fourth column onward is iteratively accessed to
retrieve operation-level data. The value in each column is
checked: if the value is not equal to 'X', it is parsed to extract
the tool identifier and the associated processing time. The
cost for the operation is then computed from Eq (1):

cost = (Processing time){(Multiplier) too1machine)} )

The multiplier is determined in Table 3 based on the specific
tool-machine pairing.
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Suppose the value in the column is found to be 'X/,
indicating a placeholder for a non-existent operation. In that
case, the cost is recorded as 'X' to maintain structural
consistency in the dataset. The algorithm proceeds iteratively
across all three possible operations for each job, repeating
this process for all 6000 rows. The resulting cost values are
systematically compiled and stored in the output file
'Outcome_Cost.csv', ensuring alignment with the format and
integrity of the associated processing time and tool allocation
datasets. Once each operation's cost is calculated, it is stored
in a file, 'Outcome_Cost.csv', as shown in Table 4.

Table 4. Cost data

Hash Record | Machine Job Operation | Operation | Operation
number | number | number -1 -2
2011 20 1 1 10 38
2012 20 1 2 30 X
2013 20 1 3 7 16
2014 20 1 4 9 28
2021 20 2 1 8.04 30.324
2022 20 2 2 23.94 X
2023 20 2 3 5.628 12.768
2024 20 2 4 7.2 22.344
2031 20 3 1 4.62 17.822
2032 20 3 2 14.07 X
2033 20 3 3 3.234 7.504
2034 20 3 4 4.2 13.132

5. Proposed method and implementation
5.1 RNN algorithm

Figure 4 illustrates the proposed Recurrent Neural
Network (RNN) algorithm for optimal job sequencing and
machine allocation in a flexible manufacturing environment.
A distinctive feature of the algorithm is the deferred
assignment of jobs to machines. Unlike conventional
scheduling methods that initiate machine-job bindings at the
outset, this algorithm postpones such decisions until the final
phase. This strategy significantly reduces the solution space
by focusing on optimal job sequences, each initiated with a
unique job assignment. Four placeholder variables—P1, P2,
P3, and P4—are introduced, each representing the position of
a specific job in the scheduling sequence to facilitate the
generation of candidate sequences. All feasible sequences are
generated by assigning distinct jobs to these placeholders,
and each resulting sequence is evaluated to determine its
scheduling efficiency. The sequence yielding the minimum
cumulative score is identified as the optimal solution. The
algorithm constructs a triangular compatibility matrix that
captures pairwise job compatibility scores. These scores are
derived from inter-job conflicts, specifically downtime
overlap and AGV collision delays.
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Figure 4. RNN algorithm
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They are further weighted using tool-based collision
multipliers in the ratio of 3:2:1, based on the severity or
likelihood of collision induced by the tools involved. Following
the initialization phase, the algorithm explores the solution
space through a branching mechanism. The first layer of
branches includes four subtrees, each corresponding to a
unique assignment of one job to P1. Each of these subtrees
further branches into three nodes for possible P2
assignments. The remaining job positions, P3 and P4, are
determined based on maximum compatibility with previously
assigned jobs, resulting in four complete sequences per
iteration. For each generated sequence, the algorithm
evaluates all viable machine-job combinations using the
combinatorial formula in Eq (2)[17]:

number of combinations = ('rl) +1 2)
where:

n - number of jobs,

r - (number of machines - 1)

Each sequence and machine assignment combination is
subjected to a simulation process, in which downtimes and
AGV conflicts are re-evaluated using the same collision
weightings (3:2:1), now applied based on the machines
involved in potential conflicts. Each simulation run is scored
based on a composite metric integrating makespan and
processing cost. Specifically, the combined objective function
(score) is computed from Eq (3):

combined objective function = [(makespan)(1.33) +
Cost] 3)

1.33 represents the average cost multiplier derived from the
tool-machine cost matrix (Table 3). Upon completion of all
simulations, the sequence with the lowest aggregate score is
selected as the optimal job-machine schedule. The accuracy of
the result is computed by evaluating the deviation between
the predicted and actual optimal values. This error metric is
then propagated to the next iteration of the RNN, enabling it
to refine predictions through sequential learning and
backpropagation.

5.2 Improved RNN algorithm

The Improved Recurrent Neural Network (RNN)
algorithm retains the foundational structure of the RNN
model shown in Figure 4, described earlier. However, it
introduces a significant enhancement in its final decision-
making phase. The major improvement is in minimizing
combinations for machine allocation, considerably lowering
the overall computational complexity. The RNN algorithm
attempts all possible job-to-machine assignments, as
suggested in the combinatorial formula in Eq (2). The
Improved Recurrent Neural Network selectively excludes
part of such combinations using a probabilistic filtering
technique. That filter is based on patterns of observed
frequency in the model's training process. In more detail, the
algorithm monitors the frequency of specific machine-job
assignment combinations seen within optimal sequences
within earlier training runs. Combinations that are
infrequently observed or are not chosen in optimal results are
considered non-contributory and are therefore excluded
from subsequent simulations. The pruning strategy based on
statistics ensures that only the statistically most beneficial
combinations are retained for simulation, without redundant
computations at the cost of solution quality. The Improved
RNN algorithm thus exhibits a remarkable acceleration in
computation time, enabling rapid convergence while
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maintaining competitive performance in terms of makespan
and cost optimization.

6. Testing

A Leave-One-Out Cross Validation (LOOCV) technique is
employed to determine the proposed algorithms'
performance and generalization ability. In this approach, each
of the 500 generated records is used once as a test set, while
the remaining 499 records form the training set. This process
is repeated 500 times until every record has been tested
exactly once. LOOCV is a recognized validation technique,
particularly effective for small- to medium-sized datasets,
ensuring that all available data are utilized for training and
testing while minimizing sampling bias. LOOCV provides a
stricter and more exhaustive evaluation, yielding a more
reliable estimate of generalization performance. Given the
dataset size and the objective of capturing variability across
all 500 records, LOOCV was considered appropriate for this
study.

7. Results and analysis

The RNN Algorithm used in this manuscript is the
updated version of the RNN phase 3 algorithm, where AGV
was not considered, and makespan was the only objective
function to minimize. So the RNN phase 3 algorithm was
previously compared with the Genetic algorithm, which
shows that the RNN phase 3 algorithm outperforms the
genetic algorithm in terms of computational time. In the
current manuscript, we have incorporated AGV into the RNN
algorithm, and a combined objective function is considered to
minimize both makespan and cost, taking into account the
tool type and machine.

7.1 Scalability and computational efficiency

To thoroughly analyze the computational efficiency of
the algorithms, their scalability was assessed by examining
the effect of the number of jobs on the total processing time
for both the RNN and the Improved RNN algorithms, using
three machines, three tool types, and 2 AGVs. As illustrated in
Figure 5, the RNN consumes significantly more computational
time. This is primarily due to its exhaustive enumeration of all
possible machine-job pairings for each potential sequence of
jobs. In stark contrast, the Improved RNN algorithm
demonstrates superior performance.
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Figure 5. Scalability of algorithms
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It strategically leverages its probabilistic filtering
mechanism to reduce the number of combinations that need
to be evaluated. This targeted reduction results in a
considerably slower rate of increase in processing time as the
job count rises, showcasing its enhanced scalability under
increasing scheduling complexity. Figure 5 provides
compelling visual evidence of the Improved RNN's primary
performance advantage. The graph clearly shows that as the
number of jobs increases, the processing time for the
Improved RNN grows at a much slower rate compared to the
RNN. This directly supports the claim of superior scalability
and quantifies the significant computational efficiency gains
achieved by the probabilistic filtering technique. This
capability is crucial for handling larger and more complex
real-world FMS problems efficiently.

7.2 Objective function aggregation and trade-off impact

The algorithm employs a combined objective function to
balance makespan and processing cost during schedule
evaluation. These two components are integrated using equal
weighting, as expressed in Eq (3). To ascertain the
significance of such an aggregation method, experiments
were carried out in which optimization was carried out with
only cost or makespan as the evaluation criterion. The
outcome was that for all cases, omissions of either of these
terms resulted in a worsening of total performance, especially
with increased jobs. This outcome decisively confirms that a
fairly balanced objective function is required for effective
scheduling.

The loss of performance that occurs when makespan or
cost is individually optimized spotlights one of the most
important features of real-world FMS operation: an overall
optimal schedule must balance several conflicting objectives.
In our manufacturing system, makespan and tool cost are
often in conflict. For example, minimizing makespan would
likely involve using faster, but more costly, machines or tools
(e.g., Tool 1 is costlier than Tool 3). Minimizing tool cost may
result in slower operation, as it requires waiting for cheaper
tools or machines, thereby increasing makespan. The single-
copy tool limitation further exacerbates conflicting
objectives. If the algorithm optimizes only for makespan, it
would likely result in continuous machine usage, potentially
with frequent and costly tool changes. If it is individually
optimizing for cost, it would likely result in substantial idle
times while machines wait for a less costly tool to arrive.

The noted decline in performance is more than a
statistical fluctuation and indicates a failure to formulate an
operationally feasible schedule. A schedule with minimal
makespan but economically unsustainable tooling costs, or
vice-versa, holds limited value for a manufacturer. The
combined objective function, therefore, forces the algorithm
to find a Pareto-optimal or near-Pareto-optimal solution that
balances these critical business objectives, such as time-to-
market and cost-efficiency. This approach reflects a more
realistic and desirable outcome for industrial operations,
ensuring that the generated schedules are technically
feasible, economically sound, and aligned with overall
business goals. Figure 6 provides empirical evidence directly
supporting the argument for multi-objective optimization. It
visually demonstrates the performance penalty incurred
when makespan and cost are optimized in isolation,
particularly as the number of jobs increases. This figure is
crucial for validating the multi-objective approach, as it
quantifies the benefit of simultaneously considering both
time and cost, a critical aspect of practical FMS operations.
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Figure 6. Importance of minimizing the makespan and cost

7.3 Machine utilization

Machine utilization is defined as the percentage of
time a machine is actively engaged in job processing, and it is
inversely related to system downtime and delay. It is
calculated using Eq (4):

. oy . t

Machine Utilization % = (m> 100 4)
Where:
pt - Processing Time of all the Jobs,
dt - Downtime of all the Jobs,
dl - Delay of all the Jobs

Figure 7 illustrates the machine utilization percentages
across simulations. A general decreasing trend in utilization
is observed as the job count increases. This decline is
attributed to greater interdependencies and heightened tool
contention within the FMS. As more jobs are introduced, the
probability of machines idling while awaiting tool release or
the completion of operations on other machines significantly
increases, leading to more unproductive time.
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Figure 7. Machine utilization
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However, the graph also reveals periodic increases in
utilization at multiples of three jobs. These temporary
improvements are attributed to reductions in delay,
suggesting that at specific job counts, the scheduling
algorithm might be more effective at minimizing waiting
times, resulting in a transient boost in machine activity.
Across all simulations, the average machine utilization was
approximately 67%.

7.4 Machine wastage

Machine wastage, directly proportional to downtime,
further complements the utilization analysis. It is calculated
using Eq (5):

. _ {4 _(_pt

Machine Wastage % = {1 (pH dt)} 100 5)
Where:

pt - Processing Time of all the Jobs,

dt - Downtime of all the Jobs.

Figure 8 depicts the corresponding machine wastage. As
anticipated, given the inverse relationship with utilization,
wastage increases as the job count rises. This trend
underscores the critical need for improved scheduling
strategies, especially in high-load scenarios, to mitigate the
negative impact of idle times and delays on overall system
efficiency. The corresponding machine wastage across all
simulations was observed at 33%. The observed trends in
machine utilization and wastage reveal FMS's inherent
fragility and bottleneck-prone nature, particularly when
operating with single-copy tools. The decreasing utilization
and increasing wastage with higher job counts directly stem
from the "greater interdependencies and tool contention.” In
such systems, as more jobs compete for limited resources
(tools, machines, AGVs), the likelihood of a machine being idle
while waiting for a critical tool or an AGV increases
significantly, leading to increased downtime and delays. This
highlights the single-copy tool constraint as a primary
bottleneck. Even with sophisticated scheduling, if a critical
tool is constantly in demand, machines will inevitably
experience idle time. The "periodic increases at multiples of
three jobs" in utilization are particularly noteworthy.

i I Machine Wastage in %

Machine Wastage in %

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
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Figure 8. Machine wastage
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Given the system's configuration of three machines and
three tool types, these might represent specific job batch sizes
or configurations where the algorithm can achieve a
temporary, more harmonious or balanced distribution of jobs
across the available machines and tools. This could lead to a
brief reduction in contention and improved flow, suggesting
that certain structural properties of the FMS might create
specific job loading scenarios more amenable to efficient
scheduling. These trends imply that simply increasing the job
load in an FMS with tight resource constraints will lead to
diminishing returns in efficiency. This has profound
implications for capacity planning and for FMS design.
Although intelligent scheduling algorithms, such as the
Improved RNN, can offset inefficiencies, they cannot
compensate for structural bottlenecks resulting from a lack of
resources. Once again, the value of a holistic approach lies in
the fact that system design and intelligent scheduling
reinforce each other.

7.5 Example problem evaluation

To evaluate and compare proposed scheduling algorithm
performances, a typical example problem was created with
four jobs, three non-identical machines, three single-copy
tools, and two Automated Guided Vehicles (AGVs). The
configuration represents a typical Flexible Manufacturing
System (FMS), for which routing complexity and resource
limitation play significant roles in determining scheduling
choices. The related data of our example problem—job-
operation-tool requirements, AGV traveling times, and
processing costs—are represented in Table 5 (Job-operation
tool matrix, for example problem), Table 6 (Travel time
matrix for the two automated guided vehicles (AGVs) for the
example problem), and Table 7 (Cost data for example
problem). The corresponding feasible schedule and the final
output metrics are summarized in Table 8 (Output obtained
for the example problem) and Table 9 (Feasible schedule for
the example problem). Table 5 shows the Job-operation tool
data for the example problem. Here we have three machines,
three tool types, and four jobs, each with a certain number of
operations. This data set is generated using the data
generation process shown in Figure 1.

Table 5. Job-operation tool data, for the example problem

Machine Job Operation No.

Total
M J 1 2 3
1 1 3(1) 10(3) X 13
1 2 16(1) 8(3) 12(2) 36
1 3 16(2) X X 16
1 4 18(2) 7(3) 7(1) 32
2 1 3.6(1) 12.0(3) X 15.6
2 2 19.2(1) 9.6(3) 14.4(2) | 432
2 3 19.2(2) X X 19.2
2 4 21.6(2) 8.4(3) 8.4(1) 38.4
3 1 4.2(1) 14.0(3) X 18.2
3 2 22.4(1) 11.2(3) 16.8(2) 50.4
3 3 22.4(2) X X 22.4
3 4 25.2(2) 9.8(3) 9.8(1) 448

Note: The value in parentheses denotes the tool type used to process
an operation.
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Table 6 shows the Travel time matrix for the two
automated guided vehicles (AGVs) for the example problem.
Here we have 2 AGVs and the duration of their movement
from the load-unload station to different machines and vice
versa. This data set is generated using the data generation
process shown in Figure 2. Table 7 shows the Cost data for the
example problem. This data set is generated using the data
generation process shown in Figure 3. Table 8 shows the
Output obtained for the example problem. It represents the
Output sequence for the example problem, its makespan
value, cost value, and combined objective function. Table 9
shows the Feasible schedule for the example problem. In this
scenario, the execution of the schedule begins with AGV 1 and
AGV 2 transporting Jobs 2 and 4 to Machines 1 and 3,
respectively, per the travel time matrix in Table 6.
Subsequently, AGV 1 returns to carry Job 1 to Machine 2.

Table 6. Travel time matrix for the two automated guided vehicles
(AGVs) for the example problem

L/U M1 M2 M3
L/U 0 15 7 15
M1 10 0 4 6
M2 9 14 0 12
M3 12 11 15 0

Table 7. Cost data for example problem
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The allocation of operations is intricately influenced by
tool availability and inter-job dependencies, particularly due
to the single-copy nature of each tool type. Machine 2 initiates
the first operation of Job 1 using Tool 1. However, it
encounters a delay before proceeding to the second operation
because Tool 3 is simultaneously used by Machine 1 for Job 2.
Similarly, Machine 1 experiences delays while waiting for
Tool 2, which is allocated to Machine 3 for Job 2’s initial
operation. These tool-contention scenarios necessitate
dynamic rescheduling and highlight the complexity of the
scheduling environment. As tools are released and available,
AGVs are rerouted to transport remaining jobs, such as Job 3,
which is delivered to Machine 1 by AGV 2. The proposed
algorithm continuously adapts the sequence of operations to
reduce conflicts, downtime, and delays. Its decision-making
capability ensures minimal overlapping of tool usage and
optimizes machine assignments. These interactions are
visualized in Figure 9, which presents a Gantt chart of the
complete schedule. The chart utilizes color-coded segments:
blue to denote AGV travel time, yellow for active job
processing, orange for machine downtime, and green for
delays caused by tool unavailability or inter-job waiting. This
visualization provides a clear overview of resource
contention and scheduling efficiency.

Quantitative performance evaluation of this example
problem indicates a makespan of 70.6 units. The total
processing  cost, incorporating tool-machine-specific
multipliers from Table 3, amounts to 165.39 units. Combining

these two objectives using a weighted function—where
Machine | Job Operation-1 |Operation-2 |Operation -3 makespan is weighted by a factor of 1.33—yields a final
Number | Number combined objective value of 259.29 units. Additionally,
1 1 9 10 X system resource metrics were assessed: the machine
1 2 48 8 24 utilization rate stands at 75.03%, while machine wastage,
1 3 32 X X attributed to idle times and delays, is recorded at 12.05%.
1 2 36 - 1 These results validate the proposed algorithm’s effectiveness
in generating high-quality, feasible schedules under complex
2 1 7.2 8.04 X . .
constraints. The model adeptly coordinates tool usage and
2 2 38.4 6.432 19.152 s . s . Lo
AGV logistics, while minimizing time and cost objectives.
2 3 25.536 X X Moreover, it demonstrates robustness in handling resource
2 4 28728 5.628 16.8 dependencies and bottlenecks, typical challenges in real-
3 1 4.2 4.62 X world FMS environments. Table 10 indicates the mean
3 2 224 3.696 11.256 computational time of all the designed algorithms.
3 3 15.008 X X
3 4 16.88 3.23 9.8 Table 10. Mean computational time of all designed algorithms
Sr. No Algorithm Mean Computational Time
Table 8. Output obtained for the example problem
Sequence Makespan | Cost Combined 1 RNN 10.33
Objective 2 Improved RNN 6.24
J2(M1),J4(M3),J1(M2),)3(M1) 70.6 16539 | 259.288
Time - EAS 3 5 2 23 s g e g 2
M1 J2-T1 ‘ ‘ J2-T2 J3-T2
M2 \ JI-T1 \ JL-T3
M3 J4-T2 ] J4-T3 ‘ J4-T1
AGV1 M1 LU \ M2 \ L/U \
AGV2 M3 LU ‘ ‘ M1 LU ‘

Figure 9. Gantt chart representing the schedule for the example problem
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Table 9. Feasible schedule for the example problem

M1 M2 M3 Job Processed
Time AGV1 | AGV2
Tooll [Tool2 | Tool3 | Tooll | Tool2 | Tool3 | Tooll | Tool2 | Tool3| M1 M2 M3
1 M1 M3
15 M1 M3
16 1 1 ]2 J4 L/U L/U
25 10 10 ]2 J4 L/U L/U
26 11 11 ]2 J4 M2 L/U
27 12 12 ]2 J4 M2 L/U
31 16 16 ]2 J4 M2
32 1 17 ]2 J4 M2
33 2 1 18 ]2 J1 J4 L/U
36 5 3:6 04 21 ]2 J1 ]4 L/U
38 7 2.4 23 ]2 J1 J4 L/U M1
39 8 3.4 24 ]2 J1 ]4 L/U M1
40 1 1 25 ]2 J1 J4 L/U M1
41 (1)2 2 252 08 ]2 J1 J4 L/U M1
42 1.8 3 1.8 ]2 J1 J4 M1
43 2.8 4 2.8 ]2 J1 J4 M1
44 3.8 5 3.8 ]2 J1 J4 M1
45 4.8 6 4.8 ]2 J1 ]4 M1
46 5.8 7 5.8 ]2 J1 ]4 M1
47 6.8 8 6.8 ]2 J1 J4 M1
48 7.8 9 7.8 ]2 J1 J4 M1
49 8.8 10 8.8 ]2 J1 J4 M1
50 9.8 11 9.8 ]2 J1 J4 M1
51 10.8 12 10.8 ]2 J1 J4 M1
52 11.8 1 1 ]2 J4 M1
53 éé 2 2 }g J4 L/U
54 1.8 3 3 ]3 J4 L/U
60 7.8 9 9 ]3 J4 L/U
61 8.8 10 02 98 ]3 J4 L/U
62 9.8 11 1.2 J3 J4
68 15.8 17 Va7, ]3 J4
69 32 18 8.2 J3 J4
70 1.8 19 9.2 J4
70.6 2.4 19.6 9.8 J4
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It was observed that the RNN algorithm obtained a mean
computational time of 10.33 minutes as a mathematical
equation was used, which reduced the number of input
configurations for a given number of jobs to get the output
sequence by not binding the machines and the jobs at the
initial stage of the code. The Improved RNN algorithm
obtained a mean computational time of 6.24 minutes, as the
combinations that are infrequently observed or are not
chosen in optimal results are considered non-contributory
and are therefore excluded from subsequent simulations.

7.6 Comparative analysis with existing scheduling
approaches

FMS scheduling has seen extensive research, with
numerous metaheuristic and evolutionary methods proposed
to tackle its inherent complexities. The introduction section
provides a comprehensive review of these approaches,
including Multi-Objective Simulated Annealing (MOSA),
Constraint-Based Genetic Algorithm (CBGA), Adaptive
Genetic Algorithm (AGA), Modified Genetic Algorithm (MGA),
Differential Evolution (DE), NSGA-II and Pareto Local Search
(PLS), various hybrid evolutionary algorithms, Particle
Swarm Optimization (PSO), methods incorporating Colored
Timed Petri Nets (TCPN), Variable Neighborhood Search
(VNS), Mixed Integer Linear Programming (MILP) models,
Knowledge-Based Cuckoo Search Algorithm (KCSA), GRASP,
Whale Optimization Algorithm (WOA), Discrete Artificial Bee
Colony (DABC), Hybrid Multi-Agent Proximal Policy
Optimization = (HMAPPO), Multi-Agent Reinforcement
Learning (MARL), and Recurrent Neural Network (RNN).

Despite this breadth of prior work, a critical research gap
was identified: "limited work has addressed scheduling in
FMS with non-identical machines and single-copy tools under
makespan and tooling cost minimization, while also
considering AGV coordination”. This highlights a specific,
highly integrated problem set that the current RNN-based
approach aims to bridge. The proposed RNN approach,
particularly the Improved RNN, offers distinct advantages
and novel contributions compared to these existing methods.
The study's findings indicate that the proposed methods
"achieved better performance than traditional metaheuristics
in complex FMS scenarios". This suggests a superior
capability to navigate the intricate interdependencies and
dynamic conflicts inherent in systems with non-identical
machines, single-copy tools, and AGV coordination. Many
traditional metaheuristics, such as Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), Simulated Annealing
(SA), and Differential Evolution (DE), are powerful search
algorithms. They typically operate by defining a solution
representation, a fitness function to evaluate solution quality,
and operators to explore the search space. Their effectiveness
largely depends on how well the complex problem
constraints and objectives are explicitly encoded into this
fitness function and these operators. For problems with
highly dynamic, interdependent, and non-linear constraints,
like single-copy tool contention where a tool's availability
depends on its current user and the sequence of operations,
or AGV routing interacting with machine schedules, explicitly
defining these relationships and their impact on makespan
and cost can be highly challenging. This often leads to
simplified models or heuristics that might miss global optima
or struggle with real-world dynamism.

In contrast, RNNs are designed to process sequential
data and learn long-term dependencies. In scheduling,
decisions are inherently sequential and interdependent:
assigning a job to a machine impacts tool availability, which
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affects other machines, and AGV movements. An RNN can
learn these complex, temporal, and non-linear relationships
directly from data. It does not require explicit rules for every
potential tool conflict or AGV routing scenario; instead, it
learns the patterns that lead to efficient conflict resolution
and resource utilization across the entire sequence of
operations. This enables RNNs to develop an implicit
understanding of the system's dynamics and bottlenecks
during their training process, thereby moving beyond human-
engineered explicit rules and fitness functions. For example,
the probabilistic filtering in the Improved RNN is a prime
illustration of this learned intelligence, where the algorithm
implicitly understands which combinations are unproductive
based on observed frequencies. This enables more adaptive
and nuanced decision-making. Furthermore, the "complexity"
in FMS often arises from the integrated nature of multiple
interacting subsystems (machines, tools, AGVs). Various
metaheuristic approaches can partition the problem or
loosen specific constraints for greater tractability, but often at
the cost of a holistic view. In contrast, the RNN approach, by
integrating data from different sources, maintains the holistic
view necessary to achieve truly optimal combined schedules.
This implies a less rigid and more robust system for dealing
with highly complex and dynamic scheduling problems,
unlike many standard metaheuristic deployments, where
explicit representation of complicated, non-linear system
behaviors might hinder.

8. Conclusion

This study successfully addressed the complex and
dynamic problem of aligning tool and job schedules in
Flexible Manufacturing Systems (FMS), especially those
involving non-homogeneous machines and the necessary
integration of Automated Guided Vehicles (AGVs). The
objective was to minimize overall makespan and tooling cost,
which is crucial for optimizing operational effectiveness in
contemporary manufacturing environments. The study did
this by comparing a Recurrent Neural Network (RNN)
algorithm with an Enhanced RNN algorithm. The study
showed that, while the RNN algorithm was effective, it was
accompanied by higher computational requirements owing to
its deep exploration of possible scheduling choices. In stark
contrast, however, the Enhanced RNN algorithm
demonstrated superior performance by significantly
reducing processing time. For a standard 4-job case, it
achieved optimal scheduling solutions in less than 6 minutes
and 30 seconds, representing a 39.6% reduction in
computation time from that of the RNN. This enhanced
efficiency can primarily be attributed to its innovative
probabilistic filtering mechanism, which efficiently removes
low-impact machine-job pairings throughout the simulation
phase, thereby demonstrating superior computational
efficiency and scalability. The efficacy of a multi-objective
optimization approach was rigorously proven. Simulations
verified that optimizing with equal weight to both makespan
and tooling cost gave superior overall scheduling
performance compared to optimizing individually for either
of those objectives alone. This underscores the importance of
a holistic FMS scheduling approach that considers the natural
trade-offs between cost and time. Resource usage metrics
reflected about 67% average machine usage across all
simulation runs, with a related machine wastage of 33%.
These numbers reflect difficulties of interdependencies and
delays that are part of complex FMS environments, even with
prescient scheduling. In conclusion, the Improved RNN
algorithm represents a promising direction for developing
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scalable, cost-effective, and time-efficient scheduling
solutions for intelligent manufacturing systems. Its ability to
effectively manage complex resource interdependencies and
optimize multiple objectives simultaneously lays a robust
groundwork for future, more adaptive and intelligent FMS
operations.
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