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A B S T R A C T 
 

In a flexible manufacturing system (FMS), scheduling jobs and tools across non-
identical machines, integrating automated guided vehicles (AGVs), and 
considering multi-objective functions, constitutes a significant obstacle for 
typical mathematical optimization techniques. Herein, we consider scheduling 
jobs, tools, and AGVs in an FMS that consists of three non-identical machines. 
The multi-objective functions targeted are tooling cost minimization and 
makespan reduction. The non-identical machines' processing rates are 
specified in the ratio of 1:1.2:1.4. Each of the tools (T1, T2, and T3) is available 
in a single mode, with T1 being more expensive than T2, which is more 
expensive than T3. To address such a complex optimization problem, we use a 
Recurrent Neural Network (RNN) and an Improved version to obtain near-
optimum solutions and evaluate such algorithms' comparative performance. 
The average computation time to determine the optimal sequence was reduced 
from 10.33 minutes to 6.24 minutes (for a 4-job problem) as we employed the 
Improved RNN algorithm instead of the RNN algorithm. 

1. Introduction 

Flexible Manufacturing Systems (FMS) represent an 
advanced manufacturing paradigm characterized by 
adaptability to varying production tasks and dynamic 
operational requirements. In such environments, jobs with 
heterogeneous processing demands are scheduled on non-
identical machines, and integrating Automated Guided 
Vehicles (AGVs) for intra-facility material transport 
introduces an additional layer of complexity. Scheduling in 
FMS becomes a multi-objective optimization problem, 
typically aiming to minimize performance metrics such as 
makespan (i.e., the total time to complete all jobs) and tooling 
cost. Flexible Manufacturing Systems (FMS) represent a 
cornerstone of modern Industry 4.0 environments due to 
their adaptability, efficiency, and ability to handle diverse 
production requirements. However, the scheduling of jobs in 
such systems is particularly challenging when non-identical 
machine speeds, single-copy tool constraints, and Automated 
Guided Vehicle (AGV) coordination are jointly considered. 
These interdependent factors transform scheduling into a 
multi-objective, combinatorial optimization problem, where 
minimizing makespan must be balanced against tooling cost 
and system resource utilization. Metaheuristics have been 
applied to flexible manufacturing systems (FMS) scheduling 
for a long time. Early studies employed Multi-Objective 

Simulated Annealing (MOSA), which emphasized the 
importance of weight vectors in balancing multi-criteria 
optimization [1]. Building upon evolutionary paradigms, a 
Constraint-Based Genetic Algorithm (CBGA) introduced novel 
operators that efficiently solved machine loading problems 
with reduced computational effort [2]. Subsequently, an 
Adaptive Genetic Algorithm (AGA) was designed for 
integrated job and Automated Guided Vehicle (AGV) 
scheduling, achieving superior performance in minimizing 
penalty costs and improving utilization compared with 
conventional Gas [3]. Similarly, a genetic algorithm (GA) 
approach, implemented as a spreadsheet add-in, was used to 
solve the complex problem of simultaneously scheduling 
machines and automated guided vehicles (AGVs) within 
flexible manufacturing systems (FMS) to minimize the total 
completion time, also known as the makespan [4]. A more 
recent advancement is the Modified Genetic Algorithm 
(MGA), which incorporates a three-parent crossover and 
mutation operator to improve population diversity and avoid 
premature convergence. By leveraging the Giffler–Thompson 
procedure, MGA generated active feasible schedules and 
demonstrated superior makespan performance across 
various problem sizes. Although computation time increased 
with larger instances, MGA consistently achieved optimal or 
near-optimal solutions [5]. 
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Other evolutionary techniques include the Differential 

Evolution (DE) algorithm for solving the scheduling problem 
and the optimal sequences of machines and AGVs, specifically 
to minimize makespan [6]. Multi-objective algorithms, 
including the weighted genetic algorithm (WGA), non-
dominated sorting genetic algorithm (NSGA-II), and Pareto 
local search (PLS), were used to model and solve a broad class 
of scheduling problems, including flexible job shop and flow 
shop scheduling problems [7]. Hybrid approaches have been 
extensively explored to capture interdependencies in FMS 
scheduling. An effective hybrid multi-objective genetic 
algorithm for scheduling machines and AGVs in FMS was 
developed to optimize multiple conflicting objectives like 
makespan, mean flow time, and mean tardiness [8]. An 
integrated scheduling model with an improved particle 
swarm optimization (PSO) algorithm was developed, which 
uses the makespan of jobs as the optimization objective and 
the utilization ratios of machines and AGVs as evaluation 
factors [9].  

Other notable hybrid methods include a novel control 
strategy for avoiding deadlock and collisions in zone-
controlled AGVS, using coloured Petri nets to model the 
dynamics of AGVS, and implementing the control strategy 
[10]. A novel multi-objective formulation for AGV scheduling 
in cyclic flexible flow shops was introduced and evaluated 
using efficient local search heuristics, Variable Neighborhood 
Search (VNS), and Iterated Local Search (ILS) with different 
job scheduling rules, and provides a detailed performance 
analysis using the hypervolume indicator, highlighting the 
VNS approach as generally preferable due to its speed [11]. 

Parallel to metaheuristics, exact optimization methods 
have also been developed. A new mixed integer linear 
programming (MILP) model was proposed for the 
simultaneous scheduling of machines and Automated Guided 
Vehicles (AGVs) in FMS environments [12]. Further,  a multi-
objective mixed-integer linear programming model was 
formulated to formulate a scheduling problem with pickup 
and delivery in a matrix manufacturing workshop with multi-
variety and small-batch production, aiming to maximize 
customer satisfaction while minimizing distribution cost [13]. 

While MILP guarantees optimality, scalability remains a 
significant limitation for larger scheduling instances. Bio-
inspired algorithms have enriched FMS scheduling research 
with novel solution strategies. A novel knowledge-based 
cuckoo search (KCSA) algorithm designed to tackle complex 
flexible job shop scheduling problems. By integrating 
reinforcement learning and hybrid heuristics, KCSA provides 
a robust and efficient solution that adaptively controls 
parameters and guides the search process, leading to superior 
performance [14]. With the rising complexity of dynamic FMS 
environments, reinforcement learning (RL) has emerged as a 
promising paradigm. A Hybrid Multi-Agent Proximal Policy 
Optimization (HMAPPO) framework was developed for real-
time scheduling in dynamic partial no-wait flexible job shops, 
achieving improved job completion rates, reduced tardiness, 
and superior Pareto trade-offs compared with MOPSO, NSGA-
II, and dispatching rules [15]. Extending this direction, Multi-
Agent Reinforcement Learning (MARL) was applied for joint 
job and AGV scheduling, with tailored action decoding and 
reward structures. MARL achieved over 10% performance 
improvement compared to traditional RL and genetic 
programming approaches, while exhibiting robustness 
against disturbances [16]. 

Recently, neural-network-based methods have been 
explored to address scalability and adaptability in FMS 
scheduling. A Recurrent Neural Network (RNN)–Genetic 
Algorithm (GA) framework was proposed for non-identical 
machine scheduling, with a focus on minimizing makespan. 
Comparative experiments across three RNN models 
demonstrated that RNN Phase 3 achieved 99.8% accuracy 
with an average computational time of 4.02 minutes, 
outperforming GA in scalability and effectiveness across 
varying job sizes. The algorithm calculates the number of 
possibilities to find the optimal solution by applying an 
equation [17]. This indicates the growing potential of RNN-
based frameworks for integrated and adaptive scheduling. 
The above shows that while metaheuristics and hybrid 
approaches provide efficient approximations, they often lack 
adaptability in dynamic environments. Exact MILP 
formulations guarantee optimality but are computationally 
infeasible for large-scale problems. Recent advances in deep 
reinforcement learning and multi-agent systems demonstrate 
strong potential for real-time, adaptive, and disturbance-
resilient scheduling. However, integrating machine, tool, and 
AGV scheduling under multi-objective constraints remains 
underexplored, providing the key motivation for the present 
work. This research proposes a Recurrent Neural Network 
(RNN) and an Improved RNN framework for integrated job, 
tool, and AGV scheduling to address these limitations. Unlike 
traditional metaheuristics, RNNs inherently capture 
sequential dependencies and can learn non-linear 
interrelationships across operations, making them 
particularly suitable for dynamic scheduling problems. The 
Improved RNN introduces a probabilistic filtering mechanism 
that prunes low-value machine–job combinations, thereby 
reducing computational complexity without compromising 
solution quality. The key objectives of this work are: 
• To develop an RNN-based framework for integrated 

scheduling jobs, tools, and AGVs in FMS with non-identical 
machines. 

• To propose and evaluate an improved RNN algorithm that 
minimizes makespan and tooling costs with reduced 
computational overhead. 

This contribution enhances the use of AI-driven methods in 
manufacturing scheduling while offering a scalable 
framework for intelligent, data-driven production systems. 

Abbreviations 

FMS  Flexible Manufacturing System 

AGV  Automated Guided Vehicle 

MOSA  Multi-Objective Simulated Annealing 

CBGA  Constraint-Based Genetic Algorithm 

AGA  Adaptive Genetic Algorithm 

MGA  Modified Genetic Algorithm 

DE  Differential Evolution 

WGA  Weighted genetic algorithm 

NSGA-II  Non-dominated Sorting Genetic  

  Algorithm II 

PLS  Pareto Local Search 

PSO  Particle Swarm Optimization 

VNS  Variable Neighborhood Search 

ILS  Iterated Local Search 

MILP  Mixed Integer Linear Programming 

KCSA  Knowledge-Based Cuckoo Search  
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HMAPPO  Hybrid Multi-Agent Proximal Policy  
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MARL  Multi-Agent Reinforcement Learning 
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The research paper contributes to the collective scheduling of 
Jobs, tools, and AGVs in an FMS involving non-identical 
machines. The problem has not been addressed in the 
available literature. The major innovation is establishing an 
Improved Recurrent Neural Network (RNN) that utilizes 
probabilistic filtering to minimize computational overhead 
while maintaining solution quality. The direction is to balance 
the makespan and tooling costs with realizable single-copy 
tool and AGV constraints. 

 
2. Problem formulation 

The Flexible Manufacturing System (FMS) under 
consideration consists of non-identical machines, each 
capable of processing a variety of jobs. However, job 
processing is constrained by the capabilities of machines and 
the availability of specific tools required to complete 
individual operations. The non-identical nature of the 
machines is reflected in their processing speed, defined in a 
ratio of 1:1.2:1.4 for machines M1, M2, and M3, respectively. 
This depicts that the non-identical machine M1 has a faster 
processing speed than the non-identical machine M2, which 
in turn has a faster processing speed than M3. It consists of 4 
jobs,  three tool types, and 2 AGVs. Each non-identical 
machine can perform all operations; each job comprises 
multiple operations requiring a specific tool type. Only one 
copy of each tool type is available, reflecting the high tooling 
cost constraint. No two machines can use the same tool 
simultaneously. Two Automated Guided Vehicles (AGVs), 
AGV1 and AGV2, are responsible for transporting jobs from 
the Load/Unload (L/U) station to the designated machines 
and returning for the next job. 

 
3. Assumptions 

• The operation sequence, required tools, and processing 
times are predetermined. 

• The tool requirements and operation sequences vary 
across jobs. 

• A job must be completed entirely on a single machine, with 
all its operations performed on one visit. 

• No job preemption is allowed; once an operation starts, it 
must be completed without interruption. 

• Machines and tools can handle only one job at a time. 
• Tools are centrally managed and become available shortly 

after completion of an operation (minimal tool return 
time). 

• AGV routing and wait times are considered while ensuring 
no overlap in job transportation. 

• AGVs are assumed to be identical in efficiency and can 
transport only one job at a time. 

Each job must be allocated to a single machine. Hence, the 

objective is to schedule job (ji) to machine (mj) while utilizing 

the required tools (tk), preventing tool conflicts. This involves 

coordinating the processing of J jobs across M non-identical 

machines while utilizing a shared set of T tool types for 

various operations. The aim is to establish an integrated 

schedule for the jobs in a flexible manufacturing system with 

non-identical machines, in an optimal sequence, by 

minimizing the makespan and tooling cost. 

4. DATA set generation 

This study employed a synthetically generated dataset 
because publicly available real-world datasets for integrated 
FMS scheduling (involving non-identical machines, single-
copy tools, and AGV coordination) are extremely limited. 
Industrial data are often proprietary and not openly shared 

due to confidentiality constraints. To ensure that the 
synthetic dataset is representative of realistic shop-floor 
conditions, the following considerations were applied during 
its construction: (i) machine processing times were drawn 
from uniform distributions (1–20 units) and then scaled 
according to machine speed ratios of 1:1.2:1.4, which reflect 
typical non-identical machine performance differences 
reported in literature; (ii) AGV travel times were sampled 
from the range of 1–15 units, consistent with reported intra-
shop transport durations; and (iii) tool usage was restricted 
to single copies, with cost multipliers aligned to relative 
tooling costs found in manufacturing practice. Most FMS 
scheduling studies rely on synthetic datasets because real-
world data are rarely accessible due to industrial 
confidentiality. 

 
4.1 Creation of the processing time data and tool 

allocation dataset 
Figure 1 illustrates the algorithm developed for 

estimating the processing time of machines and assigning 
appropriate tools to each operation. The data generation 
procedure is structured to simulate 500 distinct job records, 
each composed of multiple operations with associated 
parameters. To initiate the process, a loop iterates over 500 
job records. The number of operations for each job is 
determined probabilistically: 75% of the jobs contain three 
operations, 20% contain two operations, and the remaining 
5% consist of a single operation. This count is stored in a 
variable denoted as N. A corresponding number of operations 
is generated based on the value of N. Each operation's 
processing time is randomly sampled from a uniform integer 
distribution between 1 and 20 and stored in the variable 
Dops. Simultaneously, each operation is randomly assigned a 
tool, and the tool type is stored in the variable Tops.  

A critical constraint is imposed to ensure that tool 
assignments are unique within each job; no tool is repeated 
across operations belonging to the same job. Placeholder 
values marked as 'X' are appended in cases where the number 
of operations is fewer than three, thereby standardizing the 
record length. Additionally, to simulate processing across 
different machines, the generated processing times are scaled 
by multiplication factors of 1.2 and 1.4 and stored in separate 
rows, thereby modeling variability in machine performance. 
Each job record comprises four such jobs, and a unique hash 
is computed for traceability and sorting purposes. The 
finalized dataset is sorted based on this hash and exported in 
a structured format to a CSV file titled 
'Outcome_ProcessingTime.csv'. Table 1 provides a 
representation of the generated dataset. 

4.2 Creation of the AGV travel duration dataset  
Figure 2 presents the algorithm synthesizing the 

Automated Guided Vehicle (AGV) travel duration dataset. The 
algorithm operates through an iterative process over 500 
synthetic records, each simulating potential AGV travel 
durations across four distinct locations: M1, M2, M3, and L/U 
(Load/Unload station). For each iteration, a 4×4 matrix 
represents the travel durations between every pair of source 
and destination locations. Each element within the matrix 
denotes the time required for the AGV to traverse from one 
location to another. The travel duration values are generated 
using a uniformly distributed random integer from 1 to 15, 
thereby modeling realistic variability in transit times due to 
environmental or operational factors.  
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Figure 1. Creation of the processing time data and tool allocation data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Processing time and tool allocation data 

Hash Record 
number 

Machine 
number 

Job 
number 

Operation - 1 Operation - 2 Operation - 3 Total 

2011 20 1 1 10(3) 19(2) X 29 

2012 20 1 2 15(2) X X 15 

2013 20 1 3 7(3) 8(2) 4(1) 19 

2014 20 1 4 3(1) 14(2) 15(3) 32 

2021 20 2 1 12.0(3) 22.8(2) X 34.8 

2022 20 2 2 18.0(2) X X 18 

2023 20 2 3 8.4(3) 9.6(2) 4.8(1) 22.8 

2024 20 2 4 3.6(1) 16.8(2) 18.0(3) 38.4 

2031 20 3 1 14.0(3) 26.6(2) X 40.6 

2032 20 3 2 21.0(2) X X 21 

2033 20 3 3 9.8(3) 11.2(2) 5.6(1) 26.6 

2034 20 3 4 4.2(1) 19.6(2) 21.0(3) 44.8 
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Figure 2. Creation of the AGV travel duration dataset 

However, when the source and destination locations are 
identical, the corresponding matrix entry is assigned a value 
of 0, representing a null travel time. After completing all 
iterations, the resulting dataset, comprising 500 such 
matrices, is compiled and stored in a structured file named 
'Outcome_AGVDuration.csv'. Table 2 provides an illustrative 
excerpt of the generated dataset, capturing the temporal 
dynamics of AGV mobility across manufacturing system 
locations. 

Table 2. AGV travel duration data 

Record 
number 

 L/U M1 M2 M3 

20 L/U 0 5 8 11 

20 M1 11 0 13 11 

20 M2 15 14 0 11 

20 M3 15 5 14 0 

 
 

 

 

 
Single-job transport capacity is considered here. It is also 

typical in shop floors where AGVs are designed to carry 
pallets, fixtures, or part bins individually, ensuring safety and 
preventing tool/job damage during transit. While this 
modeling choice simplifies AGV scheduling, it still captures 
the essential bottleneck behavior of transport resources 
under contention. We acknowledge that more advanced AGVs 
with heterogeneous speeds, multi-load capabilities, and 
dynamic routing are increasingly being introduced in smart 
factories. Incorporating such heterogeneity would increase 
the scalability of the scheduling model and remain an 
important direction for future research. Nonetheless, by 
focusing on the identical single-load AGV case, this work 
addresses a realistic baseline scenario widely applicable in 
current manufacturing systems while keeping the scheduling 
model computationally tractable. 

4.3 Cost Data Generation 
Figure 3 outlines the algorithm employed for generating 

cost data, wherein the cost associated with processing each 
operation is computed based on three primary factors: the 
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processing time, the tool assigned to the operation, and the 
machine on which it is executed. The cost estimation model 
adopts a parametric approach, wherein the processing time is 
multiplied by a specific cost multiplier, contingent on the 
tool–machine combination. These multiplier values are 
referenced from Table 3. 

 

Figure 3. Cost data generation 

 

Table 3. Multiplier Matrix for the cost calculation 

 M1 M2 M3 

T1 3 2 1 

T2 2 1.33 0.67 

T3 1 0.67 0.33 

 
 
The cost data generation process utilizes input from the 

previously generated dataset, 'Outcome_ProcessingTime.csv', 
which consists of 500 unique input configurations. Each 
configuration encapsulates the processing times of four jobs, 
evaluated on three non-identical machines, resulting in 12 
rows per configuration, and 6000 rows overall. The algorithm 
is initialized by setting a row counter to 1 and extracting the 
corresponding machine number from the current row. For 
each row, the fourth column onward is iteratively accessed to 
retrieve operation-level data. The value in each column is 
checked: if the value is not equal to 'X', it is parsed to extract 
the tool identifier and the associated processing time. The 
cost for the operation is then computed from Eq (1): 

𝑐𝑜𝑠𝑡 = (𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒){(𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟)(𝑡𝑜𝑜𝑙,𝑚𝑎𝑐ℎ𝑖𝑛𝑒)}           (1) 

The multiplier is determined in Table 3 based on the specific 
tool–machine pairing. 

Suppose the value in the column is found to be 'X', 
indicating a placeholder for a non-existent operation. In that 
case, the cost is recorded as 'X' to maintain structural 
consistency in the dataset. The algorithm proceeds iteratively 
across all three possible operations for each job, repeating 
this process for all 6000 rows. The resulting cost values are 
systematically compiled and stored in the output file 
'Outcome_Cost.csv', ensuring alignment with the format and 
integrity of the associated processing time and tool allocation 
datasets. Once each operation's cost is calculated, it is stored 
in a file, 'Outcome_Cost.csv', as shown in Table 4. 

 
Table 4. Cost data 

Hash 
Record 
number 

Machine 
number 

Job 
number 

Operation 
- 1 

Operation 
- 2 

Operation 
- 3 

2011 20 1 1 10 38 X 

2012 20 1 2 30 X X 

2013 20 1 3 7 16 12 

2014 20 1 4 9 28 15 

2021 20 2 1 8.04 30.324 X 

2022 20 2 2 23.94 X X 

2023 20 2 3 5.628 12.768 9.6 

2024 20 2 4 7.2 22.344 12.06 

2031 20 3 1 4.62 17.822 X 

2032 20 3 2 14.07 X X 

2033 20 3 3 3.234 7.504 5.6 

2034 20 3 4 4.2 13.132 6.93 

 

5. Proposed method and implementation 

5.1 RNN algorithm 
Figure 4 illustrates the proposed Recurrent Neural 

Network (RNN) algorithm for optimal job sequencing and 
machine allocation in a flexible manufacturing environment. 
A distinctive feature of the algorithm is the deferred 
assignment of jobs to machines. Unlike conventional 
scheduling methods that initiate machine-job bindings at the 
outset, this algorithm postpones such decisions until the final 
phase. This strategy significantly reduces the solution space 
by focusing on optimal job sequences, each initiated with a 
unique job assignment. Four placeholder variables—P1, P2, 
P3, and P4—are introduced, each representing the position of 
a specific job in the scheduling sequence to facilitate the 
generation of candidate sequences. All feasible sequences are 
generated by assigning distinct jobs to these placeholders, 
and each resulting sequence is evaluated to determine its 
scheduling efficiency. The sequence yielding the minimum 
cumulative score is identified as the optimal solution. The 
algorithm constructs a triangular compatibility matrix that 
captures pairwise job compatibility scores. These scores are 
derived from inter-job conflicts, specifically downtime 
overlap and AGV collision delays.  
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Figure 4. RNN algorithm 
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They are further weighted using tool-based collision 
multipliers in the ratio of 3:2:1, based on the severity or 
likelihood of collision induced by the tools involved. Following 
the initialization phase, the algorithm explores the solution 
space through a branching mechanism. The first layer of 
branches includes four subtrees, each corresponding to a 
unique assignment of one job to P1. Each of these subtrees 
further branches into three nodes for possible P2 
assignments. The remaining job positions, P3 and P4, are 
determined based on maximum compatibility with previously 
assigned jobs, resulting in four complete sequences per 
iteration. For each generated sequence, the algorithm 
evaluates all viable machine-job combinations using the 
combinatorial formula in Eq (2)[17]: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 =  (𝑛
𝑟

) +  1                                      (2) 

where:   
n – number of jobs, 
r – (number of machines – 1) 

Each sequence and machine assignment combination is 
subjected to a simulation process, in which downtimes and 
AGV conflicts are re-evaluated using the same collision 
weightings (3:2:1), now applied based on the machines 
involved in potential conflicts. Each simulation run is scored 
based on a composite metric integrating makespan and 
processing cost. Specifically, the combined objective function 
(score) is computed from Eq (3): 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  [(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛)(1.33) +
𝐶𝑜𝑠𝑡]                                                                                                          (3) 

1.33 represents the average cost multiplier derived from the 
tool–machine cost matrix (Table 3). Upon completion of all 
simulations, the sequence with the lowest aggregate score is 
selected as the optimal job-machine schedule. The accuracy of 
the result is computed by evaluating the deviation between 
the predicted and actual optimal values. This error metric is 
then propagated to the next iteration of the RNN, enabling it 
to refine predictions through sequential learning and 
backpropagation. 

5.2 Improved RNN algorithm 
The Improved Recurrent Neural Network (RNN) 

algorithm retains the foundational structure of the RNN 
model shown in Figure 4, described earlier. However, it 
introduces a significant enhancement in its final decision-
making phase. The major improvement is in minimizing 
combinations for machine allocation, considerably lowering 
the overall computational complexity. The RNN algorithm 
attempts all possible job-to-machine assignments, as 
suggested in the combinatorial formula in Eq (2). The 
Improved Recurrent Neural Network selectively excludes 
part of such combinations using a probabilistic filtering 
technique. That filter is based on patterns of observed 
frequency in the model's training process. In more detail, the 
algorithm monitors the frequency of specific machine-job 
assignment combinations seen within optimal sequences 
within earlier training runs. Combinations that are 
infrequently observed or are not chosen in optimal results are 
considered non-contributory and are therefore excluded 
from subsequent simulations. The pruning strategy based on 
statistics ensures that only the statistically most beneficial 
combinations are retained for simulation, without redundant 
computations at the cost of solution quality. The Improved 
RNN algorithm thus exhibits a remarkable acceleration in 
computation time, enabling rapid convergence while 

maintaining competitive performance in terms of makespan 
and cost optimization. 

6. Testing 

A Leave-One-Out Cross Validation (LOOCV) technique is 
employed to determine the proposed algorithms' 
performance and generalization ability. In this approach, each 
of the 500 generated records is used once as a test set, while 
the remaining 499 records form the training set. This process 
is repeated 500 times until every record has been tested 
exactly once. LOOCV is a recognized validation technique, 
particularly effective for small- to medium-sized datasets, 
ensuring that all available data are utilized for training and 
testing while minimizing sampling bias. LOOCV provides a 
stricter and more exhaustive evaluation, yielding a more 
reliable estimate of generalization performance. Given the 
dataset size and the objective of capturing variability across 
all 500 records, LOOCV was considered appropriate for this 
study. 

7. Results and analysis 

The RNN Algorithm used in this manuscript is the 
updated version of the RNN phase 3 algorithm, where AGV 
was not considered, and makespan was the only objective 
function to minimize. So the RNN phase 3 algorithm was 
previously compared with the Genetic algorithm, which 
shows that the RNN phase 3 algorithm outperforms the 
genetic algorithm in terms of computational time. In the 
current manuscript, we have incorporated AGV into the RNN 
algorithm, and a combined objective function is considered to 
minimize both makespan and cost, taking into account the 
tool type and machine. 

7.1 Scalability and computational efficiency 
To thoroughly analyze the computational efficiency of 

the algorithms, their scalability was assessed by examining 
the effect of the number of jobs on the total processing time 
for both the RNN and the Improved RNN algorithms, using 
three machines, three tool types, and 2 AGVs. As illustrated in 
Figure 5, the RNN consumes significantly more computational 
time. This is primarily due to its exhaustive enumeration of all 
possible machine-job pairings for each potential sequence of 
jobs. In stark contrast, the Improved RNN algorithm 
demonstrates superior performance.     

 
Figure 5. Scalability of algorithms 
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It strategically leverages its probabilistic filtering 
mechanism to reduce the number of combinations that need 
to be evaluated. This targeted reduction results in a 
considerably slower rate of increase in processing time as the 
job count rises, showcasing its enhanced scalability under 
increasing scheduling complexity. Figure 5 provides 
compelling visual evidence of the Improved RNN's primary 
performance advantage. The graph clearly shows that as the 
number of jobs increases, the processing time for the 
Improved RNN grows at a much slower rate compared to the 
RNN. This directly supports the claim of superior scalability 
and quantifies the significant computational efficiency gains 
achieved by the probabilistic filtering technique. This 
capability is crucial for handling larger and more complex 
real-world FMS problems efficiently. 

7.2 Objective function aggregation and trade-off impact 
The algorithm employs a combined objective function to 

balance makespan and processing cost during schedule 
evaluation. These two components are integrated using equal 
weighting, as expressed in Eq (3). To ascertain the 
significance of such an aggregation method, experiments 
were carried out in which optimization was carried out with 
only cost or makespan as the evaluation criterion. The 
outcome was that for all cases, omissions of either of these 
terms resulted in a worsening of total performance, especially 
with increased jobs. This outcome decisively confirms that a 
fairly balanced objective function is required for effective 
scheduling. 

The loss of performance that occurs when makespan or 
cost is individually optimized spotlights one of the most 
important features of real-world FMS operation: an overall 
optimal schedule must balance several conflicting objectives. 
In our manufacturing system, makespan and tool cost are 
often in conflict. For example, minimizing makespan would 
likely involve using faster, but more costly, machines or tools 
(e.g., Tool 1 is costlier than Tool 3). Minimizing tool cost may 
result in slower operation, as it requires waiting for cheaper 
tools or machines, thereby increasing makespan. The single-
copy tool limitation further exacerbates conflicting 
objectives. If the algorithm optimizes only for makespan, it 
would likely result in continuous machine usage, potentially 
with frequent and costly tool changes. If it is individually 
optimizing for cost, it would likely result in substantial idle 
times while machines wait for a less costly tool to arrive. 

The noted decline in performance is more than a 
statistical fluctuation and indicates a failure to formulate an 
operationally feasible schedule. A schedule with minimal 
makespan but economically unsustainable tooling costs, or 
vice-versa, holds limited value for a manufacturer. The 
combined objective function, therefore, forces the algorithm 
to find a Pareto-optimal or near-Pareto-optimal solution that 
balances these critical business objectives, such as time-to-
market and cost-efficiency. This approach reflects a more 
realistic and desirable outcome for industrial operations, 
ensuring that the generated schedules are technically 
feasible, economically sound, and aligned with overall 
business goals. Figure 6 provides empirical evidence directly 
supporting the argument for multi-objective optimization. It 
visually demonstrates the performance penalty incurred 
when makespan and cost are optimized in isolation, 
particularly as the number of jobs increases. This figure is 
crucial for validating the multi-objective approach, as it 
quantifies the benefit of simultaneously considering both 
time and cost, a critical aspect of practical FMS operations. 

 

 
Figure 6. Importance of minimizing the makespan and cost 

7.3 Machine utilization 
Machine utilization is defined as the percentage of 

time a machine is actively engaged in job processing, and it is 
inversely related to system downtime and delay. It is 
calculated using Eq (4): 

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 % = (
𝑝𝑡

𝑝𝑡 + 𝑑𝑡+ 𝑑𝑙
)  100                               (4) 

Where:   
pt – Processing Time of all the Jobs, 
dt – Downtime of all the Jobs, 
dl – Delay of all the Jobs 

Figure 7 illustrates the machine utilization percentages 
across simulations. A general decreasing trend in utilization 
is observed as the job count increases. This decline is 
attributed to greater interdependencies and heightened tool 
contention within the FMS. As more jobs are introduced, the 
probability of machines idling while awaiting tool release or 
the completion of operations on other machines significantly 
increases, leading to more unproductive time.  
 

 
Figure 7. Machine utilization 
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However, the graph also reveals periodic increases in 
utilization at multiples of three jobs. These temporary 
improvements are attributed to reductions in delay, 
suggesting that at specific job counts, the scheduling 
algorithm might be more effective at minimizing waiting 
times, resulting in a transient boost in machine activity. 
Across all simulations, the average machine utilization was 
approximately 67%. 

7.4 Machine wastage 
Machine wastage, directly proportional to downtime, 

further complements the utilization analysis. It is calculated 
using Eq (5): 

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑊𝑎𝑠𝑡𝑎𝑔𝑒 % = {1 − (
𝑝𝑡

𝑝𝑡+ 𝑑𝑡
)}  100                              (5) 

Where:   
pt – Processing Time of all the Jobs, 
dt – Downtime of all the Jobs. 

Figure 8 depicts the corresponding machine wastage. As 
anticipated, given the inverse relationship with utilization, 
wastage increases as the job count rises. This trend 
underscores the critical need for improved scheduling 
strategies, especially in high-load scenarios, to mitigate the 
negative impact of idle times and delays on overall system 
efficiency. The corresponding machine wastage across all 
simulations was observed at 33%. The observed trends in 
machine utilization and wastage reveal FMS's inherent 
fragility and bottleneck-prone nature, particularly when 
operating with single-copy tools. The decreasing utilization 
and increasing wastage with higher job counts directly stem 
from the "greater interdependencies and tool contention." In 
such systems, as more jobs compete for limited resources 
(tools, machines, AGVs), the likelihood of a machine being idle 
while waiting for a critical tool or an AGV increases 
significantly, leading to increased downtime and delays. This 
highlights the single-copy tool constraint as a primary 
bottleneck. Even with sophisticated scheduling, if a critical 
tool is constantly in demand, machines will inevitably 
experience idle time. The "periodic increases at multiples of 
three jobs" in utilization are particularly noteworthy.  

 

 
Figure 8. Machine wastage 

 
 

Given the system's configuration of three machines and 
three tool types, these might represent specific job batch sizes 
or configurations where the algorithm can achieve a 
temporary, more harmonious or balanced distribution of jobs 
across the available machines and tools. This could lead to a 
brief reduction in contention and improved flow, suggesting 
that certain structural properties of the FMS might create 
specific job loading scenarios more amenable to efficient 
scheduling. These trends imply that simply increasing the job 
load in an FMS with tight resource constraints will lead to 
diminishing returns in efficiency. This has profound 
implications for capacity planning and for FMS design. 
Although intelligent scheduling algorithms, such as the 
Improved RNN, can offset inefficiencies, they cannot 
compensate for structural bottlenecks resulting from a lack of 
resources. Once again, the value of a holistic approach lies in 
the fact that system design and intelligent scheduling 
reinforce each other. 

7.5 Example problem evaluation 
To evaluate and compare proposed scheduling algorithm 

performances, a typical example problem was created with 
four jobs, three non-identical machines, three single-copy 
tools, and two Automated Guided Vehicles (AGVs). The 
configuration represents a typical Flexible Manufacturing 
System (FMS), for which routing complexity and resource 
limitation play significant roles in determining scheduling 
choices. The related data of our example problem—job-
operation-tool requirements, AGV traveling times, and 
processing costs—are represented in Table 5 (Job-operation 
tool matrix, for example problem), Table 6 (Travel time 
matrix for the two automated guided vehicles (AGVs) for the 
example problem), and Table 7 (Cost data for example 
problem). The corresponding feasible schedule and the final 
output metrics are summarized in Table 8 (Output obtained 
for the example problem) and Table 9 (Feasible schedule for 
the example problem). Table 5 shows the Job-operation tool 
data for the example problem. Here we have three machines, 
three tool types, and four jobs, each with a certain number of 
operations. This data set is generated using the data 
generation process shown in Figure 1.  

Table 5. Job-operation tool data, for the example problem 

Note: The value in parentheses denotes the tool type used to process 
an operation. 

 

 

Machine Job Operation No. 
Total 

M J 1 2 3 

1 1 3(1) 10(3) X 13 

1 2 16(1) 8(3) 12(2) 36 

1 3 16(2) X X 16 

1 4 18(2) 7(3) 7(1) 32 

2 1 3.6(1) 12.0(3) X 15.6 

2 2 19.2(1) 9.6(3) 14.4(2) 43.2 

2 3 19.2(2) X X 19.2 

2 4 21.6(2) 8.4(3) 8.4(1) 38.4 

3 1 4.2(1) 14.0(3) X 18.2 

3 2 22.4(1) 11.2(3) 16.8(2) 50.4 

3 3 22.4(2) X X 22.4 

3 4 25.2(2) 9.8(3) 9.8(1) 44.8 
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Table 6 shows the Travel time matrix for the two 
automated guided vehicles (AGVs) for the example problem. 
Here we have 2 AGVs and the duration of their movement 
from the load-unload station to different machines and vice 
versa. This data set is generated using the data generation 
process shown in Figure 2. Table 7 shows the Cost data for the 
example problem. This data set is generated using the data 
generation process shown in Figure 3. Table 8 shows the 
Output obtained for the example problem. It represents the 
Output sequence for the example problem, its makespan 
value, cost value, and combined objective function. Table 9 
shows the Feasible schedule for the example problem. In this 
scenario, the execution of the schedule begins with AGV 1 and 
AGV 2 transporting Jobs 2 and 4 to Machines 1 and 3, 
respectively, per the travel time matrix in Table 6. 
Subsequently, AGV 1 returns to carry Job 1 to Machine 2.  

Table 6. Travel time matrix for the two automated guided vehicles 
(AGVs) for the example problem 

 L/U M1 M2 M3 

L/U 0 15 7 15 

M1 10 0 4 6 

M2 9 14 0 12 

M3 12 11 15 0 

 

Table 7. Cost data for example problem 

Machine 
Number 

Job 
Number 

Operation - 1 Operation - 2 Operation - 3 

1 1 9 10 X 

1 2 48 8 24 

1 3 32 X X 

1 4 36 7 21 

2 1 7.2 8.04 X 

2 2 38.4 6.432 19.152 

2 3 25.536 X X 

2 4 28.728 5.628 16.8 

3 1 4.2 4.62 X 

3 2 22.4 3.696 11.256 

3 3 15.008 X X 

3 4 16.88 3.23 9.8 

 

Table 8. Output obtained for the example problem 

Sequence Makespan Cost Combined 
Objective 

J2(M1),J4(M3),J1(M2),J3(M1) 70.6 165.39 259.288 

 

 

 
 
 

The allocation of operations is intricately influenced by 
tool availability and inter-job dependencies, particularly due 
to the single-copy nature of each tool type. Machine 2 initiates 
the first operation of Job 1 using Tool 1. However, it 
encounters a delay before proceeding to the second operation 
because Tool 3 is simultaneously used by Machine 1 for Job 2. 
Similarly, Machine 1 experiences delays while waiting for 
Tool 2, which is allocated to Machine 3 for Job 2’s initial 
operation. These tool-contention scenarios necessitate 
dynamic rescheduling and highlight the complexity of the 
scheduling environment. As tools are released and available, 
AGVs are rerouted to transport remaining jobs, such as Job 3, 
which is delivered to Machine 1 by AGV 2. The proposed 
algorithm continuously adapts the sequence of operations to 
reduce conflicts, downtime, and delays. Its decision-making 
capability ensures minimal overlapping of tool usage and 
optimizes machine assignments. These interactions are 
visualized in Figure 9, which presents a Gantt chart of the 
complete schedule. The chart utilizes color-coded segments: 
blue to denote AGV travel time, yellow for active job 
processing, orange for machine downtime, and green for 
delays caused by tool unavailability or inter-job waiting. This 
visualization provides a clear overview of resource 
contention and scheduling efficiency. 

Quantitative performance evaluation of this example 
problem indicates a makespan of 70.6  units. The total 
processing cost, incorporating tool-machine-specific 
multipliers from Table 3, amounts to 165.39 units. Combining 
these two objectives using a weighted function—where 
makespan is weighted by a factor of 1.33—yields a final 
combined objective value of 259.29 units. Additionally, 
system resource metrics were assessed: the machine 
utilization rate stands at 75.03%, while machine wastage, 
attributed to idle times and delays, is recorded at 12.05%. 
These results validate the proposed algorithm’s effectiveness 
in generating high-quality, feasible schedules under complex 
constraints. The model adeptly coordinates tool usage and 
AGV logistics, while minimizing time and cost objectives. 
Moreover, it demonstrates robustness in handling resource 
dependencies and bottlenecks, typical challenges in real-
world FMS environments. Table 10 indicates the mean 
computational time of all the designed algorithms.  

 
Table 10. Mean computational time of all designed algorithms 

 
 
 
 

 
 
 
 

Sr. No Algorithm Mean Computational Time 

1 RNN 10.33 

2 Improved RNN 6.24 

Figure 9. Gantt chart representing the schedule for the example problem 
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Table 9. Feasible schedule for the example problem 

Time 
M1 M2 M3 Job Processed 

AGV 1 AGV 2 
Tool 1 Tool 2 Tool 3 Tool 1 Tool 2 Tool 3 Tool 1 Tool 2 Tool 3 M1 M2 M3 

1             M1 M3 

15             M1 M3 

16 1       1  J2  J4 L/U L/U 

25 10       10  J2  J4 L/U L/U 

26 11       11  J2  J4 M2 L/U 

27 12       12  J2  J4 M2 L/U 

31 16       16  J2  J4 M2  

32   1     17  J2  J4 M2  

33   2 1    18  J2 J1 J4 L/U  

36   5 
3.6 

 
 

 21  J2 J1 J4 L/U  
 0.4 

38   7   2.4  23  J2 J1 J4 L/U M1 

39   8   3.4  24  J2 J1 J4 L/U M1 

40  1    1  25  J2 J1 J4 L/U M1 

41  
1.2 

   2  
25.2  

J2 J1 J4 L/U M1 
0.8  0.8 

42  1.8    3   1.8 J2 J1 J4  M1 

43  2.8    4   2.8 J2 J1 J4  M1 

44  3.8    5   3.8 J2 J1 J4  M1 

45  4.8    6   4.8 J2 J1 J4  M1 

46  5.8    7   5.8 J2 J1 J4  M1 

47  6.8    8   6.8 J2 J1 J4  M1 

48  7.8    9   7.8 J2 J1 J4  M1 

49  8.8    10   8.8 J2 J1 J4  M1 

50  9.8    11   9.8 J2 J1 J4  M1 

51  10.8    12   10.8 J2 J1 J4  M1 

52  11.8    1   1 J2  J4  M1 

53  
12 

   2   2 
J2 

 J4  L/U 
0.8 J3 

54  1.8    3   3 J3  J4  L/U 

60  7.8    9   9 J3  J4  L/U 

61  8.8    10 
 

 
9.8 

J3  J4  L/U 
0.2  

62  9.8    11 1.2   J3  J4   

68  15.8    17 7.2   J3  J4   

69  
16 

   18 8.2   J3  J4   
0.8 

70  1.8    19 9.2     J4   

70.6  2.4    19.6 9.8     J4   
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It was observed that the RNN algorithm obtained a mean 
computational time of 10.33 minutes as a mathematical 
equation was used, which reduced the number of input 
configurations for a given number of jobs to get the output 
sequence by not binding the machines and the jobs at the 
initial stage of the code. The Improved RNN algorithm 
obtained a mean computational time of 6.24 minutes, as the 
combinations that are infrequently observed or are not 
chosen in optimal results are considered non-contributory 
and are therefore excluded from subsequent simulations. 

7.6 Comparative analysis with existing scheduling 
approaches 
FMS scheduling has seen extensive research, with 

numerous metaheuristic and evolutionary methods proposed 
to tackle its inherent complexities. The introduction section 
provides a comprehensive review of these approaches, 
including Multi-Objective Simulated Annealing (MOSA), 
Constraint-Based Genetic Algorithm (CBGA), Adaptive 
Genetic Algorithm (AGA), Modified Genetic Algorithm (MGA), 
Differential Evolution (DE), NSGA-II and Pareto Local Search 
(PLS), various hybrid evolutionary algorithms, Particle 
Swarm Optimization (PSO), methods incorporating Colored 
Timed Petri Nets (TCPN), Variable Neighborhood Search 
(VNS), Mixed Integer Linear Programming (MILP) models, 
Knowledge-Based Cuckoo Search Algorithm (KCSA), GRASP, 
Whale Optimization Algorithm (WOA), Discrete Artificial Bee 
Colony (DABC), Hybrid Multi-Agent Proximal Policy 
Optimization (HMAPPO), Multi-Agent Reinforcement 
Learning (MARL), and Recurrent Neural Network (RNN).    

Despite this breadth of prior work, a critical research gap 
was identified: "limited work has addressed scheduling in 
FMS with non-identical machines and single-copy tools under 
makespan and tooling cost minimization, while also 
considering AGV coordination". This highlights a specific, 
highly integrated problem set that the current RNN-based 
approach aims to bridge. The proposed RNN approach, 
particularly the Improved RNN, offers distinct advantages 
and novel contributions compared to these existing methods. 
The study's findings indicate that the proposed methods 
"achieved better performance than traditional metaheuristics 
in complex FMS scenarios". This suggests a superior 
capability to navigate the intricate interdependencies and 
dynamic conflicts inherent in systems with non-identical 
machines, single-copy tools, and AGV coordination. Many 
traditional metaheuristics, such as Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO), Simulated Annealing 
(SA), and Differential Evolution (DE), are powerful search 
algorithms. They typically operate by defining a solution 
representation, a fitness function to evaluate solution quality, 
and operators to explore the search space. Their effectiveness 
largely depends on how well the complex problem 
constraints and objectives are explicitly encoded into this 
fitness function and these operators. For problems with 
highly dynamic, interdependent, and non-linear constraints, 
like single-copy tool contention where a tool's availability 
depends on its current user and the sequence of operations, 
or AGV routing interacting with machine schedules, explicitly 
defining these relationships and their impact on makespan 
and cost can be highly challenging. This often leads to 
simplified models or heuristics that might miss global optima 
or struggle with real-world dynamism. 

In contrast, RNNs are designed to process sequential 
data and learn long-term dependencies. In scheduling, 
decisions are inherently sequential and interdependent: 
assigning a job to a machine impacts tool availability, which 

affects other machines, and AGV movements. An RNN can 
learn these complex, temporal, and non-linear relationships 
directly from data. It does not require explicit rules for every 
potential tool conflict or AGV routing scenario; instead, it 
learns the patterns that lead to efficient conflict resolution 
and resource utilization across the entire sequence of 
operations. This enables RNNs to develop an implicit 
understanding of the system's dynamics and bottlenecks 
during their training process, thereby moving beyond human-
engineered explicit rules and fitness functions. For example, 
the probabilistic filtering in the Improved RNN is a prime 
illustration of this learned intelligence, where the algorithm 
implicitly understands which combinations are unproductive 
based on observed frequencies. This enables more adaptive 
and nuanced decision-making. Furthermore, the "complexity" 
in FMS often arises from the integrated nature of multiple 
interacting subsystems (machines, tools, AGVs). Various 
metaheuristic approaches can partition the problem or 
loosen specific constraints for greater tractability, but often at 
the cost of a holistic view. In contrast, the RNN approach, by 
integrating data from different sources, maintains the holistic 
view necessary to achieve truly optimal combined schedules. 
This implies a less rigid and more robust system for dealing 
with highly complex and dynamic scheduling problems, 
unlike many standard metaheuristic deployments, where 
explicit representation of complicated, non-linear system 
behaviors might hinder. 

8. Conclusion 

This study successfully addressed the complex and 
dynamic problem of aligning tool and job schedules in 
Flexible Manufacturing Systems (FMS), especially those 
involving non-homogeneous machines and the necessary 
integration of Automated Guided Vehicles (AGVs). The 
objective was to minimize overall makespan and tooling cost, 
which is crucial for optimizing operational effectiveness in 
contemporary manufacturing environments. The study did 
this by comparing a Recurrent Neural Network (RNN) 
algorithm with an Enhanced RNN algorithm. The study 
showed that, while the RNN algorithm was effective, it was 
accompanied by higher computational requirements owing to 
its deep exploration of possible scheduling choices. In stark 
contrast, however, the Enhanced RNN algorithm 
demonstrated superior performance by significantly 
reducing processing time. For a standard 4-job case, it 
achieved optimal scheduling solutions in less than 6 minutes 
and 30 seconds, representing a 39.6% reduction in 
computation time from that of the RNN. This enhanced 
efficiency can primarily be attributed to its innovative 
probabilistic filtering mechanism, which efficiently removes 
low-impact machine-job pairings throughout the simulation 
phase, thereby demonstrating superior computational 
efficiency and scalability. The efficacy of a multi-objective 
optimization approach was rigorously proven. Simulations 
verified that optimizing with equal weight to both makespan 
and tooling cost gave superior overall scheduling 
performance compared to optimizing individually for either 
of those objectives alone. This underscores the importance of 
a holistic FMS scheduling approach that considers the natural 
trade-offs between cost and time. Resource usage metrics 
reflected about 67% average machine usage across all 
simulation runs, with a related machine wastage of 33%. 
These numbers reflect difficulties of interdependencies and 
delays that are part of complex FMS environments, even with 
prescient scheduling. In conclusion, the Improved RNN 
algorithm represents a promising direction for developing 
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scalable, cost-effective, and time-efficient scheduling 
solutions for intelligent manufacturing systems. Its ability to 
effectively manage complex resource interdependencies and 
optimize multiple objectives simultaneously lays a robust 
groundwork for future, more adaptive and intelligent FMS 
operations. 
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