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The rapid development of autonomous vehicles (AVs) has intensified the
demand for advanced strategies to guarantee crash safety in increasingly
complex traffic environments. Traditional design methods, reliant on physical
crash tests and limited empirical data, are insufficient to capture the full
spectrum of biomechanical responses during collisions. This systematic review
synthesizes recent advances in the integration of big data analytics and
simulation technologies for optimizing collision safety, with a particular focus
on biomechanical modeling. Big data enables the large-scale collection and
analysis of heterogeneous data sources- including vehicle sensors, physiological
signals, and traffic dynamics- supporting the construction of high-fidelity injury
prediction models. Simulation methods, such as finite element analysis (FEA),
multi-body dynamics (MBD), and parametric optimization, facilitate precise
evaluation of occupant kinematics, stress distributions, and tissue-level injury
mechanisms. Furthermore, emerging applications of machine learning, digital
twin systems, and biomimetic design demonstrate substantial potential for
improving active and passive safety. This review highlights the synergistic role
of biomechanics, data science, and simulation technologies in shaping the next
generation of collision protection systems. Finally, it identifies key challenges—
including data privacy, model accuracy, and computational efficiency —and
proposes future directions toward multi-scale biomechanical modeling, Al-
driven optimization, and cross-disciplinary integration for safer and more
adaptive autonomous driving systems.

1. Introduction

are increasingly essential [3]. Biomechanics offers critical
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Since the 1990s, pioneering projects such as ALVINN at
Carnegie Mellon University demonstrated the feasibility of
neural networks for lane-keeping in autonomous vehicles
(AVs) [1]. The subsequent DARPA Grand Challenge further
catalyzed advancements in perception, decision-making, and
control technologies, driving global progress in AV
development [2]. Today, AVs promise safer and more efficient
transportation systems; however, ensuring crash safety in
unpredictable real-world conditions remains a fundamental
challenge. Traditional vehicle safety design has relied heavily
on physical crash tests and restraint system evaluations.
While effective in conventional contexts, these methods
struggle to address the complex dynamic responses of the
human body and the variability of AV operating
environments. As a result, novel approaches that combine
biomechanics, big data analytics, and advanced simulations
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insights into the kinematic and physiological responses of
occupants during collisions, including joint motion, tissue
deformation, and energy transfer pathways. When integrated
with vehicle dynamics models, biomechanics enables a
deeper understanding of injury mechanisms and supports the
design of more adaptive safety systems [4]. At the same time,
big data provides the foundation for capturing multi-source
information—from in-vehicle sensors and traffic networks to
physiological and behavioral parameters—allowing for more
personalized and context-aware safety solutions [5].
Simulation technologies, such as finite element analysis (FEA)
and multi-body dynamics (MBD), further expand the design
space by enabling detailed modeling of structural
deformation, occupant kinematics, and tissue-level stresses
[6]. When coupled with machine learning, digital twin
platforms, and biomimetic design strategies, these methods
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present unprecedented opportunities to optimize both active
and passive safety performance [7]. This review
systematically examines the innovative applications of big
data and simulation technologies in collision safety design,
with a particular emphasis on their contributions from a
biomechanical perspective. By analyzing recent progress in
data-driven injury modeling, advanced simulation
methodologies, and optimization frameworks, this study aims
to establish a comprehensive roadmap for future research.
Unlike earlier reviews that considered big data, simulation, or
biomechanics in isolation, this paper provides an integrative
perspective that explicitly connects large-scale data analytics,
machine learning models, simulation technologies, and
biomechanical validation into a unified framework. This
novelty ensures a more complete understanding of collision
safety and distinguishes this work from existing literature.

1.1 Research objectives

e To identify how big-data analytics contribute to crash risk
assessment and severity prediction.

e To examine the role of machine learning models in
perception, prediction, and decision-making for safety-
critical scenarios.

e To evaluate simulation technologies for traffic-level and
occupant-level safety analysis.

¢ To integrate biomechanics and human factors into system-
level evaluations of crash safety.

e To propose future directions for digital twins, Al-driven
optimization, and regulatory applications in AV safety.

2. Related works

Research on autonomous vehicle safety has developed
rapidly in recent years, with efforts spanning sensing
technologies, big-data analytics, machine learning,
simulation, and occupant biomechanics. Early breakthroughs
in perception and control established the foundations of AV
research. For example, Carnegie Mellon’ s ALVINN system
demonstrated lane-keeping with neural networks [1], while
the DARPA Grand Challenge stimulated advances in
autonomous navigation and decision-making [2]. Subsequent
work has expanded toward robustness in localization,
communication, and safety assurance, each of which
contributes to collision prevention and mitigation.

2.1 Sensing, localization, and communication

Accurate perception and positioning are indispensable
for collision safety. Robust localization under GNSS-denied
conditions has been achieved using LiDAR and visual sensing
in high-dynamics environments [6]. Fusion of multiple
sensors, including inertial and visual inputs, has improved
real-time loop closure performance in SLAM-based
navigation [7-9]. On the communication side, the
development of 5G network slicing has been proposed to
support ultra-low-latency vehicular services, which are
critical for collision avoidance and cooperative safety
applications. At the same time, resilience against adversarial
interference has been explored, with approaches designed to
maintain safety even when sensor attacks compromise
normal operation. These studies highlight that perception and
communication layers form the essential substrate for
reliable safety functions.

2.2 Big-data analytics for crash risk

The growth of large-scale traffic datasets has enabled
new approaches to crash risk modeling. Data-mining
techniques have been applied to discover unrecorded
highway incidents and improve accident databases [10].
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Urban-scale analyses have used spatial grid modeling to
identify pedestrian collision hotspots and the factors
contributing to them [11]. More advanced statistical
techniques, such as spatio-temporal kernel density
estimation, have been employed to analyze accident
distributions, including those involving electric vehicles [12].
Machine learning has also been introduced into crash data
analysis. For instance, comparative studies of classifiers
demonstrated that random forests achieved superior
accuracy in predicting collision severity, outperforming
Bayesian and k-nearest neighbor models [13]. Time-series
based models have further been proposed to capture spatio-
temporal features of traffic flow for dynamic risk prediction
[14]. Together, these studies illustrate how big data can serve
as a basis for more proactive and context-aware collision
safety assessment.

2.3 Machine learning for prediction and decision-

making

Beyond data mining, machine learning techniques have
been widely applied to prediction and decision-making in
safety-critical AV tasks. Vehicle - pedestrian interaction has
been modeled using spatio-temporal learning frameworks,
enabling more accurate risk assessment in urban settings
[14]. VR-based simulation environments have been combined
with decision-tree models to predict pedestrian collision risks
under different scenarios [15]. Advances in pedestrian
detection and classification have also been reported,
including the use of multispectral sensing to improve
detection accuracy under challenging conditions [16].
Behavior classification frameworks have been developed to
predict pedestrian intent and interaction with vehicles [17-
19]. At the decision-making level, frameworks based on
partially observable Markov decision processes (POMDPs)
have been designed to reduce unnecessary braking while
maintaining safety in occluded environments [20]. Related
applications in other transport domains demonstrate the
potential of Al-based optimization for collision avoidance
[21]. Emerging approaches, such as transformer-based
sequence models, graph neural networks (GNNs), and
reinforcement learning (RL), are increasingly applied to
trajectory prediction, complex interaction modeling, and
adaptive decision-making. While still in early stages, these
techniques show potential to enhance the robustness of AV
safety systems and merit further exploration in
biomechanical contexts.

2.4 Simulation and traffic dynamics

Simulation studies provide an essential complement to
empirical data in assessing collision risks and safety
measures. DSRC-based cooperative braking systems have
been evaluated in simulation environments, demonstrating
measurable improvements in rear-end collision avoidance
[19]. Connected and automated vehicles (CAVs) have been
shown to reduce traffic oscillations in microscopic
simulations, indirectly contributing to improved safety [22,
23]. Near-miss incidents have been integrated into Monte
Carlo simulations, reducing error rates in crash frequency
prediction compared to traditional methods [24]. Reviews of
blackspot identification methods and transportation safety
analytics also underline the need for rigorous evaluation
frameworks [25, 26]. Driving simulators have been widely
used to study human factors, though limitations remain in
terms of fidelity and transferability to real-world conditions
[27]. These simulation-based studies highlight both the
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potential and constraints of virtual experimentation in AV
safety evaluation.

2.5 Human factors and biomechanics

In addition to external traffic risks, occupant responses
during sudden maneuvers or collisions remain a critical
research focus. Naturalistic experiments have recorded the
kinematics of unrestrained passengers in autonomous
shuttles during emergency braking, showing that postural
variation significantly influences segmental motion and
overall injury risk [28]. Cognitive and behavioral aspects are
equally important. Studies have shown that executive
functions strongly affect safe driving behaviors [29], while
risk perception differs across user groups and influences
exposure to danger [30]. Pedestrian behavior classification,
intent recognition, and situational awareness further connect
human factors with predictive safety models [23, 24, 30].
These findings underline that biomechanical and behavioral
research must be integrated into AV safety systems to ensure
that system-level improvements translate into actual
reductions in occupant injury.

3. Methodology

This review follows an integrative methodology
designed to connect big-data analysis, machine learning
models, and simulation-based biomechanics into a unified
framework for assessing collision safety in autonomous
vehicles. The approach combines three main steps: (i)
acquisition and processing of large-scale driving and crash-
related datasets, (ii) modeling and simulation of traffic
dynamics and occupant biomechanics, and (iii) integration of
results into a cross-disciplinary framework.

3.1 Data acquisition and processing

Multi-source datasets from naturalistic driving studies,
crash databases, and vehicle sensors provide the basis for
collision risk assessment. Data preprocessing includes
cleaning, filtering, and spatio-temporal alignment. Extracted
features, such as vehicle speed, acceleration, and relative
position, support both descriptive statistics and predictive
models. Figure 1 shows the data flow from collection to
analysis, highlighting the multi-layered nature of safety-
related data.

Figure 1 Movement of a subject during the emergency braking test
[21]
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3.2 Machine learning models

Machine learning enables proactive identification of
high-risk scenarios and adaptive safety interventions.
Supervised models are used to classify crash severity or
predict accident likelihood, while spatio-temporal learning
frameworks capture dynamic risk in traffic flows. For
vulnerable road users, pedestrian intent recognition and
multispectral detection improve early-warning performance.
At the decision-making level, probabilistic frameworks
support motion planning under uncertainty. Figure 2
illustrates a generic prediction - control loop where
perception feeds into risk models that inform planning.

Stop and step backwards <

gini = 0.498
samples = 31
value =[21]
True’/ \False
Reaction before <05 False

gini = 0.285 gini = 0.12
samples 19 samples =0
value = [24] value =0

Average error DVR £31.129

gini = 0.496
samples =7
value =1
/ \
PAT < 41.959 PAT < 66.982
gini = 0.444 gini = 0.32
samples =4 samples 3
value = [2.0) value =[1.4]
7 X
gini = 0.0 gini=0.0 gini=0.0
samples 2 samples 0 samples 0
class 0.0 class 0.0 class 01

Figure 2. Individual tree of the Random Forest ensemble [15]

3.3 Simulation of traffic and occupant safety

Simulation extends safety evaluation beyond what is
feasible with physical experiments. Traffic-level simulations
test cooperative braking or connected vehicle strategies,
while Monte Carlo models estimate crash frequencies under
varied conditions. Driving simulators are employed to
investigate human factors such as driver workload and
attention. At the occupant level, finite element and multi-body
models describe how bodies respond to impact, while
naturalistic experiments provide validation data. Figure 3
depicts the layered structure of these simulation approaches.

3.4 Biomechanics and Human Factors

Occupant biomechanics translates external crash forces
into  internal  physiological responses. Kinematic
measurements from shuttle experiments have shown that
posture affects motion trajectories during sudden maneuvers.
Human cognitive factors and risk perception also influence
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safety outcomes. Figure 4 presents representative
biomechanical motion data, emphasizing the variability of
occupant responses.
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Figure 3. Integration process of simulation technology in collision
prediction
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Figure 4. A schematic representation of the seat model
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3.5 Integrated framework

By linking risk identification, machine learning,
simulation, and biomechanics, the methodology ensures that
safety is assessed across multiple scales—from traffic-level
conflict metrics to tissue-level injury mechanisms. Figure 5
illustrates this integrative framework.

Figure 5. A two-dimensional multi-body biomechanical model of
the human body with seated posture

4. Results and discussion
4.1 Data-driven risk identification

Large datasets have revealed consistent spatial and
temporal patterns of crashes. Hotspots emerge in dense
urban environments, and statistical models improve the
estimation of crash severity. Machine learning further
enhances predictive performance, confirming that data-
driven approaches can provide early insights for safety
planning.

4.2 Machine learning applications

Machine learning improves traffic safety in several ways.
Deep models capture complex temporal dependencies in
traffic flow data, enhancing real-time risk prediction.
Pedestrian detection systems achieve higher accuracy when
enriched with multimodal sensing, and intent recognition
helps anticipate conflicts. Decision-making models reduce
unnecessary interventions, striking a balance between safety
and efficiency. Figure 6 demonstrates an example of
improved classification performance in pedestrian risk
prediction.

Mass 1 Kr1

,—Mass 7

Figure 6. Joint representation
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4.3 Simulation outcomes

Simulation studies confirm the benefits of connected and
automated driving. Cooperative braking reduces response
delays, microscopic traffic simulations show smoother flows
with fewer critical events, and Monte Carlo models provide
more reliable frequency estimates when combined with near-
miss data. However, limitations remain in simulator fidelity,
as experimental setups do not always capture real-world
biomechanical responses.

4.4 Biomechanical insights

Occupant experiments reveal that unrestrained
passengers experience large variability in kinematic
responses. Posture, body segment coordination, and cognitive
factors such as attention influence injury risk. These results
underscore the importance of integrating biomechanical
evidence into system-level evaluations. Figure 7 and Figure 8
present examples of occupant kinematic trajectories under
emergency braking. To synthesize the results across different
methodological approaches, Table 1 provides a comparative
summary of the main advantages, limitations, and
applications of big data analytics, machine learning,
simulation technologies, and biomechanics in the context of
autonomous vehicle safety.

Table 1. Comparative summary of different approaches for collision

safety

e Applications
A h A L .
pproac dvantages imitations in AV Safety
Captures
large-scale Limited by Crash
Big Data crash . da.ta .quality, sevel_"it}./ .
Analytics patterns; missing prediction;
identifies exposure hotspot
hotspots and measures identification
trends
Improves
detection, Pedestrian
L Often lacks .
. classification, . intent
Machine uncertainty -
. and L prediction;
Learning L quantification; .
prediction; dataset bias decision-
adaptable to making
real-time
Enables Limited Cooperative
Simulation virtual fidelity; results bra]fin
(FEA/MBD, testing; cost- may not &
. ) evaluation;
traffic effective; transfer to .
. traffic
models) multi-scale real-world S
. s oscillation
analysis conditions
Links system- | Requires
level risk to complex Injury
human injury | experiments; mechanism
Biomechanics | outcomes; high analysis;
posture- variability occupant
specific among protection
insights occupants

The reviewed studies collectively show that integrating
big data, machine learning, and simulation-based
biomechanics provides a more complete picture of collision
safety. Big-data methods identify when and where risks are
likely to occur. Machine learning extends this by predicting
future scenarios and supporting decision-making. Simulation
bridges the gap between abstract risk indicators and
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measurable occupant outcomes, while biomechanics ensures
that safety is defined not only in terms of crash avoidance but
also in terms of human injury mitigation.

61

Fdl

FDT FfT
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@)

Figure 7. Collision process and movement form of lower limbs (a)
phase 1; (b) phase 2; (c) phase 3
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Analysis of knee joint motion law under crash conditions

h 4

Design experiment to obtain the movement trajectory of sphyrion

r

Calculating the trajectory of tibiale by vector method

!

The trajectory of the tibiale is transformed into the theoretical profile of
the cam mechanism

!

Designing the mechanical structure of the kinematic bionic knee joint

I

Using kinematics simulation method to compare the sphyrion point
deviation before and after optimization

Figure 8. Design scheme of bionic knee joint

Nevertheless, several challenges remain. First, data
limitations restrict generalizability, with issues such as
inconsistent event definitions and demographic bias. Second,
machine learning models often lack uncertainty
quantification, making it difficult to judge reliability. Third,
simulation fidelity and transferability remain concerns, as
results may not fully reflect real-world conditions. Finally,
there is limited cross-layer integration — advances in
perception and communication are seldom connected
directly to occupant injury outcomes. Future research should
aim to create standardized, open datasets with harmonized
definitions, incorporate robust uncertainty estimation into
prediction models, and strengthen validation of simulations
against biomechanical experiments. A closer alignment with
international safety standards will also ensure that findings
are transferable to practice.

5. Conclusion

This review has synthesized recent advances in big-data
analytics, machine learning, simulation technologies, and
biomechanics to evaluate and optimize collision safety in
autonomous vehicles. The analysis demonstrates that data-
driven methods are effective for identifying crash hotspots
and predicting severity, while machine learning significantly
enhances detection, intent recognition, and decision-making
in complex urban environments. Simulation studies validate
the benefits of cooperative driving strategies but continue to
face challenges in model fidelity and transferability.
Biomechanical investigations further reveal the variability of
occupant responses, emphasizing the influence of posture,
cognition, and human factors on injury outcomes. The novelty
of this work lies in offering an integrative perspective that
explicitly links large-scale risk analysis, predictive machine
learning, simulation environments, and biomechanical
validation. By bridging these domains, the review moves
beyond traditional crash testing and demonstrates the
potential for adaptive, personalized, and biomechanically
informed safety systems. Looking forward, several research
directions are critical. First, the development of multi-scale
human body models and digital twin systems will enable real-
time coupling between external crash dynamics and internal
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injury mechanisms. Second, cloud-based simulation and
edge-Al frameworks should be explored to achieve scalable,
low-latency, and computationally efficient safety evaluation.
Third, greater attention must be given to uncertainty
quantification, dataset bias, and privacy protection, ensuring
that predictive models remain reliable and ethically robust.
Finally, closer alignment with international safety assessment
protocols—such as Euro NCAP and NHTSA guidelines—will
accelerate the translation of biomechanically informed
findings into practical vehicle safety standards. By addressing
these challenges, future research can support the
development of autonomous vehicles that are not only
capable of navigating safely but also capable of providing
transparent, human-centered, and regulation-compliant
crash protection.
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