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This review explores the avenues for the application of Artificial Intelligence
(AI) techniques in Glycemic Index (GI) related research. The necessity of
sophisticated technologies to investigate various Gl-related studies in food
analytics has been established in recent years. Al technologies have emerged as
promising approaches to address these challenges. We identified six major Al
technologies applied in GI research: Machine Learning, Reinforcement
Learning, Deep Learning, Image Processing, Natural Language Processing, and
Explainable Al. Some of our findings include: (a) There have been significant
improvements in Gl-related studies using Al technologies over the past decade.
(b) Machine learning algorithms were widely used (c) Many researchers used
custom datasets, with the predominance of research originating from North
American countries. (d) Identification of limitations and future directions for
Gl-related studies employing Al technologies. By embracing Al technologies, the
field of food analytics is poised for substantial advancements in understanding
and managing glycemic responses. Unlike existing reviews that mainly discuss
nutritional or clinical aspects of the glycemic index, this study systematically
examines the integration of Al and machine learning technologies in GI-related
research. It highlights computational breakthroughs, methodological trends,

and future directions for intelligent glycemic analysis.

1. Introduction

Of all the challenges technology seeks to address, human
health stands as the most critical and universally compelling.
Recent evidence shows that Artificial Intelligence is having a
significant impact on the healthcare industry, highlighting
how important human health has become for technological
advancements. In 2024, a survey by the Berkeley Research
Group found that healthcare providers and pharmaceutical
professionals are increasingly relying on Al to enhance
patient care, streamline processes, and transform the delivery
of medical treatment [1]. These breakthroughs are
particularly evident in diagnostics and personalized
treatments, where Al has shown impressive precision. For
example, Al models can now assess cancer aggressiveness
more accurately than traditional biopsies, according to a 2024
report from the World Economic Forum [2]. At the same time,
the global market for Al-driven healthcare is expected to
reach $70 billion by 2032, fueled by advances in Al for drug
discovery and medical imaging. In countries like China, Al
plays a vital role in optimizing medical resource distribution
and enhancing diagnostic accuracy, especially in areas with
limited access to healthcare [3]. Additionally, reviews of Al
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healthcare studies from 2023 show that fields like radiology

and Gastroenterology are experiencing the greatest impact.

Looking ahead, experts predict that Al will have a wider

influence across many areas of medicine, including

administration and education [4]. Among the leading
noncommunicable diseases, diabetes is now one of the
primary causes of death worldwide, representing an
escalating global health threat [5]. Therefore, extensive
research has been conducted, and active research is currently

underway, to find solutions to prevent and manage it [6-8].

Diabetes is a chronic, noncommunicable disease that occurs

when the body is either unable to produce enough insulin or

cannot effectively use the insulin it produces. Insulin is a

hormone that regulates blood sugar (glucose) levels, which is

crucial for providing energy to the body’s cells. There are two
main types of diabetes:

e Type 1 diabetes: This form is often diagnosed in children
and young adults, though it can occur at any age. It happens
when the immune system mistakenly attacks and destroys
the insulin-producing beta cells in the pancreas, leading to
little or no insulin production. People with Type 1 diabetes
require lifelong insulin therapy [9].
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Abbreviations

Al Artificial Intelligence

ANN Artificial Neural Network

CGM Continuous Glucose Monitoring

DL Deep Learning

GL Glycemic Load

GI Glycemic Index

HbAlc Glycated Hemoglobin

[oT Internet of Things

ML Machine Learning

NLP Natural Language Processing

PRISMA Preferred Reporting Items for Systematic
Reviews and Meta-Analyses

RL Reinforcement Learning

SHAP SHapley Additive exPlanations

XAl Explainable Artificial Intelligence

IP ImageProcessing

Type 2 diabetes: This is the most common form and is often
linked to lifestyle factors such as obesity, poor diet, and
physical inactivity. In this condition, the body becomes
resistant to insulin, or the pancreas cannot produce enough
insulin to maintain normal blood glucose levels. Type 2
diabetes can often be managed with lifestyle changes, but
may also require medication or insulin [9].
Diabetes develops when the glucose in the blood remains
elevated over time, leading to serious health complications,
such as heart disease, kidney damage, nerve damage, and
vision problems. Early detection and management through
lifestyle changes, medication, and regular monitoring of blood
sugar levels are crucial in preventing or delaying these
complications. There are several factors, such as Glycemic
Index, Glycemic Load, Fiber Content, Carbohydrate Type,
Meal Timing and Composition, Physical Activity, and others,
that influence blood glucose levels and diabetes. Among them,
the Glycemic Index plays a key role. The Glycemic Index is a
scale that measures how fast the carbohydrates in different
foods raise your blood sugar after you eat them. Foods are
ranked from 0 to 100, with higher numbers meaning they
cause a quicker rise in blood glucose, while lower numbers
indicate a slower, steadier increase.

e Low GI foods (GI < 55): These cause a gradual rise in blood
sugar, helping maintain stable levels (e.g, most fruits,
vegetables, whole grains, and legumes).

e Medium GI foods (GI 56-69): These create a moderate
increase in blood glucose (e.g., rye bread, bananas, sweet
potatoes).

¢ High GI foods (GI = 70): These lead to rapid spikes in blood
sugar (e.g., white bread, sugary drinks, and processed
cereals).

For people with diabetes, keeping blood sugar levels
under control is essential to managing the condition and
preventing complications. Eating high-GI foods can cause
sudden blood sugar spikes, which can be dangerous for
diabetics who may struggle with insulin production or use. On
the other hand, low-GI foods help keep blood sugar stable,
making it easier to manage diabetes. The GI is especially
important in Type 2 diabetes, where lifestyle and dietary
choices play a huge role. By choosing lower-GI foods, people
with diabetes can prevent sharp rises in blood sugar, reducing
the need for insulin and supporting better long-term blood
sugar control. Due to the importance of the GI in the
management of blood sugar levels, especially for people with
diabetes, extensive research has been conducted to explore
its various applications. Research related to GI has been
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observed to grow rapidly over the past few decades (Figure
1). Studies have connected GI with various fields,
investigating its role in diet, health outcomes, and disease
management. Researchers have examined how different
types of foods affect blood glucose levels, developed
predictive models for GI, and explored the benefits of a low-
GI diet in preventing and managing diabetes, obesity, and
cardiovascular disease. These efforts aim to deepen the
understanding of the significance of Gl and provide actionable
insights to improve health and wellness.
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Figure 1. Number of papers by year

It can be quite challenging to determine which
technologies are best suited for different applications of the
GI and to understand the reasons behind their effectiveness.
Whereas a few prior reviews investigated the Gl and nutrition
science/diabetes research, many of these centered on
clinical/dietary applications and did not systematically
examine Al/ML contributions in this field. When multiple
technologies address the same problem, it becomes even
more important to make comparisons. This highlights the
need for a systematic review and analysis. The primary goal
of this paper is to gather and examine various studies where
different approaches have been applied to the GI, with the aim
of uncovering useful insights related to human health. By
reviewing these approaches in a structured manner, we aim
to achieve two main objectives: first, to present and analyze
the areas where different technologies have been successfully
used with the GI, particularly in predicting GI values; and
second, to expand the potential applications of GI for a wider
audience.

Here, we provide a comprehensive overview of
technologies like deep learning, reinforcement learning,
explainable Al, and natural language processing, and how
these technologies are utilized to combine viewpoints of food
analytics and computational intelligence to predict GI. Unlike
prior reviews, which merely described dietary effects, our
work systematically charted how Al methodologies evolved
for predicting, monitoring, and personalizing nutrition plans
for GI. Moreover, our review identifies areas of poor usage of
state-of-the-art Al paradigms (e.g, XAI, multimodal data
integration) and offers future research prospects for
minimizing the gap between food science and computational
intelligence.

To enhance the reader’s experience, the rest of this paper
is structured as follows: in Section 2, we outline the
methodology used to conduct the review. In the next section,
we will provide a brief overview of these technologies,
offering the reader a foundational understanding of concepts
such as Computer Vision, Deep Learning, Food Technologies,
Image Processing, Machine Learning, Reinforcement
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Learning, Natural Language Processing, Statistical Analysis,
and Mathematical Modeling. The research studies, divided
into those key concepts, are discussed in Section 4, all related
to the use of GI and Information Technology. In Section 5, we
discuss the standard datasets used in the selected studies.
Finally, we conclude the review with a short discussion.

2. Methodology for systematic review: applying the

PRISMA framework

To enhance the transparency of our research reporting,
this systematic review was conducted in accordance with the
Preferred Reporting Items for systematic reviews and Meta-
Analyses (PRISMA) guidelines, ensuring a comprehensive
approach to the review [10]. In our initial stages of research,
we began by identifying relevant literature using the key
terms ‘Glycemic Index’ and ‘machine learning’ to gather
foundational insights. In addition to these, we expanded our
search scope by incorporating various Al and data prediction-
driven keywords such as ‘deep learning’, ‘NLP’, ‘data science’,
‘machine learning’, ‘reinforcement learning’, and ‘statistical
mathematics’. Recognizing the importance of contextualizing
our findings across different cultural and regional settings, we
also included country-specific keywords such as ‘Sri Lanka’,
‘India’, ‘Taiwan’, and ‘Morocco’. Given the research focus on
food and health, we employed a range of domain-specific
terms such as ‘traditional foods’, ‘breakfast’, ‘diabetes’,
‘glucose’, ‘blood sugar’, and ‘food technology’ to further refine
our results.

Table 1. Summary of the searching process

Duration of the | Used research | Key words Type of
search repositories Research
works
1st August 2024  |Scopus, Semantic|Glycemic Research,
to Scholar, index, Thesis,
30th September  (Sciencedirect, Glycemic Review
2024 Scispace, index predict, |Articles, Book
IEEE Xplore, machine Chapters,
Digital  Library,[learning Conference
Google Scholar  |algorithm Materials,
Glycemic Reports
Index,
Glycemic
Index for
machine
learning

We conducted our literature search across well-
established academic repositories such as Scopus,
ScienceDirect, IEEE Xplore Digital Library, Google Scholar,
and Semantic Scholar, ensuring the credibility and diversity
of our sources. Our review began in August 2024,
concentrating primarily on research articles, review papers,
book chapters, and conference proceedings, all published in
English. The screening process involved two reviewers. As
machine learning technologies gained momentum post-1959,
we focused our literature review on publications from 1960
to the present, ensuring that we captured the full breadth of
developments in this field. Summarized information is given
in Table 1. The reviewed literature was further categorized
based on its type, such as journal articles, conference
proceedings, and other formats (Figure 2).
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The selected papers were categorized based on the key
technologies used to derive findings related to the Glycemic
Index. The study aims to highlight the significance of the
Glycemic Index and assess its value in various research
contexts. Our focus includes:

e The diverse technologies applied in Glycemic Index
research and how they have been utilized.
¢ Standard datasets employed in the selected studies.
e Future directions and research opportunities in research
based on the prediction of the Glycemic Index.
For the article search, the repositories listed in Table 1 were
used. Well-known repositories such as PubMed, Web of
Science, and the Cochrane Library were not included, as they
often require institutional subscriptions to retrieve full-text
papers. Initially, 100 papers were collected in total, and
information such as the year, authors, and paper title was
added to an Excel sheet. The search query applied was
("Glycemic index" OR "Glycemic index prediction” OR
("machine learning algorithm" AND "Glycemic index") OR
"Glycemic index for machine learning"). This search query
was utilized to retrieve studies focusing on machine learning
algorithms for predicting or analyzing GI. Machine learning
was used in the search string, as ML is a key area in Al for
predictions and includes deep learning, XAl and other related

technologies.
17.9% ,

Categones
article
- misc
inproceedings
== book
phdthesis
=== mastersthesis

15.0%

Figure 2. Proportion of papers by category

Of these, 66 articles were directly selected from
repositories, while an additional 34 were discovered by
reviewing the identified articles or through works by the
same authors. Fifteen articles were excluded due to
duplication, being written in languages other than English
without available translations, or being irrelevant to the
study. However, some papers were not related to Computer
Science and only described food technology and GI-related
content. Such papers were removed after screening.
Furthermore, the remaining papers were categorized
according to different technologies, and eight major
technologies, such as food technology, statistical techniques,
NLP, RL, image processing, deep learning, and machine
learning, were identified in our survey. Figure 3 provides a
detailed summary of the article selection process.

3. Overview of key technologies and concepts

This section provides an overview of the
fundamental technologies and concepts pertinent to our
literature survey. The discussion will cover key areas
including Glycemic Index, Deep Learning, Machine Learning,
Food Technology, Image Processing, Reinforcement Learning,
Statistical Techniques, and Natural Language Processing.
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database searching through other sources
(n = 66) (n=34)

l l

Records after duplicates removed
{n=100-15=85)

]

Records screened Records excluded
(n=85) (n=1)

Full-text articles Full-text articles
assessed for eligibility excluded, with reasons
(n= 83) (n=2)

l

Studies included in
qualitative synthesis
(n=83)

‘ Records identified through ‘ Additional records identified ‘

Identification

Screening

Eligibility

Studies included in
quantitative synthesis
(meta-analysis)
(n= 83)

Included

Figure 3. Flow chart of the comprehensive review process based on
the PRISMA

Although some areas are closely related, they are
discussed and categorized separately to ensure a clearer and
more transparent review process. This approach allows for a
more structured analysis, making it easier to understand how
each technology relates to the Glycemic Index and how it has
been applied in various contexts.

3.1 Glycemic index (GI)

Foods and beverages provide the body with energy
through carbohydrates, fats, proteins, and alcohol. Among
these macronutrients, carbohydrates are the body’s preferred
source of energy. The Glycemic Index is a system that ranks
carbohydrates in various foods and drinks based on their
effect on blood glucose levels. Specifically, the GI measures
how much and how quickly a particular food raises blood
sugar levels after it is consumed. This index typically ranges
from 0 to 100, with pure glucose set as the reference point at
a value of 100. GI values can be categorized into three ranges:
e Low GI:55 or less
e Medium GI:56 to 69
¢ High GI:70 to 100
Foods with a high GI value (greater than 70) are rapidly
digested and absorbed, causing a rapid increase in blood
glucose levels. On the other hand, foods with a low GI value
(less than 55) are digested and absorbed more slowly,
resulting in a slower and more gradual increase in blood
glucose levels. Foods high in refined carbohydrates and sugar
are digested more quickly and often have a high GI; whole
foods high in protein, fat, or fiber typically have a low GI.
Foods that contain no carbohydrates, such as meat, fish,
poultry, nuts, seeds, herbs, spices, and oils, are not assigned a
GI value [11]. The Glycemic Index is calculated by measuring
the blood glucose response of a group of people after they
consume a specific food, typically using a standard amount of
carbohydrate (usually 50 grams). The Area Under the Curve
(AUC) for the blood glucose response over a two-hour period
is measured, and the GI is determined by comparing the AUC
of the test food to that of the reference food (either glucose or
white bread, which are used as reference foods). The formula
for calculating the Gl is as follows:

Gl = (AUC of test food)x 100 (1)

AUC of Reference food
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To calculate the GI of a meal, one must know the GI values
of the individual components. For example, if a meal consists
of one cup of cooked brown rice (GI = 50) and one serving of
grilled salmon (GI = 25), the total GI for the meal would be 75,
which reflects the combined effect of these foods on blood
sugar levels. Other factors that affect the GI of a food include
its ripeness, cooking method, type of sugar it contains, and the
amount of processing it has undergone. Understanding the
Glycemic Index and the factors that influence it can help
individuals make informed dietary choices, particularly those
managing conditions such as diabetes [12].

As GI appeared as one of the promising approaches to
identify the levels of carbohydrates, there is extensive
literature combining GI with various perspectives, including
food technology, nutrition science, and medical research.
Although the primary objective of this survey is to explore the
technological perspective of GI, it is important to
acknowledge relevant past works in the food technology
domain. These studies provide valuable insights into the
nutritional impact and health benefits of foods with varying
GI levels, as well as methods for modifying GI through food
processing techniques. By including these works in the GI
introduction section, we aim to provide a comprehensive
background that contextualizes the technological
applications we focus on, even though the main goal of this
survey is not to delve deeply into food processing or
nutritional studies. This approach helps to emphasize the
interdisciplinary nature of GI research, while still keeping our
focus on technological advancements and innovations in GI
prediction and analysis.

2024 - 2015 [11],[17],[19],[20],[21],[22],[23]
[24],[25],[26],[27], [28],[29],[30],
[31],[32],[33],[34],[35],[36],[37],
[38],[39],[40],[41]

2014 - 2005 [15],[16],[42],[43],[44]

2004 - 1995 [14]

1994 - 1985

1984 - 1980 [13]

Figure 4. Timeline of research where Gl was used in Food Technology

Early such work, mostly focused on calculating the
Glycemic Index, by using food with different carbohydrate
levels, and measuring blood glucose levels [13-15]. All three
studies aim to determine the glycemic impact of foods. The
first two studies follow the standard approach of measuring
postprandial blood glucose response in humans, while the
third study attempts to predict GI using a laboratory-based
method. Similar studies, such as [16-19], highlight various
approaches to measuring and applying GI, including
standardization of measurement techniques, regional
adaptations, and predictive modeling. One critical aspect here
to address is the variability in methodologies, which can affect
the reliability and comparability of GI values across studies.
They may lead to inconsistencies in the results. Readers
interested in exploring further can refer to Figure 4, which
provides an overview of various GI-based approaches applied
in food science research.
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3.2 Machine learning (ML)

Throughout history, humans have continually developed
tools to simplify tasks and meet various needs. The invention
of machines was a major leap forward, revolutionizing areas
such as transportation, industry, and computing. One of the
most significant advancements in recent years is machine
learning, a technology that has further extended the
capabilities of these machines. Machine Learning focuses on
enabling machines to handle data more effectively. In many
cases, large datasets are too complex for humans to easily
interpret. ML algorithms address this by identifying patterns
and extracting meaningful insights from the data. As the
availability of vast datasets continues to grow, so too has the
demand for machine learning, with industries applying it to
uncover  valuable information. Unlike traditional
programming, where explicit instructions are given, ML
allows machines to learn from data and make decisions based
on it. This shift has prompted researchers and engineers to
develop approaches that allow machines to learn
autonomously, without needing detailed programming for
every task [45].

It's important to recognize that machine learning is not
just about managing data; it is also a crucial part of artificial
intelligence. As a subset of Al, machine learning allows
systems to discover hidden patterns within datasets, enabling
them to make predictions about new data. This ability to
generalize from previous experiences is essential for creating
systems that can adapt to changing environments. For a
system to be considered intelligent, especially in dynamic and
unpredictable conditions, it must be able to learn and evolve.
If a system can adapt to changes on its own, the designer does
not need to foresee and program solutions for every possible
scenario. This adaptability is one of the key strengths of
machine learning. Machine Learning systems can be
categorized based on various criteria. These include:

o How they are trained (e.g, supervised, unsupervised, semi-
supervised, self-supervised)

e Whether they can learn continuously in real time (online
learning) or process data in batches (batch learning)

e Whether they compare new data points to known data or
build predictive models by detecting patterns (instance-
based versus model-based learning) [46].

These categories reflect the diversity of machine learning

approaches, each tailored to address different types of

problems and data environments.

3.3 Reinforcement learning (RL)

Reinforcement Learning is a type of ML in which an agent
learns to make decisions by interacting with an environment
and receiving feedback in the form of rewards or penalties.
The agent’s goal is to maximize cumulative rewards by
choosing actions that lead to favorable outcomes. Unlike
supervised learning, where models are trained on labeled
datasets, Reinforcement Learning relies on trial and error,
allowing the agent to explore and exploit the environment to
improve its strategy over time. The core components of RL
include:

e Agent: The learner or decision-maker (Single/Multi) [47].

e Environment: The setting in which the agent operates.

e Action: Choices made by the agent to interact with the
environment.

e State: The current situation or status of the environment.

e Reward: The feedback the agent receives after taking an
action

At each step, the agent observes the current state of the

environment, takes an action, and receives a reward based on
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the outcome. This process helps the agent learn a policy — a
mapping from states to actions that maximizes long-term
rewards. Reinforcement Learning is widely used in various
applications such as robotics, game Al, autonomous vehicles,
and resource management. The Deep Reinforcement
Learning (DRL) approach, which combines Deep Learning
with RL, has significantly advanced the field by enabling
agents to handle high-dimensional, complex environments
like images and continuous spaces. The challenge in RL lies in
balancing exploration (trying new actions) and exploitation
(choosing actions known to yield high rewards), ensuring that
the agent learns an optimal strategy efficiently.

3.4 Deep learning (DL)

Deep Learning is a subset of ML that mimics the
functioning of the human brain in processing data and
creating patterns for decision-making. It uses neural
networks with multiple layers to model complex patterns and
relationships in large datasets. DL has enabled remarkable
advancements in areas such as Computer Vision, Natural
Language Processing, and Speech Recognition. This
revolutionary approach to machine learning has the potential
to reshape various industries, including healthcare, where it
is poised to drive significant improvements in medical
imaging, disease diagnosis, and drug discovery [48-50]. The
distinguishing feature of deep learning is its use of multiple
layers of these artificial neurons, often referred to as “deep
neural networks”. This depth enables the system to
automatically extract features from raw data without the
need for manual intervention or feature engineering. As a
result, deep learning excels in tasks such as image and speech
recognition, natural language processing, and even complex
game strategies. DL has shown remarkable success in various
applications, including self-driving cars, medical diagnostics,
and predictive analytics [51,52]. The availability of large
datasets, along with significant advancements in
computational power (especially through Graphics
Processing Units (GPUs) and cloud computing), has
contributed to the rapid development and adoption of deep
learning techniques. Despite its successes, DL has challenges,
such as the need for vast amounts of labeled data and high
computational resources. Additionally, the models often act
as “black boxes”, making their decision-making process
difficult to interpret. Nonetheless, the field of deep learning
continues to evolve, pushing the boundaries of what
machines can achieve in terms of intelligence and automation.

3.5 Image processing (IP)

Image Processing is a technique used to perform various
operations on images to enhance their quality or extract
meaningful information. It is a valuable tool for analyzing and
transforming images, making them more suitable for specific
applications or interpretations. Whether the goal is to
improve visual quality, recover lost or degraded information,
or extract critical details, image processing plays a vital role
in fields such as computer vision, medical imaging, satellite
imagery, and photography. Atits core, image processing relies
on computational algorithms that analyze the pixel data in
images and apply a series of manipulations to achieve the
desired outcome. These algorithms can be designed to
address different aspects of an image, such as enhancing
colors, sharpening details, reducing noise, or highlighting
specific features. The complexity of these operations can
range from simple tasks, such as adjusting brightness and
contrast, to advanced techniques, like edge detection, object
recognition, and image segmentation. There are two main
types of image processing:
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¢ Analog Image Processing

¢ Digital Image Processing

Analog Image Processing involves handling images in a
continuous signal form (e.g., photographs or X-ray images)
and is often used in traditional photography or medical
imaging. Digital Image Processing involves converting images
into a digital format and then processing them using
computers. This type of image processing has widespread
applications in fields like computer vision, medical imaging,
remote sensing, facial recognition, and more [53]. Key tasks
in Digital Image Processing include image enhancement,
which focuses on improving the visual quality of an image,
such as sharpening or adjusting contrast, and image
restoration, which aims to remove noise or distortions to
recover the original image. Image segmentation involves
dividing an image into meaningful parts, such as identifying
objects within the image, while image compression reduces
the file size of an image, preserving its quality. Feature
extraction is another crucial task, where key patterns or
features in an image are identified for further analysis, often
used in computer vision and machine learning. Common
techniques in digital image processing include filtering, edge
detection, histogram equalization, and Fourier transforms.

3.6 Natural language processing (NLP)

Natural Language Processing is a field of artificial
intelligence that focuses on the interaction between
computers and humans through natural language. The goal of
NLP is to enable computers to understand, interpret, and
respond to human language in a valuable way. This field
involves several tasks, including:

e Text processing: This includes tokenization, stemming,
lemmatization, and part-of-speech tagging to prepare text
for analysis.

e Sentiment analysis: Determining the emotional tone
behind a series of words, used in applications like customer
feedback analysis.

e Named entity recognition (NER): Identifying and
classifying key entities in text (e.g, names of people,
organizations, locations).

e Machine translation: Translating text from one language to
another, as seen in tools like Google Translate.

e Speech recognition: Converting spoken language into text,
used in virtual assistants like Siri and Alexa.

e Text generation: Creating coherent and contextually
relevant text, such as chatbots or story generation.

e Question answering: Developing systems that can answer
questions posed in natural language, often used in
customer support and search engines.

Machine learning techniques are applied to textual data

similarly to how they are utilized in other forms of data,

including images, speech, and structured datasets. Supervised
machine learning techniques, such as classification and
regression methods, play a significant role in various NLP
tasks. For instance, an NLP classification task might involve
categorizing news articles into specific topics, such as sports
or politics. Conversely, regression techniques can predict
numeric values, such as estimating the price of a stock based
on discussions in social media. Additionally, unsupervised
clustering algorithms can be employed to group together
similar text documents. Any machine learning approach for

NLP, whether supervised or unsupervised, can be

characterized by three common steps: extracting features

from text, utilizing the feature representation to learn a

model, and evaluating and refining the model [54].
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3.7 Continuous glucose monitoring (CGM)

Continuous Glucose Monitoring is a technology used to
track glucose levels in real-time throughout the day and night.
It involves a small, wearable sensor inserted under the skin,
typically on the abdomen or arm, which measures interstitial
glucose levels at regular intervals. These readings are
transmitted to a receiver or smartphone, providing users with
a continuous stream of glucose data. This technology not only
tracks glucose trends but also provides alerts for
hypoglycemia or hyperglycemia, allowing proactive
management of diabetes. CGM is widely used in diabetes
management, particularly for individuals with type 1 and type
2 diabetes, to improve glycemic control and reduce the risk of
complications.

3.8 Explainable Al (XAI)

Explainable Al refers to artificial intelligence systems
designed in a way that their decisions, predictions, and
behaviors can be understood and interpreted by humans. The
goal of XAl is to make Al more transparent, trustworthy, and
accountable, especially in critical applications such as
healthcare, finance, and autonomous systems [55]. Here’s a
breakdown of the concept: Key Aspects of Explainable Al:

e Transparency: The Al model provides insights into how it
processes input data to produce its output. This might
involve revealing the structure of the model, the logic
behind decision-making, or the importance of features in a
prediction.

¢ Interpretability: The results or decisions made by the Al are
presented in a way that humans can understand. For
instance, instead of presenting a decision as a "black box”
output, the Al explains why a specific choice or prediction
was made.

e Accountability: XAl systems allow developers, users, and
regulators to scrutinize and validate the Al's decisions,
ensuring ethical and fair outcomes.

e Trustworthiness: By making Al systems understandable,
XAl builds confidence in their use, especially in high-stakes
scenarios where decisions impact lives.

Traditional Al models, particularly those based on deep
learning, often operate as “black boxes,” meaning their
internal workings are complex and not easily interpretable.
XAI addresses this limitation by providing insights into how
and why an Al system arrives at specific outcomes, enabling
users to trust and validate the model’s predictions. By
fostering transparency, XAl enhances collaboration between
humans and Al while reducing biases and errors in Al
applications. Major Techniques in Explainable Al:

e Intrinsic interpretability: Some models, like linear
regression or decision trees, are inherently interpretable
because their structure is simple and their outputs are easy
to trace back to inputs.

e Post-hoc explanations: For complex models like deep
neural networks, techniques are applied after the model
has made predictions to explain the output. Common
methods include:

e SHAP: Quantifies the contribution of each feature to a
prediction.

e LIME (Local Interpretable Model-agnostic Explanations):
Builds interpretable models around individual predictions.

e Feature importance analysis: Highlights which input
features were most influential in a decision.

e Visualization tools: For example, heatmaps in computer
vision models show which parts of an image influenced a
decision.
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SHAP, which stands for Shapley Additive Explanations, is
an interpretability method grounded in Shapley values and
was introduced by Lundberg and Lee. This approach has
become widely adopted in machine learning to explain model
outputs by quantifying the contribution of each feature to the
final prediction, making complex models more transparent
and interpretable. SHAP introduces two key innovations: (1)
the identification of a novel class of additive feature
importance measures and (2) theoretical results
demonstrating the existence of a unique solution within this
class that satisfies a set of desirable properties, such as local
accuracy, consistency, and additivity [56]. These properties
ensure that the feature attributions are both fair and reliable.
This framework unifies six existing methods under a common
theoretical foundation, offering a more robust and coherent
approach to feature importance. Notably, it addresses
shortcomings in several recent methods within this class that
fail to satisfy the proposed desirable properties. SHAP’s
interpretability extends beyond theoretical rigor, providing
practical tools like visualization plots that enhance
understanding of how features influence individual
predictions and overall model behavior, thereby empowering
users in high-stakes domains like healthcare, finance, and law.

3.9 Analysis of Variance (ANOVA)

ANOVA is a statistical method used to determine
whether there are significant differences between the means
of three or more unrelated groups. Developed by Ronald
Fisher, ANOVA extends the capabilities of the t-test, which is
limited to comparing only two groups. The primary function
of ANOVA is to analyze how different categorical independent
variables influence a continuous dependent variable by
partitioning the total variance observed into components
attributable to different sources.

ANOVA operates under several assumptions: the
samples must be independent, the dependent variable should
be normally distributed, and the variances among the groups
should be approximately equal (homogeneity of variance).
The test statistic for ANOVA is the F-value, calculated as the
ratio of variance explained by the treatment (between-group
variance) to the variance due to random chance (within-
group variance). A significant F-value indicates that at least
one group mean differs from the others, although it does not
specify which means are different; post-hoc tests are required
for that purpose.

There are various forms of ANOVA, including one-way
ANOVA, which examines a single independent variable with
multiple levels, and two-way ANOVA, which assesses the
impact of two independent variables and their interaction on
a dependent variable. This flexibility makes ANOVA a
powerful tool for researchers looking to understand complex
relationships in their data [57].

3.10 Tukey's Q method

The Tukey’s Q method, also known as the Tukey HSD
(Honestly Significant Difference) test, is a statistical tool used
to compare the means of different groups after conducting a
one-way ANOVA. It helps identify specific group differences
when ANOVA indicates significant variance among groups but
does not specify which groups differ. The Tukey HSD test
calculates a statistic known as ‘q’, which is then compared to
critical values from the Studentized range distribution. If the
calculated ‘q’ exceeds the critical value, it indicates a
significant difference between the group means. This method
is particularly useful because it controls the experiment-wise
error rate, reducing the likelihood of Type I errors that can
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occur when conducting multiple t-tests. By focusing on the
largest pairwise differences in means, Tukey’s HSD provides
a conservative approach to identifying significant differences
while maintaining statistical rigor. Researchers often rely on
statistical software to perform these calculations due to their
complexity, but understanding the underlying steps, such as
calculating overall and group means, sum of squares, and
mean squares, is crucial for interpreting results accurately.
Overall, Tukey’s Q method serves as an effective post-hoc
analysis tool in research studies where multiple group
comparisons are necessary [58].

3.11 T-test

The t-test is a statistical hypothesis test used to
determine whether there is a significant difference between
the means of two groups or between a sample mean and a
known population mean. It is particularly useful when dealing
with small sample sizes (typically n < 30) and when the
population standard deviation is unknown. There are three
main types of t-tests: the one-sample t-test, which compares
a sample mean to a known value; the independent t-test,
which assesses the means of two independent groups; and the
paired t-test, which evaluates means from the same group at
different times or under different conditions. The t-test
calculates a t-value based on the difference between group
means and their variability, which is then compared to critical
values from the t-distribution to assess statistical significance.
This method helps researchers understand whether observed
differences are likely due to chance or reflect true differences
in the populations being studied [59].

4. Harnessing technology in Glycemic index research:

innovations and insights

Here, we focus on the main objective of this study: to
enlighten the reader on how technology can be effectively
utilized to tackle various challenges associated with the
Glycemic Index. For convenience, we focus on specific
technological aspects one at a time and discuss studies that
have utilized them, either fully or partially, to address
challenges related to the Glycemic Index, as illustrated in
Figure 5, which presents a timeline of research where GI has
been used with different Al-based technologies.

4.1 Role of machine learning in research related to the

Glycemic index

Machine learning is a branch of Al and computer science
that focuses on using data and algorithms to enable Al to
imitate the way that humans learn, progressively improving
its accuracy. Overall, ML is used to make decisions based on
data. By modeling the algorithms on the basis of historical
data, they find the patterns and relationships that are hard for
humans to detect. These patterns are now further used for
future reference to predict solutions to unseen problems in
different domains. Biology and Food technology are some of
the key domains that have used ML. Numerous studies have
focused on the GI, exploring ML techniques to achieve diverse
objectives. Given the increasing prominence of ML in GI-
related research over the years (Figure 6), it is worth
highlighting this category as a central focus of the discussion.

The earliest record in our repository originates from
2017: Glycaemic Index Prediction: a Pilot Study of Data
Linkage Challenges and the Application of Machine Learning
[63]. They present a ML-based model that predicts the GI of
foods based on the biochemical properties. They employed a
multiple regression model, which bases its prediction on a
weighted linear combination of the independent input
variables. These variables include: (1) water (% of mass), (2)
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energy (K] per 100g), (3) protein (% of mass), (4) total
carbohydrates (% of mass), (5) sugars (% of mass), (6) fiber
(% of mass), and (7) lipids (% of mass). They used GI as a
target variable. In addition, the standard five-fold cross-
validation methodology has been used for training and
testing. Furthermore, they highlighted the need for the
adoption of a common standard for recording different types
of information on foods so that this information can be cross-
linked automatically and without ambiguity.
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Figure 5. Timeline of research where GI were used with different Al-
based technologies
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Colorectal Cancer (CRC) is recognized as the most
preventable cancer worldwide. The GI has been used to
assess healthy eating in association with CRC. The
researchers explored predictors of the Healthy Eating Index
(HED) and GI in multi-ethnic CRC families. In this study, GI
served as one of the key measures of diet quality, helping to
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realize its role in managing CRC risk. Predicting GI and HEI is
a major challenge in the real world. In this study, they
employed machine learning techniques for validating and
predicting HEI and GI. The validation procedures included the
use of ensemble methods and generalized regression models,
Elastic Net with Akaike’s Information Criterion with
correction (AICc), and Leave-One-Out cross-validation
methods. Generalized Regression (GR) models were
employed with Elastic Net and validation methods (AICc and
Leave-One-Out cross-validation) to minimize over-fitting and
to optimize prediction models for both HEI and GI. AlCc
validation and LOO cross-validation methods are effective
methods for small data sets. Results obtained revealed that
further studies with larger datasets and diverse samples are
needed to emphasize findings in diverse groups [66].

In the same direction, another study aimed to validate
predictors of healthy eating metrics: HEI, GI, and GL across
various modern diets. The researchers examined daily
dietary data from 131 diets classified into four primary
groups (liquids, convenience foods, ethnic diets, and
smoothies) to assess the impact of various diets on GI, GL, and
HEI scores. Logistic Regression (LR) was used as a baseline
model for initial predictions in this study. Also, Elastic Net
Generalized Regression was applied for improved accuracy
and to handle complex data with multiple predictors, and
Elastic Net combines ridge and lasso regression, employed to
minimize over-fitting while allowing selection of relevant
predictors [31]. In another work, Partial Least Squares (PLS)
regression was applied to predict the GI and amylose content
from Near-Infrared (NIR) Spectroscopy to analyze rice
characteristics spectral data. Near-Infrared Spectroscopy
(NIRS) is a primary technology that is used to collect spectral
data from rice varieties in the wavelength range of 740-
1070nm. The model mainly used NIR as features to predict
the GI and amylose content. Random Forest (RF) was
employed for rice varieties classification, while the Principal
Component Analysis (PCA) was used for dimensionality
reduction to enhance the classification performance. Also
Linear Discriminant Analysis (LDA) for classifying rice
samples according to parboiling treatments was employed.
This research also explored the use of a portable NIR sensor
for real-time, on-site evaluation, creating predictive models
for identifying rice varieties and estimating amylose content
[77].

While the glycemic index may not be one of the most
critical factors, it serves an indirect yet important role in
certain situations. Intensive insulin treatment is a standard of
care for tight glycemic control in people with diabetes to
prevent or delay long-term complications of diabetes
mellitus. However, insulin therapy may trigger lethal
hypoglycemia, and these results show that a number of
subjects are prevented by this risk factor from attaining and
sustaining near normoglycemia. The forecasting of
postprandial hypoglycemia is considered to improve the CGM
technology for persons with diabetes using insulin. The GI can
also change the Rate of Glucose Increase (RIG), which is a
predictor of hypoglycemia. The researchers did not use
specific GI values, but used glucose profiles characteristic of
high GI foods to help simulate hypoglycemia dangers. This
study employed four machine learning models to predict
hypoglycemia, including RF, Support Vector Machine (SVM)
(with both linear and radial basis functions), K-Nearest
Neighbor (KNN), and Logistic Regression. Among the four
models, the Random Forest was the best with an average of
AUC 0.966 and was quite good at predictive ability. The
researchers in this study plan to explore evaluation of their

100



NH. Wanigasingha et al. /Future Technology

algorithm on a prospective patient population to clearly
establish the clinical use of this system [71].

Another study pursued the usage of machine learning
approaches for estimating short-term blood glucose levels of
Type 1 Diabetes (T1D) patients. T1D is an autoimmune
disease in which the pancreas releases little or no insulin. The
traditional method involves having patients administer
insulin shots to themselves on a number of occasions each
day. In this work, the focus was geared more towards proper
identification of suitable ML models depending on glycemic
status (hypoglycemia, normoglycemia, and hyperglycemia).
This study also addressed the challenge of imbalanced data,
which occurs when T1D patients spend the majority of their
time in the normoglycemic range. GI affects how the study
encompasses the dynamics of glucose related to food intake;
it has an indirect effect on how blood glucose is managed and
anticipated. Ten different machine learning and deep learning
algorithms were used for training regression models,
including Linear Support Vector Regression (SVR), Lasso
Regression, Decision Trees, Random Forest, KNN, Multilayer
Perceptron (MLP), and Gradient Boosting. The prediction
models used 24 consecutive CGM sensor measurements
obtained every five minutes over a 120-minute period, with
the blood glucose level set 30 minutes after the last reading.
Overall, the work provided a detailed overview of ML
strategies for blood glucose prediction, highlighting the
necessity of tailored models and oversampling techniques
when dealing with imbalanced glycemic data [73].

Similarly reference [75] aimed at establishing the
feasibility of estimating blood glucose levels of T1DM
patients through constrained platforms like smartphones and
Raspberry Pi. As the research objective, the real-time glucose
prediction from aggregated data streams was performed with
the help of the Machine Learning models implemented on the
local devices excluding the cloud computing that can provide
predictions even if there is no internet connection. Data from
CGM was used to develop univariate models in which
forecasts are based on preceding glycemic values. Despite the
fact that the model did not use GI values directly it relied on
the CGM records which captured patterns of effects of high-GI
foods. The model was able to use the observed glucose
changes and calculate the future glucose values without an
accurate GI of all foods in the meal. This study employed ML
models such as RF, SVM, and Autoregressive Integrated
Moving Average (ARIMA). SVMs also perform computations
efficiently on devices with restricted computational
capabilities, like Smartphones and Raspberry Pi, and this was
most evident with tiny sliding window computations.
Heading in the same way, another research presented an
ensemble machine learning approach to detect unannounced
meals (UAM) in type 1 diabetes patients. Maintenance of
postprandial glucose level is another considerable barrier in
the management of T1D. CGM and hybrid Automated Insulin
Delivery (AID) systems depend on patients to alert and
predict carbohydrate (CHO) intake, which is frequently
ignored, especially in adolescents. This study identified that
missing meal announcements increase time to insulin
administration, increase postprandial blood glucose
variability, and reduce overall glycemic control. Here also, GI
is indirectly used for glycemic control by aiming to detect
UAM and improve glucose management. The ensemble model
was built combining the predictions of three ML models:
Artificial Neural Network (ANN), RF, and Logistic Regression.
A total of 14 features were used, of which 12 are based on
CGM readings and the remaining two are based on insulin
data [97].
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Maintaining glycemic control in children with type 1
diabetes is a challenging task in clinical practice. A study has
focused on predicting glycemic control (measured by
glycated hemoglobin levels (A1C)) in children with Type 1
Diabetes using machine learning algorithms. Binary Logistic
Regression was applied to predict the probability of poor
glycemic control, identifying significant predictors such as
A1C at onset and ketoacidosis episodes. GI was not directly
used in this study. In the model, the initial A1C level was an
essential covariate because it captures historical glycemia
that could be influenced by GI. High A1C could indirectly
capture patterns associated with frequent intake of high-GI
foods if they led to sustained high glucose levels over time.
This study used 15 features, including demographic and
socioeconomic  Factors like family income, living
environment, maternal and paternal education. Overall, the
indirect impact of GI on long-term glycemia regulation could
be conferred in baseline A1C and lipid profile captured by the
model [90].

The main types of diabetes are Type 1, which comprises
5-10% of diabetes patients. According to the International
Diabetes Federation (IDF, 2017), Type 1 diabetes is caused by
an autoimmune reaction in which the body’s immune system
attacks the insulin-producing beta cells of the pancreas and
causes the body to produce very little or no insulin; hence a
diabetes patient is required to ad- minister insulin on daily
basis to maintain the recommended target blood glucose
level. Type 2, which was formerly well known as non-insulin
dependent, and which comprises 90-95% of diabetes
patients, is caused by the human body’s inability to fully
respond to insulin (IDF). Focusing on Type 2 diabetes
patients, a study aimed to develop a personalized food
recommendation system. GI was the core metric to classify
foods into high, medium, and low categories, helping the
system to recommend foods with a lower likelihood of
causing blood sugar spikes. They considered GI, GL, and
carbohydrate content as features of the study. These features
focused on the glycemic impact and carbohydrate content of
food items to classify foods into categories. Naive Bayes
Classifier was selected as the primary machine learning
model to recognize patterns in glycemic response. Foods with
known GI values were sourced from an international
Glycemic Index database, which supports the model in
recommending foods based on how they are likely to affect
blood glucose [85].

In tandem, another study tried to create a model
predicting the GI of fruits. They employed a combination of
DL and ML methods to predict the GI of fruits. The output of
the consequent module can identify three fruits, including
Apples, Bananas, and Oranges, but the G is predicted only for
bananas. They used bananas for GI prediction because the GI
of bananas varies a large amount according to ripeness cycles
and is a simple food for testing. The researchers used
Glycemic Load (GL) to assess the overall Glycemic Index of the
fruit. A Convolutional Neural Network (CNN) was used to
determine the type of food. Then, a simple binarization model
was used to characterize the measurements of the fruit
length. They used the THRESH_BINARY function from the
OpenCV library to binarize the image of the fruit. Two linear
regression models were then applied to the prediction length
to derive the GL and Carbohydrate content of the fruit,
respectively. The pretrained machine learning models were
invoked based on the ripeness of the fruit to predict the GL
and the carbohydrate content of the fruit. Both linear
regression models took length as an input parameter. Once
the carbohydrate content and GL values were in, the data
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were plugged into the glycemic index formula to determine
the Glycemic Index. Clearly, this research employed CNN for
fruit classification and linear regression for GL prediction to
help Pre-Diabetes patients select healthy fruits according to
their glycemic response [30].

In some research, the GI is used as a feature to evaluate
and optimize dietary impacts on blood glucose levels. One
such study focused on developing a machine learning model
to predict postprandial blood glucose responses in patients
with Gestational Diabetes Mellitus (GDM). A gradient
boosting algorithm was used, and they extracted data from
various resources like mobile app diaries, CGM, and
individual patient characteristics to improve blood glucose
control. The GI was used as one of the features in this model.
The model also used GL, which combines the GI and the
quantity of carbohydrates consumed to estimate the impact
of food on blood glucose levels. They used random grid search
and cross-validation for hyperparameter tuning. Values from
the SHAP method were employed to understand the influence
of different features on model prediction. This study used
explainable Al methods through SHAP to evaluate the impact
of features on the predictions [78].

On the same line, reference [39] employed GI as a
feature. The study focused on increasing the prediction
accuracy of the Postprandial Glycemic Responses (PPGR) in
women with Gestational Diabetes Mellitus by incorporating
GI and GL. CGM & food diaries of pregnant women were used
for the development. They compared models with and
without GI/GL data to determine whether or not GI/GL data
can improve the prediction of PPGR. The study was focused
on finding the effect of GI/GL information to enhance the
prediction of PPGR outcomes. This study used a total of 124
participants (90 GDM & 34 controls) from the prospective
multi-center GEM-GDM (Genetic and Epigenetic Mechanisms
of Developing Gestational Diabetes Mellitus) clinical trial.
Each of 1,489 meal records was associated with glucose
measurements. Gl values were derived directly from the
University of Sydney database (available until October 2023)
[110] and matched to foods in the DiaCompanion app food
database. ML methods such as linear regression and
regularized regression (Lasso, Ridge, Elastic-Net, LARS Lasso,
Orthogonal Matching Pursuit) were used in the study.
Another study addressed the need for accurate, automated
dietary monitoring by analyzing the Post-Prandial Glucose
Response (PPGR) to predict meal macronutrient content.
They also used GI as a key factor influencing PPGR, especially
for carbohydrate-heavy foods. But the model did not directly
calculate GI values. Instead, it used CGM-based PPGR data to
infer macronutrient compositions of meals. The model
implicitly considered the impact of carbohydrates (via PPGR
patterns) in estimating these compositions, which are
indirectly related to GI effects. They evaluated the sparse-
coding approach against two baseline techniques: (1) ridge
regression (RR), as a representative of regularization
methods, and (2) a Nearest-Neighbor classifier operating in a
Linear Discriminant Analysis subspace (LDA-kNN), as a
representative of distance-based classifiers [82]. In another
similar work, machine learning models were used to predict
the progress of the glycemic values of six patients with
diabetes. Eight different algorithms were compared, i.e., ANN
with Multilayer Perceptron, Probabilistic Neural Network
(PNN), Polynomial Regression, Gradient Boosted Trees
Regression, Random Forest Regression, Simple Regression
Tree, Tree Ensemble Regression, and Linear Regression. The
algorithms were classified based on the ability to minimize
four statistical errors, namely: Mean Absolute Error, Mean
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Squared Error, Root Mean Squared Error, and Mean Signed
Difference. Direct use of GI is not presented. Instead, it aimed
to predict overall glycemic status using historical glucose
readings from patients [89].

In reference [88], researchers used wearable device data
to attempt to predict future glycemic control among adults
with prediabetes. In this study, they have 16 features,
including physical activities, heart rate, and sleep. They aimed
to predict longitudinal continuous changes in hemoglobin
A1C and assess worsening, improvement of glycemic control
among non-diabetic and prediabetic adults using various
features obtained from wearables. Directly calculated or
predicted GI was not specifically measured in the study.
Instead, changes in glycemic control were monitored using
hemoglobin A1C levels (which reflect long-term blood
glucose levels rather than short-term postprandial responses
to foods).

Diabetic Retinopathy (DR) is one of the major
complications of diabetes. A recent study integrates ML
models to predict the risk of diabetic retinopathy [99]. SHAP
was established to increase the accuracy of risk prediction for
diabetic retinopathy, explain the rationality of the findings
from model prediction and improve the reliability of
prediction results. The features that used in the model were
extracted from a diabetes complication dataset. The CatBoost
model was employed and optimized for the prediction task.
The GI itself is not directly used as a feature in this study;
instead, this study focused on glycemic measures like
glycated hemoglobin (HbAlc) and fasting blood glucose
(GLU_2H) as significant indicators in diabetic retinopathy risk
assessment. GI measures how quickly carbohydrate-
containing foods raise blood glucose, which is particularly
relevant for diabetes management. ML has yielded stunning
success in predicting the importance of diabetes risk using
health indicators and pattern analysis.

“Diabetes  Prediction Using Machine Learning
Classification Algorithms” [111] reveals the effectiveness of
several classification algorithms, including SVM, Extreme
Gradient Boosting (XGB), Decision Trees (DT), and RF, in
predicting diabetes. Implementing ML models in GI
predictions would lead to identifying the effect of foods on
blood glucose levels, thus helping to formulate dietary
recommendations and support glucose management within
both diabetic and pre-diabetic populations. The glycemic
variability metric is an additional measure available to the
clinician as a potentially useful tool for estimating overall
glycemia. Here, the researchers employed a new measure,
Consensus Perceived Glycemic Variability (CPGV), for how
much a patient’s blood glucose levels fluctuate, as evaluated
by doctors. ML models were used to forecast blood glucose
levels for 30 and 60 minutes in the future. This study focused
on blood glucose variability and predicting blood glucose
levels based on CGM data, which are different from the GI.
Glycemic variability measurement and blood glucose
prediction were modeled with 26 features. The CPGV metric
was created using Linear Regression, whereas the future
glucose levels were predicted using SVR and MLP [107].

“Application of Machine Learning Algorithms to Predict
Uncontrolled Diabetes Using the All of Us Research Program
Data” [91] used ML techniques to effectively predict
uncontrolled diabetes using clinical markers such as serum
electrolytes, body weight, and other physiological indicators.
While the GI was not applied directly as a feature in this study,
it demonstrated the use of ML as a potential tool for diabetes
control using various predictors of glycemic status. This gives
GI prediction an additional dimension, making it possible to
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adapt ML not only to the amounts of food we are consuming
but also to provide a more holistic perspective on factors
related to the regulation of blood glucose levels. This
suggested the need for including GI as a supplemental dietary
characteristic to improve personalized diabetes management
in such models. To emphasize this, they employed techniques
such as RF, Extreme Gradient Boosting (XGBoost), Logistic
Regression, and Weighted Ensemble Model (WEM) that
combines RF, XGBoost, and LR models. A similar study
explored the relationship between noninvasive wearables
and glycemic metrics and demonstrated the feasibility of
using non-invasive wearables to estimate glycemic metrics,
including hemoglobin Alc and glucose variability metrics
[87]. The application was in real-time for people with pre-
diabetes or high-normal glucose. ML approaches such as
random forest models were used to estimate HbA1lc levels.
The study did not directly address the concept of GI but
accentuated the potential for continuous, noninvasive
monitoring of glycemic metrics. For this purpose, digital
biomarkers were used to obtain physiological data, including
skin temperature, electrodermal activity, heart rate, and
accelerometry. The metrics correlate with glucose levels.
Along with this, they provide insight into glucose variability
without requiring traditional invasive measurements like
blood samples.

The maintenance of glycemia in range is one of the
biggest challenges in the treatment of patients with diabetes.
In a recent comparative study, the focus was to compare
different diabetes management therapies, with an idea of the
effectiveness of a machine-learning-trained closed-loop
artificial pancreas system. Diabetes Type 1 (DT1) patients’
data were used in this study. They tried to measure
improvements in glycemic control when switching from
traditional therapies to the ML-trained system. The Low
Blood Glucose Index (LBGI) and High Blood Glucose Index
(HBGI) were employed as blood glycemic indices that
measure the likelihood of hypo and hyperglycemia events,
respectively. Specific features used to predict glycemic
control include time in range (TIR%), mean and median blood
glucose levels, percentages of hypoglycemia and
hyperglycemia, LBGI, HBGI, and glycated hemoglobin. The
closed-loop artificial pancreas algorithm was trained using
machine learning techniques to optimize insulin dosage
based on collected glucose data. Two ML regression
techniques were tested by them in the R environment. This
study concluded that “hybrid closed-loop” artificial pancreas
with control algorithm trained with machine learning
technology provides very significant improvement in
glycemia control compared to the multi-daily injection (MDI),
insulin pump without CGM, and sensor-assisted insulin pump
therapies [76].

A study investigated the relationship between glycemic
control, hyperhomocysteinemia, and microalbuminuria,
which is an early marker of kidney and cardiovascular
complications in diabetics [74]. They defined glycemic
control by Fasting Blood Glucose (FBS) and glycosylated
hemoglobin to assess their relations with microalbuminuria.
The analysis for the association of urinary microalbumin with
age, gender, HbA1lc, FBS, and diabetic status was performed
by using a multiple linear regression model. In another recent
study, the GI is used as a conceptual foundation for
understanding the glycemic impact of food. Estimation of the
glycemic impact of cooking recipes wusing online
crowdsourcing and machine learning is a novel approach.
This study focused on glycemic impact, which refers to how a
recipe affects blood sugar levels post-consumption. The
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researchers considered the sugar-to-fiber (S/F) ratio as a
proxy for the glycemic impact during the initial stages of
recipe selection and modeling. Several ML models were
developed, including Logistic Regression and LightGBM.
Furthermore, the study experimented with various NLP
techniques, such as bag-of-words (BoW) and word
embeddings (e.g., Word2Vec, GloVe, FastText). They used
both textual features and 20 nutrition features. Textual
features included recipe titles, ingredients, and cooking
directions. Nutrition features included carbohydrates,
protein, fat, and dry weight. As limitations, they highlighted
that the models trained on small datasets are prone to
overfitting [72].

In addition, there were several review papers related to
ML and GI. They were helpful in identifying the existing
methods and the gaps related to the field. One of the recent
studies has investigated the role of machine learning in
nutrition science and diabetes management [102]. The article
reviewed machine learning methods for screening Food
Bioactive Compounds (FBCs) with bioactivities like
antioxidant, anti-inflammatory, antihypertensive, and
hypoglycemic effects. It presents an ML model development
process, covering  data preparation, molecular
representation, ML algorithm selection, and evaluation
methods. SVM, RF, and KNN are commonly used for initial
screening. And also CNN and Recurrent Neural Networks
(RNN) are applied to complex data. This study further
accentuates the importance of model interpretability.
Techniques such as feature importance were used to
understand the contribution of each molecular descriptor to
the prediction of bioactivity. There was another synthesis
that examined the role of Al and ML in outcomes to improve
glucose control [94]. They fixated on predictive modeling
development in the space of not only automated insulin
delivery systems but also CGM. The study specifically worked
on challenges faced in terms of data consistency, clinical
accuracy, interpretability, and personalization. The study
appears as a guide for ML practitioners on diabetes data,
including best practices, feature engineering, standardizing
datasets, and evaluating models. Overall, the findings of this
review describe improvements due to ML in diabetes
management. The paper also discussed the difficulties of
applying ML and Al techniques, including the data processing
inhomogeneity, metrics evaluation for models, and the usage
of multiple data sources accounting for glycemic control
interpatient variability. Going along the same direction as a
literature analysis, another paper investigated the
incorporation of GI into smartphone-based food classification
and nutritional estimation [95]. Most of the systems
discussed in this review use computer vision to categorize
foods and predict portion volumes to help facilitate dietary
monitoring in diabetes management. Further, the paper
reviewed possible future GI integration supportive
technologies. ML and DL techniques have been thoroughly
reviewed for food identification and volume estimation. CNNs
such as AlexNet, VGG, ResNet, and EfficientNet are commonly
used as baseline models to classify food images. Classification
based on extracted features was performed using SVM and
RF. According to these review studies, preliminary
knowledge on ML has been integrated for food bioactivity
screening, automated dietary assessment, and GI control.
Research gaps still exist because no predictive modeling
dedicated to the GI was found. Recently, machine learning
approaches have been developed to estimate GI or inter-
individual glycemic responses than previous studies. These
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models are based on complex patterns of food composition
variables in larger and more diverse datasets.

Machine Learning technologies play a crucial role in
research related to the GI. GI prediction, glycemic control, and
how glycemic indices affect a diabetic patient were identified
using ML algorithms. For such a task, identifying complex
relationships between food composition, blood glucose levels,
and health outcomes was taken into account. Regression
models and classification models played a major role.
Regression models such as multiple linear regression, elastic
nets, and ridge regression were used to predict GI by
analyzing food characteristics. These models provide a basis
for calculating how different foods affect blood glucose levels.
Classification algorithms, such as random forests, SVM, and
logistic regression, enable food classification based on GI
levels and have proven useful in creating personalized dietary
recommendations. Time series models such as ARIMA and
autoregressive neural networks are used in real-time
glycemic monitoring. By analyzing CGM data, it predicted
blood glucose trends, which is especially helpful for diabetics
who need dynamic management of blood sugar levels.
Ensemble models, such as gradient boosting and random
forest ensembles, improve predictive accuracy by combining
multiple algorithms, often for applications such as identifying
unreported foods or adjusting insulin in artificial pancreas
systems. Finally, explainable Al models, using methods such
as SHAP, provide insight into feature importance, allowing
clinicians and researchers to understand which factors most
influence glycemic outcomes. Together, these ML models
form a robust framework for predicting, monitoring, and
managing glycemic responses, making them central to the
advancement of personalized glycemic control. Collectively,
these approaches highlight how ML techniques can be applied
not only to GI prediction but also to broader applications such
as diabetes management, dietary assessment, and
personalized nutrition by advancing computational nutrition
science.

4.2 Role of reinforcement learning (RL) in research

related to the Glycemic index

Reinforcement Learning is a machine learning paradigm.
Agents learn to make decisions by interacting with an
environment to maximize cumulative rewards. Unlike
supervised learning, which is based on labeled data, RL
involves trial-and-error exploration. This dynamic learning
approach is particularly effective in problems that require
sequential decision-making, such as feature selection, control
systems, and real-time predictions. In our repository, the
study “Impartial Feature Selection Using Multi-Agent
Reinforcement Learning for Adverse Glycemic Event
Prediction” [20] represents a pioneering effort in applying RL
to feature selection in the context of blood glucose prediction.
They presented a model for predicting adverse glycemic
events (normoglycemia, hypoglycemia, hyperglycemia) using
CGM, Electronic Medical Record (EMR), Multi-agent
Reinforcement Learning (MARL), and Time2Vec (T2V). EMR
data were used for feature selection. MARL employed optimal
feature selection and selected optimal EMR features for better
model performance. Although the study does not directly
predict or calculate the GI of foods, it utilizes CGM-derived
blood glucose levels and EMR data to predict adverse
glycemic events. MARL evaluated individual feature
contributions and derived the optimal feature set by
dynamically assigning rewards proportional to the
performance change each feature contributed. It has been
observed that, aside from this study, few significant efforts
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have been made to apply Reinforcement Learning (RL) to
Glycemic Index research. This highlights an open area of
exploration, presenting an opportunity to go deeper into the
potential of RL in GI-focused studies.

4.3 Role of deep learning in research related to the

Glycemic index

Deep Learning is a specialized area of artificial
intelligence that utilizes neural networks with multiple layers
to analyze and interpret complex data patterns. By mimicking
the way the human brain processes information, deep
learning models can automatically extract features from raw
data, making them highly effective for tasks such as image and
speech recognition, natural language processing, and more.
These models are trained on large datasets, adjusting their
internal parameters to improve accuracy and performance.
The rise of deep learning has been fueled by advancements in
computational power and the availability of vast amounts of
data, leading to significant breakthroughs in various fields,
including healthcare, finance, and autonomous systems. One
emerging area where deep learning is making a considerable
impact is in health-related research, specifically the
prediction and recommendation of foods based on their GI,
making it a critical tool for managing diabetes and other
metabolic conditions. Through deep learning techniques,
researchers can analyze food images, predict GI values, and
recommend lower-GI alternatives to support personalized
dietary plans. These applications combine computer vision
with nutritional science, demonstrating deep learning’s
potential to support better health outcomes through dietary
management.

Reference [44] is the earliest study in our survey, linking
deep learning with GI prediction, specifically an artificial
neural network, which is employed to predict the GI of foods.
The process involves simulating human digestion, where
samples undergo enzyme digestion, and their sugar contentis
analyzed using HPLC  (High-Performance  Liquid
Chromatography). The ANN takes the compositional data
(such as protein, fat, dietary fiber, and sugar content) from the
HPLC results and predicts the GI by learning from known GI
values. The ANN model achieved a high correlation (r? = 0.93)
between predicted and actual in vivo GI values, which shows
that it could predict GI values closely matching those obtained
from conventional human testing. Another way to predict GI
is to analyze captured signals from chewing and swallowing,
leading to our next research work, [67]. This proposes a
method for managing diabetes by monitoring food intake
behavior (chewing, swallowing, and saliva secretion) and its
impact on blood glucose levels. The study wuses a
Microelectromechanical System (MEMS) acoustic sensor to
capture signals from chewing and swallowing, analyzing
these signals to predict and control postprandial GI.
Convolutional neural networks are used for feature
extraction from acoustic signals generated during chewing
and swallowing, focusing on spatial and frequency patterns.
Additionally, Deep Belief Networks (DBNs) are employed to
further analyze non-linear relationships in chewing signals,
helping to generalize patterns and link them to blood glucose
levels. When we talk more about health monitoring and
predicting GI, the previous work [46] also focuses on
predicting the GI of fruits, primarily focusing on bananas. The
CNN model is applied for fruit recognition (apples, bananas,
and oranges) and ripeness (raw-green, ripe, overripe)
detection. Ripeness is critical because the GI of bananas varies
significantly with ripening. After that, the model uses image
binarization to estimate banana length, exploring OpenCV’s
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Thresh_Binary and boundingRect functions. Length serves as
an essential feature for GI and carbohydrate content
prediction. The GI is derived from GL and carbohydrate
content. The model assesses whether the fruit is safe to
consume based on GI thresholds, providing dietary
recommendations if necessary.

Another fruit-based study [93] uses deep learning
techniques, specifically an improved Faster R-CNN model
with a Squeeze-and-Excitation (SE) attention module, to
estimate the GL index of fruits, not the GI. The model identifies
the fruit type (using R-CNN) and estimates its volume (based
on fruit size relative to a reference object (e.g.,, thumb) for
accurate GL calculation), which are then used to calculate the
GL based on existing GI values. The GI of each fruit type is a
known input in this process. Instead, the model uses the
fruit's GI, volume, and carbohydrate content to compute the
GL, providing a measure of how consuming that fruit might
affect blood sugar levels. Just like fruits, bread is also explored
as a research area for GI prediction through deep learning.
[26] utilizes deep learning and computational intelligence
methods to predict the digestion kinetics and GI (with the
help of sample concentration of Euryale Ferox Seed Shell
Extract (EFSSE), digestion time, and hydrolyzed starch
concentration after digestion) of bread fortified with EFSSE.
The Swarm Intelligence Supervised Neural Network (SISNN),
specifically using Particle Swarm Optimization (PSO),
simulates digestion kinetics more accurately than traditional
mathematical modeling, aiding in predicting the glycemic
response of fortified bread. The model demonstrates
improved performance in predicting the GI of bread samples
by integrating the optimization strengths of PSO with neural
network modeling.

Rather than predicting GI, reference [84] aimed to
predict heart disease risk in diabetic patients using deep
learning techniques. GI is used as part of the input data for
predicting heart disease risk among diabetic patients,
providing insights into how certain foods affect blood glucose
levels. In this study, LSTM (Long Short-Term Memory) was
tested to determine its effectiveness in predicting heart
disease based on diabetic patients’ data. Gated Recurrent Unit
(GRU) is another RNN variant designed to handle sequential
data, but with a simpler architecture compared to LSTM. GRU
outperformed LSTM, providing better results in terms of
accuracy and efficiency. It optimizes the learning rate through
backpropagation, adjusting parameters to improve
prediction accuracy. While the earlier works utilized deep
learning to analyze food intake behaviors, the study [83]
shifts focus toward comparing predictive models for
continuous glucose monitoring. The comparison was carried
out between ARIMA models for auto-adaptive parameter
tuning with statistical tests for real-time GI prediction and
LSTM-based RNNs to capture long-term dependencies,
trained with backpropagation through time. This presents a
novel method for parameter optimization in ARIMA and
evaluates these models in a practical online learning scenario,
with specific applications in health monitoring systems.

Health monitoring alone is insufficient for maintaining
good health; it is essential to consume appropriate food
varieties and quantities to achieve a healthy lifestyle. In
reference [25] GI is incorporated into a recommendation
system that suggests healthier food alternatives for users
with specific health conditions like diabetes. When a user
inputs a food image, the model identifies the food item and
retrieves its nutritional content, including GI. If the identified
food has a GI over 55, the system recommends three similar
foods with a lower GI, suitable for users who need to manage
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blood sugar levels. The study uses the InceptionV3 deep
learning model, a CNN, for food image recognition, which
achieved an accuracy of 75%. Another similar food image
recognition application is used in the reference [11] aims to
develop a Moroccan food dataset for food image recognition
and nutritional analysis, specifically focusing on estimating
the GI of various Moroccan dishes using deep learning
techniques. The study employed transfer learning using pre-
trained CNN models, specifically evaluating DenseNet,

MobileNet, and EfficientNet. The GI and GL were calculated

based on recognized food items, utilizing established GI

databases and the carbohydrate content of the dishes. Foods
were categorized into low, medium, and high GI and GL based
on their values.

In our collection related to DL, we found one review
article [95] combining GI and deep learning techniques. The
GI is used in these systems as a benchmark to guide dietary
recommendations, particularly for diabetics. Once the system
classifies a food item, it uses its estimated GI to assess
potential blood glucose impact, and it can offer lower-GI
alternatives if needed. This approach aims to help diabetic
patients manage post-meal blood glucose levels by suggesting
healthier food options. Here are some inputs used to predict
GI and Nutritional Estimation in the previously mentioned
studies done with DL and GI.

e Food images: Captured by smartphone cameras and
processed through CNNs for classification.

o Volume estimation: Uses either single or multi-view images
to approximate portion sizes, which are critical for
calculating nutrient intake.

e Nutritional database: Contains data on each food item'’s GI,
carbohydrates, protein, and fats, enabling the model to
provide personalized dietary advice.

DL has become a transformative approach in GI prediction
and dietary management by combining computer vision,
signal processing, and recommendation systems. DL models
such as CNNs, LSTMs, and GRUs can be used to understand the
nonlinear behavior of food composition, eating behavior, and
glycemic responses. DL-based applications span estimating GI
using food images and detecting ripeness to provide
personalized meal plans and continuous glucose monitoring.
The integration of attention mechanisms, transfer learning,
and optimization algorithms has further enhanced the
accuracy of predictions. Summarizing the studies related to
DL with GI, it can be stated that deep learning techniques can
be effectively applied to predict the Glycemic Index of various
foods, offering promising insights for more accurate and
scalable GI estimation. By exploiting complex patterns within
the data, deep learning models provide a robust approach
that can be adapted to various types and characteristics of
food, contributing significantly to advances in personalized
nutrition and dietary recommendations.

4.4 Role of image processing (IP) in research related to

the Glycemic index

Image processing has revolutionized the way we
interpret and analyze visual data, becoming an essential tool
across various fields, from healthcare diagnostics to
autonomous systems. By transforming raw images into
valuable information, image processing techniques allow
machines to perceive, interpret, and act on visual inputs,
pushing the boundaries of innovation. With a blend of
mathematics, algorithms, and creativity, this domain
continuously opens up new possibilities for automating com-
plex tasks and unlocking insights that are often invisible to
the human eye. In several research that connect with
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Glycemic Index, Image Processing techniques were used for
different purposes. The earliest work from our repository
appears in 2023; A Novel Machine Learning and Deep
Learning Driven Prediction for Pre-diabetic Patients [30].
They present a Machine Learning and Deep Learning- based
prediction model that predicts the Glycemic Index of fruits,
specifically bananas, using image recognition and
classification. The model aims to determine if a fruit is safe for
consumption by pre-diabetic patients based on its glycemic
properties. The system also provides food recommendations
with high dietary fiber to help users maintain a balanced diet.
From the point of image processing, techniques such as
binarization and boundingRect from OpenCV are used for
predicting the length of fruits. These images were then used
to train a CNN for fruit recognition and classification.
Similarly, aiming at diabetic patients [93], focuses on
recognizing fruits and estimating the GL index. The primary
goal is to help diabetic individuals make informed decisions
about their daily diet by identifying fruits with high
sweetness but low GL values. The Glycemic Index is indirectly
used in estimating the GL of fruits. The GL considers both the
GI value and the carbohydrate content of the food, providing
a measure of how a particular food affects blood sugar levels.
By identifying fruits and estimating their volume, the study
calculates the GL index, helping diabetic patients determine
whether a fruit is suitable for consumption based on its
expected impact on blood glucose levels. The authors
developed a custom dataset called DODP, containing 54,000
images of fruits captured from various angles and
environments where image preprocessing and data
augmentation have been utilized. Automatic White Balance
(AWB) and histogram equalization were used to improve the
color and contrast of the images to improve the consistency
of the input images. To generalize the images, data
augmentation techniques such as adding Gaussian white
noise, Pretzel noise, image flipping, rotation, and panning
were applied, making a more diverse dataset for training.
Going along the same direction of implementing data sets,
[11], have created and used a Moroccan food dataset
containing 72 dishes and 8,300 images. The primary goal is to
use this system for nutritional analysis, for estimating the
Glycemic Index and GL of Moroccan dishes, for dietary
planning and management for chronic conditions such as
diabetes. As the main Al technology, DenseNet deep learning
models with an attention mechanism were used to improve
the accuracy of food image classification. From the image
processing perspective, mainly as in the previous, data
augmentation has been done with the use of techniques like
flipping, rotation, cropping, and noise removal in order to
expand the dataset and improve model generalization.

Another recent research work presents a system that
recognizes food items from images uploaded by users and
predicts their nutritional values, including GI, proteins,
carbohydrates, and fats [25]. They have used a custom
Inception-V3 model for food image recognition and
classification. As images are the main source, and users are
responsible for uploading them, different image processing
techniques such as noise reduction, histogram equalization,
and data augmentation were utilized. Specifically, a 3x3
median filter is applied to reduce “salt and pepper” noise,
Contrast Limited Adaptive Histogram Equalization (CLAHE)
is used to standardize lighting and color profiles, improving
generalization across varied food images. Apart from them,
data augmentation techniques such as shearing, zooming,
rotation, and horizontal flipping are used to artificially
expand the dataset for smoother training.
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In addition to such direct use of Image Processing
techniques, we found one review article summarizing the
current state of mobile-based Food Image Recognition
Systems (FIRS) designed for the dietary management of
diabetics [95]. The focus is on evaluating technologies for
classifying food, estimating food volume, and calculating the
nutritional content of foods using smartphone cameras and
computer vision techniques. The paper reviews approaches
for using deep learning, machine learning, and image
processing to automate food classification and support
diabetic diet management. In the presented papers, the
following image processing techniques were used
appropriately.

e Preprocessing: Enhancing food images by correcting
lighting, scaling, cropping, and applying contrast
adjustments.

e Segmentation: Separating different food items within an
image using methods such as manual segmentation,
thresholding, color/texture-based segmentation, CNN-
based segmentation, and clustering-based techniques.

e Feature extraction: Extracting visual features from the
images, such as color, texture, shape, and edges, using
methods like Scale-Invariant Feature Transform (SIFT),
Histogram of Oriented Gradients (HOG), Gabor filters, and
Local Binary Patterns (LBP).

e Volume estimation: Using geometric modeling, pixel
counting, and 3D reconstruction techniques from multi-
view images to estimate the volume of food items. Depth
map fusion techniques and shape-fitting methods (e.g,
cylinders, spheres) are also reviewed.

Although image processing techniques were not the primary
focus of the research discussed, they emerged as essential
tools for facilitating the effective application of other Al
techniques. Image processing techniques have contributed to
enhancing the quality of Al-powered systems that predict GI
values or dietary plans by transforming images into more
insightful information sources. Image processing techniques
such as noise reduction and histogram equalization were
employed to enhance the images.

4.5 Role of natural language processing (NLP) in

research related to the Glycemic index

Natural Language Processing, which reshapes how
researchers handle vast amounts of unstructured text,
enables deeper insights and more efficient data
interpretation. The subject has transformed the way we
understand and interact with text-based data, becoming a
crucial component in fields ranging from healthcare to
customer service automation. By converting raw text into
structured information, NLP techniques empower machines
to comprehend, interpret, and generate human language,
enhancing our ability to analyze large volumes of textual
content. With the fusion of linguistics, machine learning, and
algorithms, NLP is unlocking new opportunities to automate
tasks such as translation, sentiment analysis, and information
retrieval, offering deeper insights into language patterns that
are often difficult for humans to detect. In many studies
related to sentiment and behavior analysis, NLP techniques
have been applied for various purposes, demonstrating their
growing importance across disciplines. Research that is based
on Glycemic index-related studies also benefited from this
technology and has opened many research avenues as well.
One of the first studies in 2019 related to NLP explores the
estimation of the glycemic impact of cooking recipes using a
data-driven approach, combining online crowd-sourcing and
machine learning [72]. The goal was to classify recipes as
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healthy or unhealthy for diabetics based on their glycemic
impact. They used Amazon Mechanical Turk (AMT) workers
to crowdsource glycemic impact labels for recipes and used
machine learning models to predict whether a recipe was
unhealthy for diabetics (UD) or healthy (HD). The study used
a data set of 55,102 All-recipes recipes, narrowing it down to
990 recipes (Recipe990) for a detailed analysis based on the
range of glycemic impact and the difficulty of classification.
AMT was used to gather human judgments on the glycemic
impact of these recipes. Due to the impracticality of using the
Glycemic Index for large datasets, the researchers relied on
the sugar-to-fiber ratio (S/F) as a proxy for the glycemic
impact. To process textual data, NLP techniques such as Bag-
of-Words, word embeddings (word2vec, GloVe, fastText),
sentence embeddings (skip-thought vectors), and paragraph
embeddings (doc2vec) were used. The best performance
among models using only textual features came from the NB-
BoW + Logistic Regression model with an F1 score of 0.817.
When nutritional features were added, the GloVe + LightGBM
model achieved the highest overall F1 score of 0.854,
highlighting that the combination of textual and nutritional
data improves the precision of estimating the impact of
glycemics for diabetics. In addition to the primary focus above
on dietary management technologies, one review article
systematically evaluates mobile-based Food Image
Recognition Systems aimed at dietary management for
diabetics [95]. Relevant articles published over the last two
decades are evaluated. The paper discusses the importance of
integrating the Glycemic Index and GL into food classification
systems, which is crucial to predicting the impact of food on
blood glucose levels. It emphasizes that diabetic patients can
benefit from technologies that predict GI and GL. Although the
review discusses the potential use of GI in future applications,
it primarily reviews current methods that focus on food
recognition and volume estimation, without directly using GI
data in the reviewed systems. The paper assesses various
methodologies for classifying food, estimating portion sizes,
and calculating nutritional content using smartphone
cameras and advanced NLP techniques.

These papers mainly follow some of the NLP techniques
and concepts with the goal of improving food classification
and nutritional estimation.

e Textual analysis: Evaluating the nutritional information
associated with food items through text data from various
sources, such as recipes and nutritional databases. This
involves  extracting relevant information about
macronutrients, ingredients, and portion sizes from
written content.

o Ingredient recognition: Using NLP techniques to parse and
recognize food ingredients from text descriptions, which
could complement image classification by providing
additional context regarding food items that may not be
visually distinguishable.

e Recipe parsing: Developing methods to extract nutritional
data and estimates from ingredient lists found in recipes.
This includes recognizing quantities and types of
ingredients to calculate potential carbohydrate content,
which is crucial for diabetic diet management.

e Machine learning for text classification: Employing text
classification algorithms (e.g., logistic regression, SVM) to
categorize recipes or food items based on their healthiness
scores or glycemic impact, derived from textual data

e Textual data extraction: NLP techniques were utilized to
extract and process textual information from food labels,
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menus, or recipes associated with food images, enabling a

more comprehensive analysis of nutritional content.
NLP techniques have been used to analyze text-related data
such as recipes, nutritional descriptions, and ingredient lists
to extract features that require further processing to reveal
insights such as carbohydrate content, sugar-to-fiber ratios,
and overall dietary healthiness. These results can be
combined with visual features for more accurate glycemic
impact prediction. Beyond classification, NLP also supports
ingredient recognition, recipe parsing, and textual data
extraction from diverse sources, enabling automated and
scalable dietary assessment.

2024 - 2015 [11].[171,1201[211,[22].[271,[29],
[30],[31],[32].[331,[38],[391.[63],
[65],[66],[671.[69],[71].[72].[72],
[731,[731.[741.[741,[751.[771,
[781,[801,[831.[841,[851,[871.[88],
[88]1,[91],[92],[93],[931,[941.[95],
[95],[95],[971,198],[99],[100],
[101],[102],[111]

2014 - 2005 [44],[103],[106],[107]

2004 - 1995 [108]

1994 - 1985 [109],[110]

1984 - 1980

Figure 7: Timeline of research with categories; Background colors
represent different categories of researches:

Machine Learning , Deep Learning , NLP ,_ ,
Image Processing , Statistical Learning , Explainable Al , Others

4.6 Role of explainable Al (XAI) inresearch related to the

Glycemic index

Only a few studies in our repository have directly applied
Explainable Al (XAI) techniques in their research. The earliest
example identified was published in 2023 [112]. This study
employed Shapley Additive exPlanations (SHAP), a widely
used XAl method, to evaluate the influence of various meal-
related factors on predicting postprandial blood glucose
levels at different time intervals. SHAP assigns importance
values to the features, effectively highlighting their
contributions to the predictions of the model. By utilizing
SHAP, the researchers provided valuable insights into the
effects of specific nutritional components, such as
carbohydrate intake, protein, lipids, and Glycemic Index, on
blood glucose levels in individuals with type 1 diabetes. This
approach not only validated clinical hypotheses but also
enhanced the interpretability of predictive models, fostering
more transparent and informed decision-making in diabetes
management. Another research has used SHAP to enhance the
interpretability of its predictive models [53]. After developing
a Diabetic Retinopathy (DR) risk prediction model using the
CatBoost algorithm, the researchers applied SHAP to
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interpret the model’s outputs. SHAP values helped in
understanding the contribution of each feature to the model’s
predictions, thereby elucidating the relationship between
various risk factors and the likelihood of developing DR. SHAP
was employed to rank features based on their impact on the
prediction model. This ranking identified which factors were
most influential in predicting DR risk, providing insights into
the relative importance of different clinical indicators. Also,
the study used SHAP to analyze the correlations between
renal function indices and other measures. This analysis
offered a deeper understanding of how different health
indicators interact and contribute to the risk of developing

DR. The integration of SHAP into the predictive modeling

process revealed several key risk factors for diabetic

retinopathy:

e Positive correlations: Factors such as albumin-to-
creatinine ratio (ACR), glycated hemoglobin, 24-hour
urinary protein, presence of nephropathy, and serum
creatinine (SCR) were found to be positively correlated
with DR. This means that higher values of these indicators
are associated with an increased risk of developing DR.

e Negative correlations: Conversely, factors like C-peptide
(CP), hemoglobin (HB), albumin (ALB), direct bilirubin
(DBILI), and C-reactive protein (CRP) were negatively
correlated with DR, indicating that higher levels of these
factors might be associated with a reduced risk.

e Non-significant factors: The study found that
characteristics such as height, weight, and erythrocyte
sedimentation rate (ESR) did not have a significant
relationship with the development of DR.

By employing SHAP, the researchers were able to provide a

transparent and interpretable analysis of the predictive

model, making the findings more understandable and
actionable for clinical applications. This approach improves
the reliability of the prediction results and helps identify
critical factors for early prevention and clinical diagnosis of
diabetic retinopathy. These two significant contributions,
incorporating the latest machine learning advancements such
as Explainable Al methods, highlight that the path is open for
exploring Explainable Al in future research on the Glycemic
Index. Using XAl techniques in glycemic and diabetes-related
research has bridged the gap between model accuracy and
interpretability. Past studies have shown that XAI techniques
can be used to unveil nutritional and clinical factors
influencing blood glucose dynamics and diabetic
complications. XAl enables researchers to quantify each
feature’s contribution to predictions, thereby improving trust
in Al-assisted decision-making. Although only a few studies

have incorporated XAl techniques, these studies have laid a

strong foundation for future research to use XAI methods

more extensively to analyze predictions.

4.7 Role of statistical techniques in research related to

the Glycemic index

Statistical Techniques are essential tools for analyzing
data and drawing conclusions in various fields, including
social sciences, health, and business. These methods can be
categorized into descriptive statistics, which summarize and
visualize data through measures such as mean, median, and
mode, and inferential statistics, which enable researchers to
make predictions or generalizations about a population based
on sample data. Key components of statistical techniques
include hypothesis testing, where null and alternative
hypotheses are formulated to evaluate the significance of
results using p-values and confidence intervals; correlation
and regression analysis, which examine relationships
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between variables to determine how one may predict or
influence another; and t-test and ANOVA, which compare
means across different groups to assess whether observed
differences are statistically significant. Overall, statistical
techniques provide a robust framework for making informed
decisions based on empirical evidence, ensuring that
conclusions drawn from data are reliable and valid.

Most probably, the earliest work of such appears in
1990: “Glycemic Index of Foods in Individual Subject” [109].
The study involved 12 diabetic subjects consuming mixed
meals (bread, rice, spaghetti) to determine common Glycemic
Index values. The researchers calculated GI based on the area
under the glycemic response curve, using white bread as a
reference. They used analysis of variation with repeated
measures (ANOVARM) to assess differences in glycemic
responses between meals and subjects, along with the
Tukey’s Q method for adjustment of multiple comparisons
and Chi-square analysis to compare observed rankings with
expected outcomes. The findings indicated that while
individual responses varied, mean GI values for each food
type were consistent across subjects, validating the predictive
capability of GI in dietary studies among diabetic patients.
Building on this foundation, in 1993, “Prediction of Glycemic
Index for starchy foods” [113] analyzed 18 starchy foods to
identify predictive factors for GI based on food components
such as protein, fat, and total dietary fiber (TDF). GI was
calculated using the area under the glucose response curve
for each food relative to white bread. Statistical techniques
included Regression Analysis to explore correlations between
GI and food components, t-tests for comparing means
between legumes and non-legumes, and calculating
Correlation Coefficients to quantify relationships between GI
and food components. The study highlighted that while
certain food components correlate with GI, preparation
methods and starch characteristics significantly influence
glycemic responses.

A study by M. Mayo etal. [73] investigated the thresholds
of fasting blood glucose and glycosylated hemoglobin
associated with microalbuminuria. They enrolled 975
subjects, including 873 diabetic patients and 102 non-
diabetic controls, to analyze the impact of glycemic control on
microalbumin levels. The study does not specifically use the
Glycemic Index but focuses on glycemic control measured by
FBS and HbAlc levels. Explore how poor glycemic control
affects microalbuminuria, which is relevant to understanding
the impacts of diet on health. They used the Student t-test for
comparing means between two groups and the Analysis of
Variance to assess differences among multiple groups.
Multiple Linear Regression is used to identify the relationship
between variables and urinary microalbumin levels. Chi-
squared analysis was employed for comparing prevalence
rates. These techniques were used to evaluate differences in
FBS, HbA1c, and homocysteine levels among different groups
and to develop predictive models for microalbuminuria.

Further expanding the understanding of GI, the [108]
study on composite breakfast meals involved 28 healthy
young men testing 13 different meals. Researchers used
Regression Analysis and Multivariate Analysis to develop
prediction equations for GI based on meal components. The
findings indicated that energy density and fat/protein ratios
were more reliable predictors of GI than carbohydrate
content alone. Together, these studies illustrate how
statistical techniques are crucial for accurately determining
and predicting glycemic responses, ultimately aiding in better
dietary choices for individuals managing blood sugar levels.
The study by Mohan et al. [74] explores the association
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between poor glycemic control, hyperhomocysteinemia, and
microalbuminuria, utilizing both traditional statistical
methods and machine learning algorithms. Although not
directly focused on the Glycemic Index, this research
highlights the importance of statistical techniques in
understanding health outcomes related to glycemic control.
The researchers focused on glycemic control as measured by
fasting blood sugar and glycosylated hemoglobin levels. The
main technologies used included biochemical analysis
equipment and computational software for machine learning.
The dataset consisted of 975 subjects, including diabetic
patients and non-diabetic controls, with features such as age,
gender, FBS, HbA1c, and diabetic status. Statistical techniques
employed included Student t-tests, ANOVA, multiple linear
regression, and Chi-squared analysis to assess differences
and model relationships between variables.

Another study introduces a hybrid model designed to
predict GI and GL based on the macronutrient composition of
foods [33]. This model combines deterministic calculations
for glycemic carbohydrates with empirical coefficients for
non-glycemic nutrients like proteins, fats, and fibers. By
quantifying both the impact of glycemic carbohydrates and
the Gl-lowering effects of non-glycemic components, the
model aims to facilitate the development of packaged foods
and beverages with lower glucose responses. The model was
validated using a dataset of 42 breakfast cereals and 60 in
vivo trials, employing statistical techniques like Ordinary
Least Squares (OLS) regression and Bland-Altman plots to
achieve high correlation coefficients (r = 0.90 for Gl and r =
0.96 for GL). The transparency of the model, with explicit
coefficients for each nutrient, makes it interpretable and
useful to guide the development of the product.

The study “Gluten-free cookies with low Glycemic Index
and glycemic load: Optimization of the process variables via
response surface methodology and artificial neural network”
[80] focused on optimizing the production of gluten-free
cookies with low Glycemic Index and glycemic load. It
evaluates the impact of baking temperature and time on
resistant starch (RS), GI, and GL using cardaba banana flour
modified with citric acid to enhance RS content. The study
employs Response Surface Methodology (RSM) and Artificial
Neural Networks to model and optimize these parameters.
RSM is used to understand the relationships between baking
conditions and outputs, while ANN provides more accurate
predictions. The GI is estimated through in vitro starch
digestibility tests using a non-linear model. Experimental
data from 13 baking trials, designed using a central composite
design, were analyzed using techniques like ANOVA and
regression analysis to assess model quality and optimize
baking conditions. Overall, the study aims to develop gluten-
free cookies with improved nutritional profiles by optimizing
production parameters.

The study [83] uses historical glucose data from
continuous glucose monitoring devices to predict future GI
levels, with Autoregressive Integrated Moving Average
adapting in real-time and RNN predicting trends over 30-60
minutes. The models are hosted on Google Cloud, utilizing
technologies like Google Cloud PubSub, Functions, and
BigQuery for real-time training and data management. The
D1NAMO dataset, which includes glucose readings from
diabetic and non-diabetic patients, is used for model training
and validation. Statistical techniques such as ADF tests,
ACF/PACF, and Akaike Informa- tion Criterion are employed
for model optimization and validation. The study aims to
monitor glucose levels in bus drivers, providing alerts for
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dangerous trends, and exploring the inherent interpretability
of ARIMA models to understand forecast dependencies.

Reference [38] focused on determining the Glycemic
Index of a complete nutrition drink formulated with
retrograded starch and identifying factors influencing the
glycemic response. This was achieved through a randomized
crossover controlled trial involving 18 healthy participants
who consumed the nutrition drink, glucose solution, and
white bread as test foods. Normality tests, such as the
Shapiro-Wilk test, are employed to evaluate the distribution
of data. For comparative analysis, a one-way ANOVA is used
for normally distributed data, while the Kruskal-Wallis and
Friedman tests are applied for non-parametric comparisons.
In scenarios involving repeated measures, repeated measures
ANOVA with Tukey’s test for post-hoc analysis is performed.
For correlation analysis, the Spearman rank correlation is
utilized to identify relationships between baseline
characteristics and glycemic response. To control Type I
errors in multiple comparisons, the Bonferroni correction is
applied. Statistical techniques were primarily used to
compare postprandial glucose and insulin levels across test
foods, analyze baseline characteristics among groups, and
identify correlations between predictors (e.g, baseline
insulin) and glycemic response (Table 2).

“Predicting Changes in Glycemic Control Among Adults
with Prediabetes from Activity Patterns Collected by
Wearable Devices” [88]. The study explores the use of
wearable devices to predict changes in glycemic control
among adults with prediabetes, focusing on comparing wrist-
worn and waist-worn devices. Participants were monitored
over six months using Fitbit devices that tracked physical
activity, sleep, and heart rate. The study did not involve
calculating the GI but instead focused on predicting changes
in hemoglobin Alc using wearable data and machine learning
models. Traditional statistical regression models and
machine learning techniques like random forest and
ensemble methods were employed to analyze baseline
demographic, clinical, and wearable data. Features included
demographics, clinical data, physical activity, heart rate, and
sleep patterns, which were reduced to 16 principal
components using PCA. The study used techniques such as
multiple imputations for missing data and hyper-parameter
tuning with cross-validation. While transfer learning and
explainable Al were not explicitly used, ensemble methods
provided insights into predictive factors. The goal was to
enhance predictive models for glycemic control changes,
leveraging wearable data to potentially inform interventions
for preventing diabetes progression.

Enhancing insights into GI, the study [17]| aimed to
enhance the Venezuelan Food Composition Table by
integrating Glycemic Index values to aid in dietary
assessments and research. It employed a systematic six-step
methodology to assign GI values to 624 food items across 14
categories. This approach included direct assignment from
international GI tables, mapping to similar foods, recipe-
based calculations, and using subgroup median values for
unassignable items. Key features influencing GI assignments
were available carbohydrates, nutritional profiles (including
fat, protein, and fiber), food preparation methods, and other
nutrient compositions. The study utilized IBM SPSS for data
analysis and adhered to the ISO 26642:2010 standard for GI
determination. Statistical analyses were utilized to stratify
the results by food group and to perform calculations such as
mean, standard deviation, and percentile distribution of
Glycemic Index.
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Table 2. Summary of statistical techniques in the glycemic index research
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Paper Reference Statistical Tools Used Purpose of Statistical Test
[109] ANOVA with Repeated Measures Assess differences in glycemic responses between meals
(ANOVARM), Tukey’s Q method, Chi-square analysisland subjects; adjust for multiple comparisons; compare
observed rankings with expected outcomes.

[113] Regression Analysis, t-tests, Correlation Coefficients|Explore correlations between GI and food components; compare
means between legumes and non-legumes; quantify
relationships between GI and food components.

[73] Student t-test, Analysis of Variance, Compare means between groups; assess differences

Multiple Linear Regression, Chi-squared analysis [among multiple groups; identify relationships between variables
and urinary microalbumin levels; compare
prevalence rates.

[108] Regression Analysis, Multivariate Analysis Develop prediction equations for GI based on meal components;
identify reliable predictors of GI.

[74] Student t-tests, ANOVA, Multiple Linear Regression,|Assess differences and model relationships between

Chi-squared analysis variables; explore associations between glycemic control,
hyperhomocysteinemia, and microalbuminuria.

[76] Ordinary Least Squares Regression, Develop a hybrid model to predict GI and GL based on

Bland-Altman plots macronutrient composition; validate model accuracy.
[80] Response Surface Methodology, Artificial Neural|Optimize production of gluten-free cookies with low GI
Networks, ANOVA, Regression Analysis and GL; model and optimize baking conditions; assess
model quality.
[83] Autoregressive Integrated Moving Predict future GI levels using historical glucose data;
Average, Recurrent Neural Networks (RNN), ADF|adapt models in real-time; optimize and validate models.
tests, ACF/PACF,
Akaike Information Criterion
[38] Shapiro-Wilk test, One-way ANOVA, Evaluate data distribution; compare postprandial glu-
Kruskal-Wallis test, Friedman test, Repeated|cose and insulin levels across test foods; analyze baseline
Measures ANOVA, Tukey’s test, Spearman Rank|characteristics; identify correlations between predictors and
Correlation, glycemic response; control Type I errors in multiple
Bonferroni Correction comparisons.
[88] Principal Component Analysis, Predict changes in glycemic control using wearable data;
Random Forest, Ensemble Methods, Multiplelenhance predictive models; manage missing data; optimize
Imputation, Hyper-parameter Tuning, Cross-model performance.
validation
[17] Descriptive Statistics, Proportional Stratify results by food group; calculate mean, standard
Analysis deviation, and percentile distribution of GI; classify foods into GI
categories; determine the percentage of foods
assigned GI values at each methodological step.
[21] Correlation Analysis, Multiple Regression, One-way|Explore relationships between blood glucose data and
ANOVA physiological /nutritional factors; assess postprandial glucose
dynamics; analyze data from wearable devices.

[22] Additive Main Effect and Multiplicative Interaction|Evaluate grain yield, quality traits, and genotype-environment

(AMMI) Analysis, GGE Biplot Analysis, Linear Mixed|interactions; predict GI in rice varieties; develop low-GI rice
Models (LMM) suitable for specific ecosystems.

These analyses also facilitated the classification of foods

into low, moderate,

or high GI categories. Descriptive

statistics were applied to summarize the GI distributions,
while proportional analysis was employed to determine the
percentage of foods assigned GI values at each step of the
methodology. Another study investigates the relationship
between blood glucose data and various physiological and
nutritional factors using wearable devices and publicly
available datasets. It utilizes devices like the Dexcom G6 CGM
for blood glucose monitoring and the Empatica E4 Wristband
for capturing physiological signals such as heart rate and skin

temperature.

11

The analysis employs software tools like SAS 9.4, JMP Pro
16.1.0, and Microsoft Excel, and statistical techniques
including correlation analysis, multiple regression, and one-
way ANOVA. The study draws data from the PhysioNet BIG
IDEAs Lab Dataset, which includes 16 participants with
prediabetic HbA1lc levels, focusing on glucose, physiological
indices (e.g., heart rate, skin temperature), and nutritional
indices (e.g, carbohydrates, dietary fiber). Notably, the study
does not directly use or predict the Glycemic Index; instead, it
focuses on real-time blood glucose data collected via CGM
devices to explore correlations between physiological and
nutritional indices and blood glucose levels, as well as assess
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postprandial glucose dynamics [21]. Extending expertise on
GI, Reference [22] aimed to develop low-glycemic-index rice
varieties suitable for irrigated ecosystems in Bangladesh. It
evaluated the grain yield, quality traits, and genotype-
environment interactions (GEI) of three rice genotypes across
27 environments over three years. The GI values were
determined using the Howlader and Biswas technique, which
involves measuring postprandial blood glucose levels after
consuming test and reference foods. Statistical analyses
included Additive Main Effect and Multiplicative Interaction
analysis, GGE biplot analysis, and Linear Mixed Models (LMM)
using R software. Features such as milled rice outturn, head
rice yield, amylose content, and protein content were used to
predict GI. This research is crucial for developing rice
varieties that can benefit health by reducing the impact of
carbohydrates on blood glucose levels.

Overall, statistical techniques play a pivotal role in
understanding and predicting glycemic responses, which are
crucial for managing blood sugar levels. These methods
encompass descriptive and inferential statistics, hypothesis
testing, correlation and regression analysis, and tests like t-
tests and ANOVA. Studies have utilized these techniques to
determine Glycemic Index values for various foods, identify
predictive factors for GI, and develop models to predict GI
based on food components. For instance, regression analysis
has been used to explore correlations between GI and food
components, while response surface methodology and
artificial neural networks have been employed to optimize
production parameters for low-GI foods. Additionally,
machine learning and wearable devices are being explored to
predict changes in glycemic control, further enhancing the
application of statistical techniques in this field. These
methods provide a robust framework for making informed
dietary choices and developing healthier food products.

4.8 Role of other computer-related techniques in

research related to the Glycemic index

In the main section, we explored the role of Al techniques
such as Machine Learning, Deep Learning (DL), Image
Processing, and Natural Language Processing in research
related to the Glycemic Index. While these advanced
methodologies have transformed the field, there are other
computer-related  techniques that also contribute
significantly to Glycemic Index research. This section focuses
on these additional approaches, highlighting their unique
applications and the value they bring to advancing our
understanding of this critical area. The Internet of Things
(IoT) has played a pivotal role in predicting the Glycemic
Index. IoT refers to a network of interconnected physical
devices ranging from appliances to vehicles embedded with
sensors, software, and connectivity. This technology
facilitates seamless communication and data exchange
between devices, paving the way for more efficient and
automated systems. In recent years, challenges such as data
mining, machine learning integration, and IoT applications
have gained prominence in the healthcare sector. A notable
study published in 2019, titled “Internet of Things Based on
Electronic and Mobile Health Systems for Blood Glucose
Continuous Monitoring and Management” [69], showcased
the integration of the Libre flash glucose monitoring sensor
with mobile applications, creating a connected and
comprehensive environment for glucose monitoring. They
used cloud technologies to collect blood glucose data
continuously, provide real-time alerts, and perform graphical
analysis while monitoring and analyzing patient data
remotely via a secure cloud-based platform. However, GI was
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not a direct concern; the system focused on real-time
monitoring of blood glucose. These data were used to identify
patterns related to GI. In general, the study emphasizes the
usage of [oT in the health care system to manage diabetes and
low-cost alternatives to traditional methodologies for
continuous glucose monitoring systems. The utilization of the
long-term effect of the Internet of Things on glycemic control
is controversial, and Type 2 diabetes is a common problem
today. Another study focused on evaluating the long-term
effects of an loT-based approach on glycemic control in
people with Type 2 Diabetes (T2D). The personal health
records (weights, blood pressure, physical activities) were
measured using loT-enabled devices, and feedback messages
were sent to encourage behavioral changes in diet and
exercise. Data was shared with healthcare providers via cloud
systems. GI was not directly addressed; instead, it focused on
glycemic control through HbAlc levels and lifestyle
modifications facilitated by IoT technologies [100]. The
advancements in wearable glucose monitoring technologies,
as reviewed by Mansour et al. [101]. This offers significant
implications for Glycemic Index research. The paper reviewed
advancements in wearable devices for CGM, including
invasive, minimally invasive, and non-invasive methods. The
paper highlights the integration of biosensing technologies
with wireless communication, energy harvesting, and Al-
based predictive analytics for diabetes management. The
Glycemic Index is not explicitly discussed or used for
predicting or calculating glucose levels. Instead, the focus was
on measuring glucose directly from biofluids (e.g., blood,
sweat, interstitial fluid) using various biosensor technologies.
By integrating Al-driven models like RNNs, researchers can
better account for factors such as physical activity, stress, and
insulin sensitivity, enhancing the accuracy of GI predictions.
The insights from this review pave the way for a more
personalized and scalable approach to the management of
diabetes and diet.

A healthy and balanced diet is essential for quality of life.
Carbohydrates play a crucial role in maintaining a healthy and
balanced diet, since they serve as the primary source of
energy in the body. Going along with Mathematical
approaches, the study, “A robust optimization approach to
diet problem with overall GL as objective function” [106],
addresses the problem of minimizing the overall GL in daily
diets while meeting nutritional and serving size
requirements. The authors proposed a mixed-integer
programming model that incorporates uncertainties in GL
values, allowing for flexible and adaptive diet planning. This
study focuses on creating a mathematical framework to
optimize daily food selection while minimizing the total GL.
This optimization ensures that daily nutritional needs are
met, minimizes the impact of foods with a high GL on blood
glucose levels, and allows for uncertainty in GL values so that
meals can be maintained under different circumstances.
Another study investigates the effects of dietary Glycemic
Index on (-cell function in adults with prediabetes through a
randomized controlled feeding trial. A total of 35 adults with
prediabetes underwent a 2-week control diet (GI = 55-58),
followed by randomization into a 4-week low Glycemic Index
(LGI; GI < 35) or high Glycemic Index (HGI; GI > 70) diet. Meals
were carefully designed to meet GI specifications while
maintaining consistent macronutrient distribution (55%
carbohydrate, 30% fat, 15% protein) and ensuring weight
stability. Meal tolerance tests (MTTs) were conducted at
baseline and post-intervention to evaluate glucose, insulin,
and C-peptide responses. Mathematical models and statistical
tools (e.g, SPSS, MATLAB) were used to estimate (-cell
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glucose sensitivity, insulin secretion rates, and insulin
sensitivity indices (OGIS, Matsuda index). The LGI diet
significantly reduced postprandial glucose concentrations (p
< 0.001) and increased total insulin secretion adjusted for
glucose levels and insulin sensitivity (p = 0.002). Conversely,
the HGI diet showed trends towards higher glucose levels (p
=0.14) and reduced insulin secretion. Despite these
differences, neither diet significantly affected traditional
measures of insulin sensitivity. These findings highlight the
potential of LGI diets in improving (3-cell function and glucose
regulation in individuals with prediabetes [32].

Continuous glucose monitoring is an important aspect
for diabetic patients. There are many studies that focus on
that in different ways. A study aimed to automate the
calculations of the GI using a continuous glucose monitoring
system (CGMS). GI was calculated using the incremental area
under the blood glucose curve (IAUC). They calculated the
IAUC using CGMS. A custom-built Microsoft Excel-based
software for the automation process was introduced. This
software, called DegifXL, processed CGMS data, calculated
IAUC, and computed GI values using pre-defined and custom
input parameters. The process reduces the manual
processing time and improves the standardization of GI
computations [103].

The study “Beyond nutrient-based food indices: a data
mining approach to search for a quantitative holistic index
reflecting the degree of food processing and including
physicochemical properties” [65] explores the relationship
between food processing, nutritional quality, and health
potential, with a focus on the Glycemic Index as a key
indicator of glucose bioavailability. Using data mining
techniques such as decision trees, Bayesian networks, and
Principal Component Analysis, the study analyzed 117 foods
categorized by processing levels (minimally processed,
processed, and ultra-processed) to develop a holistic
Technological Index (TI). This index integrates functional
properties like nutrient density, glycemic glucose
equivalents, and physicochemical characteristics such as
texture and water activity. Results showed that minimally
processed foods generally exhibit lower GI, higher nutrient
density, and better satiety profiles compared to ultra-
processed foods, emphasizing the adverse nutritional impact
of food processing. The study highlighted how GI and other
food properties can inform health-focused dietary guidelines
and aid in promoting healthier food choices.

Complementing this, the paper “Al4FoodDB: A database
for personalized e-Health nutrition and lifestyle through
wearable devices and artificial intelligence” [92], established
a comprehensive database integrating IoT-enabled wearable
devices, food diaries, and biological samples to explore
relationships between diet, physical activity, and glycemic
responses. While GI is not directly measured, continuous
glucose monitoring data and dietary logs provide insights into
postprandial glucose variability. Technologies such as FitBit
Sense and FreeStyle Libre 2 sensors were used for real-time
data collection, with Al and machine learning employed for
analysis across 10 domains, including biomarkers, nutrition,
and gut microbiome. Similarly, another study developed a
comprehensive Glycemic Index and GL database for the
United States (U.S.) using NHANES data (1999-2018) to
analyze dietary carbohydrate quality and its health
implications [98]. Al models, specifically OpenAI’s pretrained
embedding tools, were employed to assign GI values to over
7,976 unique food codes, achieving 75% initial accuracy. But
after manual review and adjustments based on expert
knowledge, only 31.3% of the Al's predictions were kept. Key
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databases, including the International Tables of GI [37] and
the Diogenes Study [114], provided reference values. The
dietary GL was calculated by combining carbohydrate content
and GI values, while statistical and mathematical methods,
such as weighted averages and residual adjustments, ensured
robust data analysis. Trends in GI and GL were examined
across demographics, highlighting disparities in diet quality
by sex, race, education, and income. While transfer learning
enabled efficient GI assignment, manual adjustments ensured
accuracy and interpretability, making this database a critical
resource for precision nutrition and public health research.
Together, these studies underscore the importance of
integrating glycemic metrics, food processing indices, and
advanced technologies like Al and IoT to promote precision-
based nutrition and health monitoring.

5. Datasets used in the Glycemic index-related research

In the constantly evolving area of Glycemic index-related
studies, the dataset a researcher chooses can significantly
influence the study’s results and overall impact. Some
researchers choose established benchmark datasets to
maintain consistency and enable comparability across
studies, while others create custom datasets to better align
with their specific research goals. This chapter examines both
approaches, emphasizing the importance and application of
these diverse data sources in Glycemic Index research.
Building on the Al-driven techniques introduced in Chapter 4,
here we discuss how careful data selection and preparation
are essential for pushing the field forward. The graph below
highlights the type of dataset utilized in each reviewed paper,
categorizing them as either benchmark datasets (pre-
existing) or self-developed datasets (created specifically for
the study).

Custom ¢ [11],[13],[14],[15],[18],[19] [20],

Dataset [221,[23],[241,[25],[26],[27],[28],

(Self developed) | [29],[31],[32],[34],[35],[36], [39],
[40],[41][60],[61],[64],[65],[66],
[67],[69]1.[71],[741.[75].[76].[77],
[78],[79],[82],[83],[86],[87],[88],
[89],[90],[92],[93],[94],[95],[100],
[101],[[102],[103],[104],[105],
[106],[107],[108],[109],[113]

Existing dataset ® [17],[21],[30],[33],[62],[63],
(Benchmark) 9

Both (Existing 9 [37],[42],[43],[44],[97]
& Custom)

Figure 8: Dataset used by the research (Benchmark/ Custom dataset
(Self-developed)

5.1 Utilization of custom datasets in technological
approaches for Glycemic index assessment
As illustrated in the graph, the majority of studies utilize self-
developed datasets, as these are tailored to the specific
purpose of the research, resulting in improved model
outcomes. As the earliest record in our repository [13] uses a
custom-built dataset that consists of 62 commonly consumed
foods and sugars. The foods were tested individually on
groups of 5-10 healthy volunteers, totaling 34 individuals (21
male, 13 female). The dataset includes the Glycemic Index of
various food items, calculated by measuring blood glucose
levels over two hours after consuming the foods. The
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glycemic response was expressed as a percentage of the blood
glucose area under the curve compared to an equivalent
amount of glucose. The study aimed to classify foods based on
their physiological effects on blood glucose levels to better
guide dietary choices, particularly for diabetics. Our second-
earliest research [109] involved 12 diabetic subjects who
were given three types of mixed meals: bread, rice, and
spaghetti, with Glycemic index values of 100, 79, and 61,
respectively. These meals were tested in a randomized block
design, with each subject consuming each meal four times.
The dataset includes glycemic response measurements over
time, expressed as incremental areas under the glycemic
response curves. The study investigated how well the GI
values predicted glycemic response rankings for individuals.
By normalizing responses to a standard reference (bread),
the researchers showed that GI values could effectively rank
glycemic responses across different subjects, despite
individual variability.

A particular research [14], done for starch-rich foods
typically consumed in the Mediterranean region with type 2
diabetic patients, measuring the plasma glucose response
after consumption of different food portions containing 50 g
of available carbohydrates (spaghetti, white bread, potatoes,
pizza, potato dumplings, and hard toasted bread). The
researchers measured the glycemic response of these foods
in terms of blood glucose levels over a specific postprandial
period, providing insights into the dietary effects of these
foods on glycemic control. For example, they found that
spaghetti and potato dumplings had lower glycemic
responses compared to bread and potatoes, attributed to
differences in food structure and preparation techniques.
Reference [15] prepared and analyzed Amaranthus cruentus
seeds using various processing methods such as cooking,
popping, roasting, flaking, and extrusion. The seeds were
sourced from a local producer in Brasilia, Brazil. Using the
Hydrolysis Index (HI) derived from in vitro tests, they
determined the Predicted Glycemic Index (pGl) for each
processed seed sample. But in here, a glycemic response
comparison has been conducted with white bread as a
benchmark (reference sample). Reference [16] involved 28
laboratories testing the Glycemic Index of foods such as
cheese puffs and fruit leather. Each laboratory followed a
standardized protocol where 10 healthy participants
consumed test foods and reference foods (glucose or white
bread) on separate occasions. Blood glucose responses were
measured at regular intervals, and the Glycemic Index was
calculated based on the incremental area under the curve of
glucose response.

Reference [40] aimed to determine the Glycemic Index
values of traditional foods and mixed meals from Northern Sri
Lanka. They conducted experiments to measure the GI values
of various traditional foods and mixed meals consumed in
Northern Sri Lanka. This involved selecting specific foods,
preparing them according to traditional methods, and then
measuring the postprandial blood glucose responses in
participants after consumption. The findings provided
insights into dietary recommendations, especially for
individuals with diabetes or coronary heart disease, by
identifying foods with lower GI values that are more suitable
for maintaining stable blood glucose levels. The researchers
constructed a comprehensive dataset from their own
experimental data for reference [60], encompassing
continuous glucose measurements, detailed dietary logs,
physical activity records, gut microbiota profiles, and various
blood parameters from an 800-person cohort. The primary
purpose of this dataset was to develop and train a machine-
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learning algorithm capable of predicting individualized
postprandial glycemic responses to different meals. The
researchers evaluated the Glycemic Index of eight rice
varieties in Taiwan, including two brown and six white rice
types in [61]. The dataset was primarily built using both in
vitro and in vivo methods for different rice varieties. In vitro
starch digestion tests were conducted to determine the
predicted Glycemic Index of the rice samples. This approach
provided valuable insights into the glycemic properties of
Taiwanese rice varieties, aiding in the development of rice
with desired health benefits.

The dataset used in [64] was built by the researchers and
comprised blood glucose measurements from healthy human
volunteers who consumed bread samples with varying levels:
0%, 10%, 15%, and 20% of cassava flour substitution.
Glucose was used as a reference food to calculate the Glycemic
Index of each bread variant. Participants consumed the test
breads after a 10-12-hour overnight fast, and blood glucose
levels were recorded at 30-minute intervals over a 2-hour
period following consumption. Then, the GI values of the
bread samples were determined. The dataset enabled the
assessment of how substituting wheat flour with cassava
flour affects postprandial glycemic responses. Also, the study
found that increasing cassava flour content led to lower
glycemic responses, with GI values ranging from 91 to 94. The
authors developed their own dataset for [67] using acoustic
signals during chewing and swallowing from 50 diabetic
individuals using an acoustic Micro-Electro-Mechanical
Systems (MEMS) sensor. These signals were then processed
with a deep learning algorithm to analyze eating patterns and
formulate a standard procedure aimed at reducing blood
glucose levels. Reference [74] used a dataset comprising
clinical measurements from diabetic and non-diabetic
individuals by collecting data on Fasting Blood Glucose,
glycosylated hemoglobin, total plasma homocysteine levels,
and urinary microalbumin concentrations. Data were
analyzed using multiple linear regression and machine
learning algorithms to investigate the relationships between
glycemic control, hyperhomocysteinemia, and the presence of
microalbuminuria. The study aimed to identify threshold
values of FBS and HbA1c associated with microalbuminuria
and to explore the concurrent association of
microalbuminuria with hyperhomocysteinemia.

The dataset in [22] includes comprehensive data on rice
grain yield and quality traits over a three-year period,
spanning 27 different environments in Bangladesh. The
primary objective was to evaluate the performance of various
rice genotypes under different environmental conditions to
identify a stable and adaptive variety with desirable traits,
including a low Glycemic Index. The data were analyzed using
statistical methods such as ANOVA and Additive Main effects
and Multiplicative Interaction analysis to assess genotype-
environment interactions and stability. This analysis aimed to
inform breeding programs focused on developing rice
varieties that are both high-yielding and suitable for the
irrigated ecosystems of Bangladesh. The study [20] utilized a
dataset that comprises continuous glucose monitoring data
from 102 patients with type 2 diabetes admitted to Cheonan
Hospital, Soonchunhyang University. This data includes blood
glucose levels, insulin doses, meal times, and other Electronic
Medical Records information. The researchers employed a
multi-agent reinforcement learning algorithm to perform
feature selection, aiming to enhance the prediction accuracy
of adverse glycemic events. The model achieved F1-scores of
89.0% for normoglycemia, 60.6% for hypoglycemia, and
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89.8% for hyperglycemia, demonstrating its effectiveness in
predicting glycemic events.

Reference [71] utilized retrospective CGM datasets from
104 individuals who had experienced at least one
hypoglycemia alert during a three-day CGM session. These
datasets were collected from participants who had previously
undergone CGM monitoring. Among different ML methods
experimented on the dataset, random forest demonstrated
the best performance, with an average AUC of 0.966,
sensitivity of 89.6%, specificity of 91.3%, and an F1 score of
0.543, concluding that the random forest model holds
potential  for  accurately  predicting  postprandial
hypoglycemia, which could enhance the effectiveness of
continuous glucose monitoring and artificial pancreas
systems. Likewise, reference [39] also follows CMG data from
124 pregnant women—90 diagnosed with gestational
diabetes mellitus and 34 healthy controls. This dataset
included records of 1,489 food intakes, which were
documented using a mobile application developed for the
study. The Glycemic Index values for the foods consumed
were sourced from the University of Sydney’s database and
incorporated into the app’s food database. The collected data
were analyzed to develop predictive models for postprandial
glycemic responses, assessing the impact of incorporating GI
and GL information on the accuracy of these models.

Similarly, reference [115] used CGM data from
individuals, particularly European, Chinese, younger, and
older participants with Type 1 Diabetes (T1D) Mellitus.
Benchmark GI values, such as those for glucose and white
bread, were used as references for comparison and scaling.
The authors employed machine learning algorithms to
analyze this data, aiming to predict glycemic levels in real-
time using constrained Internet of Things devices. The study
concluded that local, on-the-fly forecasting of glycemia is
feasible with such devices. The dataset used in [78] was built
by the researchers based on data collected from a clinical trial
involving 235 participants, including women with gestational
diabetes mellitus and healthy pregnant women. The data
includes CGM records, meal-related information, patient
characteristics, and survey data. Participants recorded their
meals in a mobile app while wearing CGM devices to monitor
blood glucose levels. The dataset captures meal timing,
composition (e.g., carbohydrate content, GL), and pre-meal
CGM trends. Flawed records (e.g., underreported meals) were
detected and removed to ensure data quality. Models were
evaluated using cross-validation and test data from unseen
participants. Postprandial glucose responses (PPGRs) from
15 participants who consumed nine standardized meals with
known macronutrient compositions in [82]. Participants’
PPGRs were recorded using continuous glucose monitors
after they consumed the standardized meals. Each meal’s
macronutrient content, carbohydrates, proteins, and fats
were precisely measured. The model’'s performance was
assessed by comparing its macronutrient predictions against
the actual known values. The proposed sparse coding
approach consistently outperformed baseline systems based
on ridge regression and nearest-neighbors in terms of
correlation and normalized root mean square error of the
predictions. This methodology demonstrates the potential of
using CGM data to automatically estimate dietary intake,
reducing reliance on self-reported measures.

Similarly, reference [107] used a dataset that comprises
continuous glucose monitoring data collected from
participants, capturing detailed blood glucose measurements
over time. The raw CGM data were processed to extract
relevant features indicative of glycemic patterns, such as

February 2026] Volume 05 | Issue 01 | Pages 93-126

mean glucose levels, variability metrics, and trends over time.
Machine learning regression models were trained using the
extracted features to predict future blood glucose levels.
These models aimed to forecast glucose trends and potential
hyperglycemic or hypoglycemic events. This approach
highlights the effectiveness of using self-collected CGM
datasets in developing personalized machine learning models
for predicting blood glucose levels, which can be instrumental
in managing diabetes. The dataset in [103] also comprises
continuous glucose monitoring, which profiles from 20
healthy subjects who consumed 50 grams of glucose or one of
four alternative foodstuffs, like chocolate, apple baby food,
rice squares, or yogurt, at breakfast and dinner over a one-
week period, resulting in 300 CGM glucose profiles.
Participants wore CGM devices to continuously record
interstitial fluid glucose concentrations. They consumed
specified test foods, each containing 50 grams of
carbohydrates, at designated meal times, with glucose
serving as the reference food. The IAUC values obtained from
the test foods were compared to those from the reference
food (glucose) to calculate the Glycemic Index for each food
item. Reference [69] introduced an integrated environment
for continuous blood glucose monitoring. This system utilizes
Internet of Things technology to provide real-time data to
doctors and caregivers remotely. The researchers developed
their own dataset by collecting blood glucose mea- surements
using the Freestyle Libre system. This data was then
transmitted through their IoT-based platform, enabling
continuous monitoring and management. The dataset
facilitated the evaluation of the system’s performance by
comparing the glucose rates measured with the official
Freestyle Libre software during the same period.
Comparably, the dataset in [86] includes continuous glucose
monitoring readings, records of insulin injections, and
carbohydrate intake information. The researchers applied
exponential models to the raw carbohydrate and insulin data
to simulate absorption processes in the body, aiming to
enhance the accuracy of their predictive models. By
incorporating these simulated absorption curves into an RNN
based on long short-term memory cells, they sought to
improve the prediction of future blood glucose levels.
However, subsequent analysis revealed flaws in the
experimental techniques, particularly in the model validation
scheme, which invalidated the reported results and
conclusions.

The study [76] employed virtual patient models for T1D
patients, such as a virtual patient cohort that includes 10
adults and 10 adolescents. These models simulate various
physiological responses to insulin treatment, allowing for
controlled experimentation without human participants. In-
Silico Data: The virtual patient models were used to simulate
and evaluate the performance of the machine learning-based
artificial pancreas algorithm under various scenarios,
providing preliminary insights into its potential effectiveness
and safety. In-Vivo Data: The clinical trials with human
participants were conducted to validate the algorithm’s
performance in real-world settings, assessing outcomes such
as time-in-range (TIR), hypoglycemic events, and overall
glucose control. The study [18] creates a dataset by utilizing
details of 12 healthy volunteers (6 men and 6 women) aged
between 20 and 30 years. Four traditional Omani rice dishes
were selected: white rice, biryani, kabsa, and magboos.
Glucose was used as the reference food for determining the
Glycemic Index. Blood glucose levels were measured at
intervals of 15, 30, 45, 60, 90, and 120 minutes after
consumption. With the data, the GI and GL were calculated.
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The study found that white rice had the highest GI value
(77.3), while the other rice dishes had moderate GI values.
This information is valuable for dietary planning, especially
for individuals managing blood sugar levels. The dataset in
[19] comprised 20 infant cereal prototypes, each with varying
macronutrient compositions, particularly in glycemic
carbohydrates (ranging from 51 to 76 grams per 100 grams),
and was then utilized to validate a predictive model for
estimating glycemic responses based on nutritional
composition. The data were collected through four
independent studies measuring the postprandial glucose
responses of these cereal prototypes in healthy adults. The
collected data were then applied to a predictive model
previously developed to estimate the GI and GL of breakfast
cereals based on their macronutrient composition. This
model quantifies both the impact of glycemic carbohydrates
and the Gl-lowering effects of other macronutrients such as
proteins, fats, and fibers. 35 adults with prediabetes (17
females, 18 males; mean age 54.2 years; mean BMI 32.44
kg/m?) have contributed data to [32]. Participants
underwent a controlled feeding study, consuming either a low
Glycemic Index (LGI) diet (GI < 35) or a High Glycemic Index
(HGI) diet (GI > 70) for four weeks, following a two-week
control diet (GI = 55-58). The researchers conducted 4-hour
meal tolerance tests to assess insulin sensitivity, insulin
secretion, and f-cell function. The collected data were
analyzed using mathematical modeling to evaluate the impact
of dietary Glycemic Index on B-cell function in individuals
with prediabetes.

The 1993 study titled “Prediction of Glycemic Index for
starchy foods”, reference [113] analyzed 18 starchy foods to
examine the relationship between their Glycemic Index and
chemical components such as protein, fat, phytic acid, and
Total Dietary Fiber. For each food item, the dataset included
measurements of protein, fat, phytic acid, and TDF present in
portions containing 50 grams of available carbohydrate. The
researchers employed regression analysis to explore
associations between the GI and the chemical components of
the foods. They found significant correlations (P < 0.05)
between GI and TDF, protein, and phytate, also the analysis
suggested that the method of food preparation and the
characteristics of starch and starch granules might be more
critical in predicting GI among starchy foods than the content
of any single component. Reference [108] involved a dataset
that comprised glycaemic index measurements from a
randomized crossover meal test with 28 healthy young men.
Participants consumed 13 different breakfast meals and a
reference meal, each containing 50 grams of available
carbohydrates but varying significantly in energy and
macronutrient composition. Venous blood samples were
collected over a two-hour period to analyze glucose and
insulin responses. The study aimed to assess whether the GI
of mixed meals, calculated using standard GI tables,
accurately predicted the measured GI.

The dataset in [104] encompasses various cereal and
legume-based food products, with detailed information on
their macronutrient compositions, including carbohydrate,
protein, fat, and fiber contents. Additionally, the dataset
includes measured Glycemic Index values for these foods,
obtained through in vivo testing. Researchers then developed
predictive models to estimate the GI of foods based on their
macronutrient profiles. These models aimed to identify
relationships between macronutrient composition and GI,
facilitating the prediction of GI for similar foods without the
need for extensive in vivo testing. Reference [106] introduced
a mixed-integer programming model aimed at minimizing the
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total daily glycemic load of foods while satisfying daily
nutritional and serving size requirements. The dataset
employed comprises 177 foods, with their nutritional
information and GL values sourced from the U.S. Department
of Health and Human Services and the U.S. Department of
Agriculture (USDA) guidelines. This dataset is not a standard
benchmark but is constructed by the researchers using
publicly available nutritional data. In the study, the dataset is
utilized to perform experimental analyses, applying robust
optimization techniques to account for uncertainties in GL
values. Participants for the research [90] were 79 children
diagnosed with type 1 diabetes. For each participant, various
factors were recorded, including demographic information,
biological markers, and socioeconomic status. Machine
learning algorithms were employed to train predictive
models using the selected features. The objective was to
forecast glycemic control, focusing on achieving an A1C level
below 7.5%, as recommended by organizations such as the
American Diabetes Association (ADA) and the International
Society for Pediatric and Adolescent Diabetes (ISPAD). This
approach aimed to enhance the understanding of factors
influencing glycemic control and to improve predictive
capabilities in clinical settings, ultimately contributing to
better management strategies for children with type 1
diabetes. Reference [31] comprised dietary records from 131
participants following various modern diets. Participants’
dietary intakes were recorded and analyzed using the
Nutrition Data Systems for Research (NDSR) software. This
process involved detailed logging of food consumption to
assess diet quality. The collected data were used to calculate
three key dietary indices: Healthy Eating Index, GI, and GL,
which evaluate diet quality based on adherence to dietary
guidelines. Artificial Intelligence and Machine Learning
techniques were applied to the dataset to identify predictors
of the dietary indices. Factors such as whole fruit and whole
grain consumption were found to be significant predictors of
HEI, while carbohydrate intake was a common predictor for
both GI and GL. The dataset comprises data from laboratory
analyses conducted on wheat-based bread samples fortified
with varying concentrations (0.25% to 2%) of Euryale ferox
seed shell extract in [26]. The researchers assessed the
inhibitory effects of EFSSE on a-amylase and a-glucosidase
activities, and evaluated the in vitro starch digestibility
(IVSD) and predicted Glycemic Index of the bread samples.
Advanced computational techniques, including Swarm
Intelligence supervised neural network modeling, were
employed to simulate digestion kinetics and predict the
Glycemic Index, providing insights into the potential of EFSSE
as a functional additive for producing lower Glycemic Index
bread.

The study titled “Moroccan Food Dataset for Food Image
Recognition Towards Glycemic Index Estimation”, [11]
introduced the MFOOD-70 dataset, a collection of 70
Moroccan food categories comprising 14,000 images. This
dataset was specifically developed by the authors to enhance
food image recognition and facilitate Glycemic Index
estimation. The images were sourced from web scraping and
existing datasets, ensuring a diverse representation of
Moroccan cuisine. The dataset was utilized to train and
evaluate convolutional neural network models, aiming to
improve the accuracy of food recognition systems and
support dietary monitoring applications. In reference [28],
the dataset comprises data from 10 healthy non-diabetic
volunteers (5 males and 5 females). Each participant
consumed 50 grams of carbohydrate from different black rice
cultivars after an overnight fast. Blood glucose levels were
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measured at intervals of 0, 15, 30, 45, 60, 90, and 120 minutes
post-consumption. The researchers calculated the
Incremental IAUC for each rice cultivar and compared it to the
IAUC of a reference food (glucose) to determine the Glycemic
Index values. The study found that the GI values of the black
rice cultivars ranged from 44.6 to 59.7, indicating that these
cultivars have a low to medium GI. The dataset was built by
the researchers specifically for this study to assess the GI of
selected black rice cultivars in Bangladesh. The dataset
described in [24] primarily consists of various rice genotypes
used to study their Glycemic Index and associated
biochemical properties such as resistant starch content,
amylose content, and other indicators of starch digestibility.
These genotypes were sourced from different ecologies or
traits and analyzed using in vitro methods to determine their
GI values and RS levels. This dataset aids in understanding
how genetic and biochemical variations in rice influence its
digestion and postprandial glucose response, with
implications for dietary recommendations and crop
improvement strategies. Reference [23] developed a custom
dataset specifically by formulating various bread samples by
substituting wheat flour with chickpea flour, red chicory
powder, and different types of resistant starch. They then
assessed the predicted Glycemic Index and technological
properties of these bread formulations. The dataset includes
measurements of pGI, moisture content, volume, specific
volume, baking loss, and texture parameters such as
hardness, cohesiveness, and chewiness. This comprehensive
dataset enabled the researchers to analyze how each
ingredient influenced the bread’s Glycemic Index and
technological characteristics. Reference [65] encompasses
various food items, each characterized by both nutrient-
based information and non-nutrient physicochemical
properties such as texture, water activity, glycemic potential,
satiety potential, and shelf life. The researchers employed
data mining techniques to analyze the compiled dataset,
aiming to establish correlations between the degree of food
processing and the physicochemical properties of the foods.
By examining these relationships, they sought to develop a
comprehensive quantitative index that reflects the extent of
food processing, moving beyond traditional nutrient-based
indices. This holistic index is intended to provide a more
nuanced understanding of how processing affects food
quality and health implications. 106 participants, including
53 colorectal cancer cases and 53 family members from
diverse ethnic backgrounds, participated in creating the
dataset of reference [66]. The data encompassed individual
dietary parameters, health outcomes, and demographic
information. The researchers employed machine learning
validation procedures, such as the ensemble method and
generalized regression prediction, to analyze the data.
Significant dietary predictors identified included whole fruit,
milk or milk alternatives, whole grains, saturated fat, and oils
and nuts. These findings highlight the importance of specific
dietary components in promoting healthy eating habits
among multi-ethnic colorectal cancer families. The dataset
employed in [36] comprises various Sri Lankan starchy
tubers, including arrowroot, cassava, potato, purple yam,
sweet potato, and white yam. The researchers collected these
tubers from local sources and prepared them under
controlled laboratory conditions to assess their starch
hydrolysis indices. Each tuber was subjected to enzymatic
digestion to measure the rate and extent of starch breakdown
over time. These measurements enabled the calculation of the
Hydrolysis Index for each tuber, which serves as an indicator
of the potential glycemic response upon consumption. The
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findings provide valuable insights into the nutritional
properties of these traditional Sri Lankan tubers, particularly
concerning their impact on blood sugar levels.

The study [29] utilizes a dataset comprising real-world
data from individuals with Type 1 Diabetes. This dataset
includes patient-specific information such as blood glucose
levels, insulin doses, and nutritional intake. The researchers
collected this data to develop a machine learning model
capable of predicting postprandial blood glucose levels at
various time intervals (15, 30, 45, and 60 minutes) following
a meal. By incorporating these nutritional factors, the model
aims to enhance the accuracy of blood glucose predictions,
thereby supporting better management of T1D. Al4FoodDB is
a public database developed by researchers to support
personalized e-health nutrition and lifestyle studies in [92]. It
was constructed from a nutritional weight loss intervention
involving 100 overweight and obese participants over one
month. The dataset includes various types of data collected
through manual methods, clinical assessments, and digital
tools such as wearable devices. The database comprises
several distinct datasets: anthropometric measurements,
lifestyle and health, nutrition, biomarkers, physical activity,
sleep activity, emotional state, etc. These datasets are utilized
to analyze the relationships between various lifestyle,
biological, and digital factors and health outcomes. By
integrating diverse data sources, Al4FoodDB facilitates the
development of artificial intelligence techniques aimed at
advancing personalized healthcare.

In the study [93] the researchers constructed a custom
fruit dataset specifically for their research on diabetic
patients’ daily diets. This dataset was not sourced from
existing benchmarks but was developed to facilitate the
identification of fruits with high sweetness and low glycemic
load values. The dataset was utilized to train and evaluate an
improved Faster R-CNN network, which incorporated an
attention mechanism module during feature extraction,
adjusted the anchor aspect ratio of the Region Proposal
Network (RPN), and implemented a fusion update operation
in the fully connected layer. These enhancements aimed to
improve the precision and recall rates of fruit recognition,
ultimately assisting diabetic patients in making informed
dietary choices.

These trials provided empirical evidence supporting the
algorithm’s efficacy and safety in managing T1D. The authors
collected spectral data for the study [77] from rice samples
using a portable Near-Infrared sensor operating in the 740-
1070 nm wavelength range. The collected spectral data were
then analyzed using machine learning techniques, including
principal component analysis, linear discriminant analysis,
random forest classifier, and partial least squares regression,
to develop predictive models for rice quality attributes such
as Glycemic Index, amylose content, and viscoelasticity. These
models aimed to provide rapid, on-site evaluation of rice
quality. Similarly, a dataset collected by the researchers
through a randomized trial involving adults with prediabetes
using waist-worn or wrist-worn wearables to monitor their
activity patterns in reference [88]. Baseline information,
including demographics, medical history, and laboratory test
results, was also gathered. The study developed predictive
models to assess changes in hemoglobin Alc levels, an
indicator of glycemic control. The models compared
traditional regression methods with machine learning
approaches, finding that ensemble machine learning methods
provided better predictions. Additionally, incorporating
wearable data alongside baseline information improved
prediction accuracy. Notably, wrist-worn wearables yielded
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more accurate predictions compared to waist-worn devices.
These findings suggest that integrating wearable-derived
activity data with clinical information can enhance the
prediction of glycemic control changes in individuals with
prediabetes.

Another research focuses on developing a personal
device to assist diabetic patients in managing insulin therapy
[105]. The researchers collected data from diabetic patients,
including blood glucose levels, insulin dosages, meal
information, and other relevant health metrics. This data was
gathered using the developed personal device integrated with
various sensors and input methods. The collected data was
utilized to test and refine the device’s algorithms for
calculating insulin dosages, considering factors such as
patient weight, glucose levels, physician recommendations,
and carbohydrate absorption. The dataset supported the
integration of the personal device with a Glycemic Index
information system, nurses’ and physicians’ desktop
applications, and a patient web portal, facilitating
comprehensive diabetes management within an Ambient
Assisted Living environment. Reference [79] comprised 92
blood samples collected from individuals in Santa Cruz do Sul,
Brazil, with informed consent. The dataset contains mid-
infrared spectra of peripheral blood samples, which were
analyzed using diffuse reflectance infrared spectroscopy
(DRIFTS). The spectral data were processed to quantify
biochemical parameters such as total cholesterol, using
artificial neural networks. The ANN achieved a correlation
coefficient (r) of 0.81 and a root mean square error (RMSE) of
30.14 in the preliminary trial. Future plans include expanding
the dataset to 500 samples to enhance accuracy and include
other parameters like HDL, LDL, triglycerides, and glucose. 13
qualified individuals (8 men and 5 women) participated in
[81]. Blood samples were taken in the fasting state and at 15,
30, 45, 60, 90, and 120 minutes after ingestion. The blood
glucose levels measured at the specified intervals were used
to assess the body’s glycemic response to both the reference
and test foods. Results suggest that the nutritional product
elicits a lower glycemic response compared to glucose,
making it suitable for individuals managing diabetes mellitus.
Reference [38] utilized a dataset collected by 18 healthy
volunteers with fasting plasma glucose levels below 100
mg/dL. Participants consumed three different test foods in a
randomized sequence: a complete nutrition drink containing
retrograded starch, a glucose solution, and white bread.
Plasma glucose and insulin levels were measured at baseline
and at multiple time points up to 180 minutes post-
consumption. The dataset facilitated the assessment of
postprandial insulin responses, revealing that the complete
nutrition drink led to a sustained increase in plasma insulin
levels over the 3-hour period, in contrast to the more rapid
decline observed with glucose solution and white bread.

The datasetin [89] collected as part of the “Smart District
4.0 Project”, supported by the Italian Ministry of Economic
Development. The study involved six patients with diabetes.
Glycemic values were recorded every 3 minutes using
specialized monitoring devices. The number of observations
varied among patients; for instance, Patient A had 243
observations, while Patient B had approximately 13,204
observations. Eight different algorithms were employed to
predict the glycemic status of the patients: artificial neural
network, Probabilistic Neural Network, Polynomial
Regression, Gradient Boosted Trees Regression, Random
Forest Regression, Simple Regression Tree, Tree Ensemble
Regression, and Linear Regression. The models were
evaluated based on their ability to minimize four statistical
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errors: Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Squared Error, and Mean Signed Difference
(MSD). The study aimed to identify the most efficient
algorithm for predicting glycemic status by comparing these
errors across the different models. Twenty-six participants,
who contributed to the creation of the dataset of [87], also
wore non-invasive, wrist-worn wearable devices in
conjunction with continuous glucose monitors for 8-10 days
after undergoing a clinical HbAlc measurement. The
wearables captured physiological data, which were then
analyzed to estimate glucose variability metrics and HbAlc
levels. The study developed 27 models to estimate glucose
variability metrics using data from the non-invasive
wearables, achieving high accuracy (mean average percent
error (MAPE), of less than 10%) in 11 of these models.
Additionally, the HbA1c estimation model achieved a MAPE of
5.1% on an external validation cohort. This proof-of-concept
study demonstrated the feasibility of using non-invasive
wearables for glycemic monitoring, potentially offering a
more convenient and less invasive method for patients to
monitor their glucose levels and HbA1c remotely.

Likewise, the dataset in [35] comprises data collected
from participants using wearable sensors and mobile devices
to monitor food intake, physical activity, and corresponding
blood glucose levels. Relevant features, such as meal timing,
nutritional content, activity type, duration, and intensity, are
extracted from the raw data to serve as inputs for the
predictive models. Deep Learning algorithms are employed to
analyze the extracted features and predict blood glucose
levels based on observed patterns in food consumption and
physical activity. This approach aims to develop a non-
invasive method for monitoring blood glucose levels by
leveraging deep learning techniques to interpret lifestyle
data. 1,159 adults aged 20-74 years with type 2 diabetes and
HbAlc levels between 6.0-8.9 (42-74 mmol/mol) were
involved in [100]. The participants’ health metrics were
continuously monitored using IoT devices, and this real-time
data was analyzed to assess the effectiveness of the [oT-based
intervention on glycemic control over a 52-week period. The
primary endpoint was the change in HbAlc levels from
baseline to the final measurement at 52 weeks. The study
concluded that the IoT-based approach did not significantly
reduce HbA1lc in patients with type 2 diabetes. The authors
suggested that incorporating daily glycemic control data and
HbAlc levels into the IoT-based intervention may be
necessary to improve glycemic control.

5.2 Utilization of benchmark datasets in technological
approaches for Glycemic index assessment
The 2016 study [62] utilized datasets from two

European Union-funded projects:

e DIAdvisor (EU FP7-funded project): This dataset
comprised clinical trial data, including intermittent blood
glucose measurements from patients with type 1 diabetes.
The data were used to calibrate and test nocturnal
hypoglycemia (NH) predictors based on various glycemic
control indices (GCI).

e AMMODIT (EU Horizon 2020-funded project): This dataset
was employed to validate the portability and effectiveness
of the proposed NH prediction approach across different
patient populations.

The authors developed a method to predict nocturnal

hypoglycemia by aggregating predictors constructed from

different GCIs, such as the Low Blood Glucose Index. They
applied machine learning techniques to combine these
predictors, aiming to enhance the accuracy of NH predictions.
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The datasets provided the necessary blood glucose
measurements to calibrate and test the performance of the
aggregated predictors, demonstrating improved sensitivity
and specificity in predicting NH events. The dataset used in
[63] includes Glycaemic Index values from an existing
comprehensive list (e.g. a glycaemic index corpus) and food
nutritional composition data (such as macronutrient content)
from organizations like the USDA. The dataset is not created
by the authors but sourced from these established
repositories. The study highlights challenges in integrating
these datasets due to differences in how foods are labeled and
categorized. The data is used to predict the GI of foods based
on their biochemical properties using machine learning
techniques. The authors manually cross-linked a subset of
100 food entries to ensure reliability and used features like
water, energy, protein, carbohydrate, sugar, fiber, and lipid
content to build predictive models. This approach aimed to
explore the feasibility of using widely available food data for
practical GI prediction.

Reference [72] exploits a dataset of 55, 102 cooking
recipes collected from the Allrecipes website. This dataset
was built by the researchers specifically for their analysis. A
subset of 1,000 recipes was selected for further analysis.
These recipes were annotated for glycemic impact through
online crowdsourcing using Amazon Mechanical Turk. From
the collected data, both textual features (e.g,, ingredients and
cooking directions) and nutritional features (e.g.,
carbohydrate and sugar content) were extracted to represent
each recipe. Machine Learning models were trained using the
annotated subset to classify recipes as healthy or unhealthy
for diabetics based on their glycemic impact. This approach
combines online crowdsourcing and machine learning to
estimate the glycemic impact of cooking recipes, offering a
data-driven method to assist diabetics and pre-diabetics in
making informed dietary choices. Reference [17] presented a
systematic six-step methodology to assign Glycemic Index
values to over 600 foods in the Venezuelan food composition
database. The process begins with compilation, where GI
values from international sources are gathered. Next, the
matching step aligns these values with local foods based on
ingredient and preparation similarities. For foods lacking
direct matches, estimation is employed by analyzing
macronutrient composition and comparing it with analogous
foods. This is followed by validation, ensuring accuracy
through cross-referencing with literature and expert
opinions. The validated GI values are then integrated into the
national database. Finally, documentation provides a
transparent record of the sources and rationale, ensuring
traceability and facilitating updates. This methodology
enriches the database with reliable GI values, supporting
dietary planning and nutritional evaluation tailored to the
Venezuelan context.

In 2019, reference [33] utilized a dataset comprising the
macronutrient compositions of 42 breakfast cereals. This
dataset was collected from existing nutritional information
available for these products. The researchers did not generate
new experimental data but instead relied on published
macronutrient profiles to develop their predictive model. The
dataset was employed to create a model that predicts the
Glycemic Index and glycemic load of foods based on their
macronutrient content. By analyzing the relationship
between the macronutrient composition and the GI/GL
values, the model quantifies the impact of glycemic
carbohydrates and the GI-lowering effects of other nutrients
such as proteins, fats, and fibers. Reference [30] utilizes the
PIMA Indians Diabetes dataset, a benchmark dataset
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provided by the National Institute of Diabetes and Digestive
and Kidney Diseases. The numerical data from the PIMA
dataset are transformed into image representations. Each
feature is assigned a specific location and size within the
image based on its importance, determined using the ReliefF
feature selection algorithm. This approach enables the
application of convolutional neural networks designed for
image data. To enhance the dataset, data augmentation
techniques are applied to the generated images, artificially
increasing the number of training samples and improving
model robustness. The augmented image data are used to
train deep learning models, specifically ResNet18 and
ResNet50 CNN architectures, for predicting pre-diabetic
conditions. The innovative approach leverages image-based
deep learning techniques to enhance the prediction of pre-
diabetic conditions using a well-established benchmark
dataset. Reference [91] employed data from the All of Us
Research Program, a comprehensive initiative by the U.S.
National Institutes of Health aimed at gathering health data
from diverse populations to advance precision medicine.
Researchers applied various machine learning algorithms,
including random forest, extreme gradient boost, logistic
regression, and a weighted ensemble model, to predict
uncontrolled diabetes. They identified patients aged 18 and
above with diabetes from the All of us dataset and defined
uncontrolled diabetes based on specific International
Classification of Diseases codes. The models incorporated
features such as basic demographics, biomarkers, and
hematological indices. Among these, the random forest model
demonstrated the highest performance, achieving an
accuracy of 80% and an area under the receiver operating
characteristic curve of 0.77. Key predictors of uncontrolled
diabetes included serum potassium levels, body weight,
aspartate aminotransferase, height, and heart rate.
Reference [98] involved the creation of a
comprehensive database by the researchers themselves. This
database integrates Glycemic Index and glycemic load values
with dietary data from the National Health and Nutrition
Examination Survey (NHANES) spanning 1999 to 2018. The
researchers employed an artificial intelligence-enabled
model to align GI values from existing databases with
NHANES food codes. This process was manually validated to
ensure accuracy, resulting in Gl values covering 99.9% of total
carbohydrate intake. This newly developed database serves
as a valuable resource for large-scale epidemiologic studies,
enabling researchers to assess the impact of carbohydrate
quality on health outcomes within the U.S. population.
Reference [99] comprises 1,000 records from the Diabetes
Complication Early Warning Dataset provided by the National
Clinical Medical Sciences Data Center. The dataset underwent
preprocessing to address missing values and outliers. Feature
selection was performed using information gain to identify
the most relevant variables. Subsequently, the authors
developed a diabetic retinopathy risk prediction model
employing the CatBoost algorithm, an advanced machine
learning technique. To enhance the interpretability of the
model’s predictions, they applied SHAP values, which
elucidate the contribution of each feature to the model’s
output. This approach enabled the identification of key risk
factors associated with diabetic retinopathy, such as poor
renal function, elevated blood glucose levels, liver disease,
hematonosis, and dysarteriotony. The integration of Machine
Learning with interpretable models facilitated a more
transparent understanding of the factors influencing diabetic
retinopathy risk. PhysioNet, a public database, is used in [21].
This dataset comprises physiological and nutritional
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information collected via wearable devices and dietary
surveys. The researchers employed this existing dataset to
analyze the relationships between blood glucose levels and
various physiological and nutritional factors. They conducted
correlation analyses, multiple regression analyses, and one-
way analyses of variance to explore how different
physiological indicators and nutritional values are associated
with blood glucose fluctuations.

The public dataset, DINAMO is used in [83], an open-
source collection of real-time Glycemic Index readings. This
dataset comprises continuous glucose monitoring data
collected every 5 minutes from 9 diabetic patients and six
times daily from 20 non-diabetic individuals. The data was
gathered under normal conditions using the Zephir
Bioharness 3 wearable device. They implemented an auto-
adaptive algorithm for optimizing ARIMA model parameters,
enabling real-time predictions in an online learning
environment. The dataset’s comprehensive CGM readings
facilitated the training and evaluation of these models, aiming
to enhance glycemic control through accurate short-term
forecasts. Similarly, reference [73] utilizes benchmark
datasets from continuous glucose monitoring devices worn
by patients with Type 1 Diabetes. The CGM data is segmented
into feature vectors using a sliding window technique,
capturing blood glucose readings over specific time intervals.
This method generates training examples that reflect the
temporal dynamics of glucose levels. Machine learning
models, including Support Vector Regression and Multilayer
Perceptron, are trained on the processed and balanced
datasets.

The article [40] is a consensus statement that reviews
existing research and provides expert opinions on the
Glycemic Index, glycemic load, and glycemic response. As a
consensus statement, it does not introduce new experimental
data or utilize a specific dataset. Instead, it synthesizes
findings from numerous studies to offer guidance on the
application and interpretation of GI and GL in nutrition
science and public health. The document serves to
consolidate  scientific  understanding and provide
recommendations based on a comprehensive review of
existing literature. The article [27] is a review that
synthesizes existing research on the Glycemic Index of rice
and its products. It does not introduce a new dataset; rather,
it compiles and analyzes data from various studies published
up to December 2022. The authors conducted a
comprehensive literature review, gathering information from
the Web of Science and Scopus databases. They categorized
the findings into four main sections: basic information about
starch digestion and recent advanced measurement methods,
the mechanism of the effect of various factors on GI, recent
advanced technologies to modulate GI, and a table of the
Glycemic Index for rice and rice products in different
countries. This compilation provides an overview of the GI
values of different rice varieties and discusses the impact of
various factors and processing techniques on the GI of rice
products.

The review paper [94] provides consensus guidelines for
machine learning practitioners in diabetes care. It reviews
common features used in machine learning applications for
glucose control and offers an open-source library of functions
for calculating these features. Additionally, it provides a
framework for specifying datasets using data sheets and
reviews current datasets available for training algorithms,
along with an online repository of data sources. These
resources are designed to improve the performance and
translatability of new machine learning algorithms developed
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in the field of diabetes. Reference [95] is also a systematic
review that evaluates various mobile computer vision-based
approaches for food classification, volume estimation, and
nutrient estimation. As a review, it does not introduce a new
dataset but rather examines existing methods and the
datasets they utilize. The datasets referenced in the reviewed
studies vary; some are proprietary datasets developed by
researchers, while others are benchmark datasets commonly
used in the field. These datasets are employed to train and
validate models that can accurately classify food items,
estimate portion sizes, and assess nutritional content, which
are crucial for managing dietary intake in individuals with
diabetes. The review article [101] published in the Alexandria
Engineering Journal in 2024 conducted a comprehensive
literature review, synthesizing information from various
studies and sources to discuss the advancements and trends
in wearable glucose monitoring technologies. This approach
involves aggregating and analyzing existing research findings
rather than applying a new or benchmark dataset.

The dataset used in reference [28] comprises two parts:
The “Indian Images Top (20)” dataset available on Kaggle,
containing 3996 images from 20 different Indian food classes,
and a custom dataset created for the research, which includes
nutritional information like Glycemic Index, protein, fats, and
carbohydrates for the food items. The Kaggle dataset serves
as the primary image dataset for training and testing the
Inception V3 model for food classification. Data augmentation
techniques such as rotation, shearing, and horizontal flipping
were applied to increase the dataset to 4996 images, ensuring
better model generalization. The custom dataset
complements this by providing essential nutritional details to
enable personalized food recommendations. Thus, the
research combines a public benchmark dataset with a
custom-built dataset tailored for its objectives. The dataset in
the document “Index of foods: A review [34] is derived from
existing literature, using databases like MEDLINE, PubMed,
Scielo, and Google Scholar. It is not an original dataset created
by the authors but rather a compilation of data from prior
research studies. This approach allows the authors to
summarize findings on the Glycemic Index and its influence
on health, using these benchmark sources. The dataset is
utilized to analyze patterns and outcomes related to dietary
habits, carbohydrate types, and their metabolic impacts,
emphasizing their relevance in managing chronic diseases
like diabetes and obesity.

5.3 Studies utilizing both benchmark and custom data
The dataset used in [44] combines experimental data
and benchmark GI data produced specifically for this
research. Experimental data were measured through in vivo
methods based on FAO/WHO protocols. These
measurements are combined with benchmark GI data
(sourced from international tables and scientific literature) to
train an artificial neural network. These data are then
analyzed using an ANN to establish a predictive model for
Glycemic Index values. This approach provides a more cost-
effective and faster alternative to in vivo testing, allowing for
the prediction of GI with high accuracy, as evidenced by the
study’s cross-validation results (R? = 0.89). Another study has
included [43] both benchmark values for Glycemic Index from
prior in vivo studies and new experimental data derived from
in vitro digestion methods combined with High-Performance
Liquid Chromatography (HPLC) analysis. Also, in reference
[42], the dataset used is drawn from both experimental data
and existing GI benchmarks. It includes measured Glycemic
Index values for foods like rice and breakfast cereals, using
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glucose and starchy reference foods. These were collected
through controlled experiments involving European, Chinese,
younger, and older participants. Benchmark GI values, such as
those for glucose and white bread, were used as references
for comparison and scaling. The dataset was employed to
explore how reference foods influence observed GI values
across populations. It was also used to assess variability in GI
results due to participant factors like ethnicity or age, and to
evaluate the appropriateness of different reference foods for
GI testing.

The review paper [37] presents an updated compilation
of Glycemic Index and GL values for various foods. The dataset
used in this study is an extensive collection of both published
and unpublished GI values sourced from global research
conducted between January 1, 2008, and June 30, 2020. The
authors systematically reviewed and tabulated these sources,
adhering to the International Standards Organization (ISO)
methodology to ensure data reliability. The dataset includes
over 4,000 food items, representing a 61% increase from the
previous edition published in 2008. This comprehensive
dataset serves as a valuable resource for researchers and
healthcare professionals, facilitating a better understanding
of the glycemic impact of various foods and aiding in the
development of dietary recommendations. Reference [97]
employed datasets from two primary sources: in-silico
simulations and the OhioT1DM dataset. The in-silico cohorts
comprised 20 and 47 virtual patients, respectively, designed
to mimic real-world scenarios. The OhioT1DM dataset is a
publicly available collection of data from individuals with
type 1 diabetes, including continuous glucose monitoring
data. The researchers employed a heterogeneous ensemble
method combining artificial neural networks, random forests,
and logistic regression to develop a meal detection model.
This model was trained and tested on both the in-silico and
OhioT1DM datasets to enhance its robustness and accuracy.
The ensemble majority voting approach achieved high
sensitivity and precision in detecting unannounced meals,
thereby improving postprandial glucose control.

A review paper [37] presents an updated compilation of
Glycemic Index and glycemic load values for various foods.
The dataset used in this study is an extensive collection of
both published and unpublished GI values sourced from
global research conducted between January 1, 2008, and June
30, 2020. The authors systematically reviewed and tabulated
these sources, adhering to the International Standards
Organization methodology to ensure data reliability. The
dataset includes over 4,000 food items, representing a 61%
increase from the previous edition published in 2008. This
comprehensive dataset serves as a valuable resource for
researchers and healthcare professionals, facilitating a better
understanding of the glycemic impact of various foods and
aiding in the development of dietary recommendations.

6. Research gaps and future directions

The timeline analysis (Figure 7) reveals that a significant
portion of Glycemic Index research was conducted during the
2015-2024 period, reflecting a concentrated effort to explore
foundational techniques in GI prediction and analysis.
However, much of this work has relied on traditional
statistical methods and machine learning, with limited
integration of emerging technologies such as Explainable Al,
Deep Learning, and Reinforcement Learning. The consistent
presence of machine learning (green category) underscores
its foundational role in GI research, but future studies should
explore ensemble methods and meta-learning to improve
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predictive performance, particularly for diverse food types
and ripeness stages. Deep learning’s growing role since 2015
presents opportunities for leveraging advanced architectures
such as transformer-based models or multimodal learning. By
combining diverse data sources, including biochemical food
properties, imaging data, and textual descriptions, these
methods can significantly enhance the accuracy and scope of
GI prediction. Statistical learning, while enduringly relevant,
can be effectively combined with modern deep learning
approaches to create hybrid models for interpretable and
robust predictions. Reinforcement Learning, with only one
study in the current collection, is an underexplored yet
promising direction. RL agents can dynamically predict GI
based on ripeness levels by interacting with sensor networks
in food supply chains, using iterative feedback to enhance
accuracy. Another promising application involves RL-driven
dietary recommendation systems that adjust in real-time
based on users’ blood glucose levels, dietary preferences, and
lifestyle factors such as exercise and stress. With
advancements in wearable technology and IoT devices, RL-
based systems could revolutionize personalized glycemic
management by minimizing glycemic spikes and optimizing
dietary plans tailored to individual needs.

The mapping of the literature by region revealed notable
insights into the geographical distribution of research
activities. As shown in Figure 9, the majority of GI-based
research utilizing Al technologies has been conducted in
North American countries. Additionally, several Asian
countries, such as India, have contributed significantly to this
field with a substantial number of publications. These
findings highlight the global interest in GI-based research
while also emphasizing regional disparities in research
output, suggesting opportunities for further contributions
from underrepresented regions.

Figure 9: Number of papers occurrences by geographic region

The dataset analysis (Figure 8) highlights the increasing
use of custom datasets, which often integrate continuous
glucose monitoring (CGM) data, wearables, and IoT devices to
monitor food intake, activity patterns, and health metrics.
While custom datasets enable granular insights, existing
benchmark datasets like NHANES, DIAdvisor, AMMODIT,
DINAMO, and OhioT1DM remain crucial for stan-
standardization. Hybrid datasets that combine custom and
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benchmark data are emerging as a powerful approach,
offering the reliability of standardized data along with the
specificity of real-world measurements. Additionally,
datasets sourced from recipe platforms like allrecipes
provide valuable nutritional insights, complementing
structured survey data and enhancing the
comprehensiveness of research.

Looking ahead, integrating these diverse datasets with
Al-driven models holds immense potential for advancing GI
research. Automated image analysis can improve ripeness
and portion-size estimation, while wearable data and IoT
systems can facilitate real-time and longitudinal studies. Such
approaches will enhance our understanding of GI variability
across populations and time scales, enabling personalized
interventions and population-level dietary
recommendations. Finally, the limited application of
Explainable Al in GI research represents a critical gap. XAl
tools, such as SHAP, have only been applied in two studies,
highlighting an opportunity for future work. By integrating
XAl into GI prediction models, researchers can improve
transparency and trust while uncovering the factors driving
glycemic variability, such as food preparation methods,
ripeness, and individual metabolic responses. XAl has the
potential to bridge the gap between advanced Al techniques
and their practical, interpretable application in healthcare,
paving the way for more effective and user-centric glycemic
management solutions. By addressing these gaps and
leveraging advanced Al methodologies, future research can
unlock transformative potential in Glycemic Index prediction,
management, and personalized healthcare.

The future of Glycemic Index-related studies can lead to
providing personalized nutrition advice by integrating CGM
devices, wearable sensors, and mobile health applications
that allow Al models to learn users' real-time responses.
These models can predict individual GI values using each
person’s physiology, activity level, stress, and circadian
rhythm. These Al systems can help individuals maintain a
stable glucose level by giving personalized meal plans and
precision dietary interventions. Another emerging avenue is
multimodal data fusion, where different data sources such as
food composition, metabolic responses, environmental
context, and even emotional or behavioral cues can be used to
build a holistic model for glycemic dynamics. The fusion can
include different data types such as image-based meal
recognition, nutrient text analysis, and CGM data combined to
build context-aware predictive models to monitor glucose
level fluctuation.

Figure 10 indicates the main objective of the research
covered by the GI-related studies. The significant number of
studies dedicated to predicting Glycemic Index using machine
learning and artificial intelligence underscores a prevailing
trend in current research. This focus reflects the scientific
community’s commitment to leveraging advanced
computational methods to forecast GI values accurately,
thereby enhancing dietary recommendations and metabolic
health management. In contrast, the relatively limited
research on developing low-GI foods, with only one study [26]
identified highlights a notable gap in the literature.
Addressing this disparity presents a valuable opportunity for
future investigations to concentrate on creating and
promoting low-GI food options. Such efforts could
significantly contribute to dietary interventions aimed at
improving glycemic control and reducing the risk of
metabolic disorders. Pilot studies have demonstrated the
feasibility of implementing low-GI diets in primary care
settings, suggesting that with appropriate support and
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resources, patients can successfully adopt these dietary
changes. However, these studies also indicate the need for
larger-scale research to confirm the benefits and practicality
of such interventions across diverse populations. In
summary, while substantial progress has been made in
predicting GI through ML and A], there is a pressing need for
future research to prioritize the development of low-GI foods
and to conduct comprehensive studies evaluating the
effectiveness of personalized nutrition strategies. Such
endeavors will be crucial in advancing dietary
recommendations and improving health outcomes related to
glycemic control.

Predicting GI *

—
—_
—_

—_
[}
—_

—_
—_—
[}

—_
[}
—_

—_—
—_—
[}

—_
[t}
—_—

—_
—
—_

O 00N D WN -
=A NSNS N UT®
— — — — — — — —1 —
O 00O D WN P
U1 = WO = WO O
i =
— F— P — 1 P— — — —
O 00NN WN N
AONDAJO BRI O
OOV ONOOWN N
P O WO 0k Ul
Ul e e e i e e e i
X R A JONOON
Pt e Wi e e o

e e e e e e e e
——— —— — — — —

—
—_

— e, —

O O O0ONINOWWN -
P i e B e e e e |
— — e e e e

ONUITO O WO WWw
P OO0 WWN =
SO WO O R B OB
(=] -

— e e e e

=
o
[ul
L
=
=
o
[\
D
—
=

Calculating GI & [13],[14],[16],[22],[28],[36],[37],
[81],[103],[109]

Recent Insights @ [63],[94]

Analyzing Gl with @ [15],[24],[34]
Food Processing

DevelopingLow @ [26]
GI Foods

GL Estimation & @ [25],[29],[31],[35],[38],[39],[71],
Food [741,[76],[82],[84],[85],[95],[97],
Recommendation | [105]

Evaluating & ® [38],[39],[72],[74],[76]
Testing GL and
GI Response

Figure 10. Area covered by the research

7. Conclusion

The Glycemic Index serves as a vital indicator for
understanding how foods influence blood glucose levels,
playing a key role in managing diabetes and promoting
healthy dietary habits. While predictive modeling dedicated
to GI remains sparse, recent advances in machine learning
approaches have enabled more accurate estimations of GI and
inter-individual glycemic responses than traditional methods.
Deep learning techniques, in particular, have demonstrated
their effectiveness in uncovering complex patterns within
data, offering scalable and precise GI predictions for a wide
range of foods. This advancement paves the way for
significant contributions to personalized nutrition and
dietary recommendations. Interestingly, reinforcement
learning has not yet been extensively explored in GI-focused
research, marking an open area for future investigation. The
potential of RL in this domain offers exciting opportunities to
expand the scope of Al-driven solutions for dietary
management. Additionally, although image processing
techniques were not a primary focus in this study, they have
emerged as crucial facilitators for enhancing the application
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of other Al methodologies in GI research. Only two studies in
the reviewed literature directly employed explainable Al
techniques, specifically SHAP, to enhance the interpretability
of their models. While other studies did not explicitly
integrate XAl methodologies, they made efforts to validate
and clarify how Al algorithms arrived at specific decisions or
predictions. To achieve this, several methods were employed
to improve model interpretability. Linear regression models,
with their straightforward representation of the relationship
between input features and target variables, provided clear
insights into feature influence. Decision trees, by creating a
series of binary choices, offered an intuitive, tree-like
structure to trace decision-making paths. Similarly, rule-
based systems used “if-then” rules to form logical and
transparent reasoning processes, making them valuable tools
for understanding machine learning model outputs. Most
studies reviewed utilize continuous glucose monitoring data
as inputs for their models, reflecting a trend toward
leveraging real-time and highly granular data. Early Al-based
GI research predominantly relied on statistical learning
techniques; however, with the rise of ML and advanced DL
approaches, the field has shifted toward leveraging these
powerful tools for deeper insights and improved accuracy.
The majority of studies employ self-developed datasets, as
these datasets are specifically designed and curated to meet
the unique objectives and requirements of the research. By
tailoring the data to the problem at hand, researchers can
ensure that the models are trained on highly relevant and
domain-specific information, which significantly improves
their accuracy, reliability, and overall performance. This
customized approach also allows for better control over the
quality and diversity of the data, addressing potential gaps or
biases that may be present in publicly available datasets.
Consequently, the use of self-developed datasets not only
enhances the precision of the models but also ensures that the
outcomes are better aligned with the intended purpose of the
study. In conclusion, the intersection of Al and GI research is
at an exciting juncture, with deep learning and emerging
techniques like reinforcement learning presenting untapped
potential. These advancements hold promise for addressing
existing gaps in GI prediction, improving scalability, and
enabling more personalized approaches to nutrition and
healthcare. This review distinguishes itself by connecting
glycemic index research with a wide range of Al techniques,
emphasizing methodological diversity and revealing
underexplored  opportunities in  explainable and
reinforcement learning for food analytics.
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