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A B S T R A C T 
 

Software defect prediction (SDP) is one of the most critical aspects of software 
quality improvement and efficient use of testing resources. Traditional machine 
learning models tend to lack both generalizability and performance, especially 
when faced with imbalanced or small datasets. To overcome these limitations, 
the current research proposed a stacked ensemble learning model that 
combines Random Forest, Gradient Boosting, and AdaBoost as base learners, 
and logistic regression as a meta-learner. A selected collection of 500 software 
modules was sampled out of four benchmark repositories: CM1, PC1, JM1, and 
KC1. Stratified sampling, Min-Max normalization, SMOTE-based class balancing, 
feature selection via Recursive Feature Elimination (RFE), and mutual 
information ranking were used as preprocessing steps. The training of the 
models used 10-fold cross-validation, and hyperparameter optimization was 
done using Grid Search. The findings showed that the stacked ensemble 
performed better than any single classifier on all measures, with the highest 
accuracy of 0.88 and statistically significant improvements in precision, recall, 
and F1-score (p < 0.05). Data balancing and feature selection methods also 
increased model stability and interpretability. In summary, the suggested 
framework will provide a powerful, scalable, and resource-optimal system to 
predict software defects. This method can be replicated in future studies on 
larger datasets and with deep learning–based meta-models to improve 
adaptability. Its integration of Recursive Feature Elimination and mutual-
information feature ranking within an optimized stacking design, applied to 
NASA repositories for the first time, demonstrates measurable improvements 
in generalization and robustness. 

1. Introduction 

Software dependability has become a critical issue in 
contemporary software engineering due to the increased 
adoption of software systems in safety-critical, financial, and 
real-time applications.  With the accelerated pace of 
development through agile and DevOps practices, software 
defect prediction (SDP) has become an essential procedure 
for identifying possible faults before deployment. Effective 
SDP enables early detection of problematic code elements, 
allowing developers to focus testing resources on high-risk 
modules and enhance software quality assurance. ML 
approaches have become prominent in SDP in recent years, 

where they can be used to learn patterns of code complexity, 
size, coupling, and other software metrics, and classify 
modules as defective or clean. Nevertheless, traditional ML 
classifiers, such as Naive Bayes models, support vector 
machines, and decision trees, struggle with generalization 
and thus perform poorly on imbalanced and high-
dimensional data [1,2]. Such shortcomings have prompted 
the researchers to consider more effective and flexible 
methods, with ensemble learning models proving to be the 
most effective. Ensemble learning employs a combination of 
several base learners to enhance prediction accuracy by 
avoiding overfitting and achieving more stable models.  
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Random Forest, Gradient Boosting, and AdaBoost are 
tree-based ensembles that have performed well on a number 
of SDP tasks because of their capacity to model complex 
decision boundaries [3,4]. Stacking generalization is a more 
recent advanced ensemble method that has attracted 
attention due to its potential to combine heterogeneous 
classifiers and to learn optimal combinations using meta-
learning layers. Stacking optimized tree-based ensembles has 
performed remarkably well, surpassing individual models 
with improved defect detection and robustness across 
diverse datasets [1]. In parallel, feature selection has become 
a critical element in boosting the effectiveness of models for 
predicting defects. The presence of irrelevant or redundant 
features not only increases model complexity but also 
reduces predictive accuracy. Employing effective feature 
selection techniques before training allows ensemble 
learners to focus on the most informative software metrics, 
resulting in improved classification performance and 
computational efficiency [2-4]. Integrating deep learning 
approaches with ensemble frameworks such as CNN-BiLSTM 
hybrids has recently emerged as a frontier area, offering the 
capacity to automatically extract high-level representations 
from raw data and sequential software behaviors [5, 6].  

Although ensemble-based models have advanced the 
state of defect prediction, several unresolved challenges 
continue to limit their full potential. One of the foremost 
issues is the generalizability of existing models across 
different software repositories. Many approaches 
demonstrate high performance on specific benchmark 
datasets but fail to maintain their effectiveness when applied 
to new or heterogeneous projects, thus limiting their practical 
applicability in real-world development scenarios [7, 8]. 
Another significant limitation lies in the homogeneous nature 
of many ensemble techniques. While bagging and boosting 
leverage the diversity of training data, they often use the same 
base learner types. In contrast, heterogeneous ensembles, 
particularly stacking models that integrate multiple diverse 
classifiers, can exploit different inductive biases to yield 
better results. However, the design and optimization of such 
stacked frameworks remain complex and underexplored 
within SDP [9, 10]. Furthermore, most stacking methods do 
not effectively incorporate domain-specific insights from 
software engineering, such as the relevance of individual 
software metrics or module characteristics [1-3]. 

Despite the success of deep learning across various 
domains, its integration with ensemble learning for defect 
prediction remains limited. Hybrid models combining deep 
networks like CNN and Bi-LSTM with ensemble classifiers 
have the potential to identify patterns in software data that 
are both spatial and temporal, yet current research in this 

area is sparse and lacks comprehensive evaluations [8,9]. 
Many existing studies do not rigorously examine the interplay 
between feature selection techniques and ensemble models, 
leading to suboptimal configurations that limit predictive 
strength [2-4]. Despite notable progress, existing studies lack 
a unified framework that jointly tackles feature selection, data 
imbalance, and ensemble heterogeneity in software defect 
prediction. This study addresses that gap by integrating 
Recursive Feature Elimination, mutual-information ranking, 
and SMOTE-based class balancing into a stacked ensemble 
model to enhance robustness and cross-dataset 
generalization. Addressing these gaps has significant 
implications for both academic research and industrial 
software development. By introducing innovative ensemble 
strategies that combine heterogeneous classifiers, deep 
architectures, and intelligent feature selection, the study aims 
to deliver a defect prediction framework that is not only 
accurate but also scalable and generalizable across different 
software environments. From a theoretical standpoint, the 
study advances our knowledge about how ensemble 
diversity, model stacking, and feature optimization interact to 
affect prediction outcomes. It further enables the 
combination of deep learning and ensemble pipelines, 
providing new insights into hybridizing architecture methods 
in software analytics. In practice, better prediction accuracy 
will allow developers to focus on inspection and testing, 
manage technical debt efficiently, and ensure high software 
reliability and customer satisfaction. The possibility of 
generalization across diverse datasets enables the proposed 
models to be integrated into automated pipelines in various 
software projects, including open-source, enterprise, and 
embedded systems. It can also be helpful to add explainable 
feature selection modules to interpret model outputs and 
build greater trust and better decision-making within 
engineering teams. This method can be replicated in future 
studies on larger datasets and with deep learning–based 
meta-models to improve adaptability, while its integration of 
Recursive Feature Elimination and mutual-information 
feature ranking within an optimized stacking design applied 
to NASA repositories for the first time demonstrates 
measurable improvements in generalization and robustness. 

1.1 Research objectives 
• To assess whether integrating Recursive Feature 

Elimination and mutual-information feature ranking 
enhances generalization and mitigates overfitting in 
software defect prediction models. 

• To evaluate how a heterogeneous stacking ensemble that 
combines tree-based classifiers with a logistic meta-
learner performs compared with individual base models 
across NASA benchmark datasets. 

• To examine whether hyperparameter optimization and 
SMOTE-based class balancing significantly improve model 
stability, precision, and recall across varied software 
datasets. 

2. Literature review 

Pre-deployment detection of software bugs has been a 
major goal in software engineering, and a recent wave of 
research on predictive modeling has adopted both machine 
learning (ML) and ensemble-based methods. The 
development of predictive models has been significantly 
motivated by access to historical defect data, e.g., NASA, and 
by the discovery that software metrics could be successfully 
applied to predict fault-proneness.  

Abbreviations  
SDP     Software Defect Prediction 
ML     Machine Learning 
SMOTE     Synthetic Minority Over-sampling Technique 
RFE     Recursive Feature Elimination 
AUC-ROC     Area Under the Receiver Operating Characteristic  
      Curve 
CNN     Convolutional Neural Network 
Bi-LSTM     Bidirectional Long Short-Term Memory 
GRU     Gated Recurrent Unit 
ANN     Artificial Neural Network 
MDP     Metrics Data Program (NASA dataset source) 
CI/CD    Continuous Integration / Continuous Deployment 
JM1/PC1/CM1/KC1    NASA Software Defect Datasets  
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Software defect prediction has been considered using a 
variety of machine learning methods, including simple 
classifiers to more complex ensemble and neural networks. 
Empirical investigations into methods like support vector 
machines, k-nearest neighbors, and decision trees have 
shown variable performance, largely influenced by the nature 
of input features and class imbalance within datasets. Using 
NASA repositories, the study conducted a comparative 
analysis across multiple ML models and highlighted the 
differential effectiveness of individual techniques across 
distinct project contexts [11]. Their findings underscored that 
no single classifier consistently outperforms others, thus 
advocating for ensemble-based solutions to mitigate variance 
and bias. To address the limitations of standalone classifiers, 
ensemble learning has become a widely endorsed strategy. 
The study was among the early proponents of applying 
ensemble techniques on feature-selected datasets, 
demonstrating marked improvements in prediction accuracy 
and robustness when ensembles were trained on reduced, 
informative feature subsets [12]. Further validating this 
approach, another study proposed an ensemble classification 
framework specifically integrated with feature selection 
methods. The model was able to not only increase the rate of 
defect detection but also manage to reduce the 
dimensionality, thereby decreasing the computational 
overhead without affecting the accuracy [11]. 

Hyperparameter optimization is a major determinant of 
the success of predictive frameworks. One of the studies has 
empirically evaluated optimization methods of predicting the 
number of defects in software and concluded that the benefit 
of tuning hyperparameters was a significant ingredient in 
software model accuracy, especially in neural and ensemble 
models [13]. The paper also highlighted the importance of 
configuration strategies in order to achieve the predictive 
potential of base learners as well as ensemble meta-learners. 
Simultaneously, deep learning has provided possibilities to 
extract complex patterns in software metrics. One of the 
studies has proposed a hybrid deep neural architecture in the 
form of Gated Recurrent Units (GRU) coupled with 
Convolutional Neural Networks (CNN) and resampling with 
SMOTE-Tomek that addresses the issue of data imbalance 
[14]. The model showed better results on imbalanced data, 
suggesting the potential of combining deep and sequential 
learning with data-level interventions [15]. Nevertheless, 
such models require more computational resources, which 
can be enhanced with the help of ensemble pruning or 
stacking. 

Recent systematic reviews have summarized the results 
of different neural structures. One study has reported an in-
depth examination into the techniques of defect prediction 
that have been developed by artificial neural networks (ANN), 
noting that ANN in their pure form may be underperforming 
without prior processing involved in the prediction process, 
which could be in the form of feature selection or ensemble 
enhancement [16]. Their results suggest having hybrid 
models that integrate the power of various algorithms in 
ensemble structures to obtain scalability and generalization. 

Feature selection remains central to building effective 
SDP models. A study demonstrated that preprocessing data 
through correlation analysis and removing irrelevant metrics 
significantly improved model performance. Their 
sustainability-focused research applied ML techniques in 
software lifecycle management, confirming that data 
preparation and feature engineering are decisive factors in 
predictive success [13]. Their conclusions align with earlier 
studies, which argue that model performance depends not 

only on the learning algorithm but also on the quality and 
relevance of the input data. Ensemble-based SDP is still in the 
process of improvement as more intelligent architectures are 
being invented. In one of the papers, an ensemble model, 
which combines a few learners such as AdaBoost, Random 
Forest, and Gradient Boosting, each of which was set with 
various parameters, was proposed. Individual classifiers had 
a poorer model than theirs (their model had higher precision 
and recall values) as they performed better when tested on 
large-scale and real-life datasets [17]. Another article 
proposed a machine learning model, which comprises both 
sophisticated methods of ensemble and data balancing and 
metric selection. Their approach gave significant 
enhancements in the detection rates, especially on the 
imbalanced datasets that are highly imbalanced [18]. The 
trend of combining the intelligence of ensembles, data-based 
optimization, and feature-centric approaches is moving in the 
same direction, and they are the most promising way to 
predict software defects. Smartly constructed ensemble 
models that learn to interpolate between learning paradigms 
and incorporate strict feature selection and hyperparameter 
optimization are always better than more traditional ones 
[19]. The synergy of deep learning and ensemble design is a 
promising emerging field that significantly enhances 
prediction accuracy, especially in complex and heterogeneous 
software environments. 

3.  Methodology 

3.1 Research design 
A quantitative research design was adopted to ensure 

that the competence of an ensemble learning framework 
could be built and experimented with in the software defect 
prediction. The study targeted the empirical analysis of 
machine learning classifiers and ensemble formats, and 
feature selection techniques on publicly available defect sets 
of data. An experimental approach was sought to compare the 
performances of different models based on pre-established 
evaluation standards. The conditions in the simulated 
environment were manipulated in order to make the study 
reproducible and internally valid. 

3.2 Data collection method 
The information on software defects was acquired 

according to the NASA Metrics Data Program (MDP) and 
PROMISE repositories. These data provided historical, 
module-level measures and related defect labels of several 
actual software development projects. The data collection 
was performed by downloading the cleaned and pre-
processed CSV files from the repository archives. Each dataset 
had sets of fixed software measurements, such as lines of 
code, cyclomatic complexity, coupling, cohesion, and object-
oriented design measurements, and binary defect labels. The 
applied data sets were Spacecraft Instrumentation Software 
(CM1), Flight Software to process Image (PC1), Real-time 
Predictive Ground System Software (JM1), and Storage 
Management Software (KC1), which are popular benchmarks 
in the field of defect prediction. Before the experiment, the 
data was verified for consistency, data missing, and 
imbalances. Four NASA datasets, CM1, PC1, JM1, and KC1, 
were carefully selected because they are commonly accepted 
standards in software defect prediction and represent 
different software spheres. Their diversity ensures 
comparability, reproducibility, and adequate coverage of 
varied code complexities for evaluating model robustness. 
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3.3 Population and sampling 
The target population consisted of open-source and 

NASA-based software projects in the form of software 
modules. The static code metrics describing each software 
module were viewed as a data point of predictive modeling. 
The process of stratified sampling was employed to ensure 
that there was proportional representation of the defective 
and non-defective instances during model training and 
testing. Datasets with severe class imbalance were handled 
using SMOTE (Synthetic Minority Over-sampling Technique) 
to ensure that the training data contained adequate positive 
class representation for learning algorithms. The sample size 
of 500 modules was selected to maintain balanced class 
distribution and ensure efficient hyperparameter 
optimization during multiple cross-validation cycles without 
exceeding computational limits. 

3.4 Data analysis technique 
 The dataset underwent normalization using Min-Max 

scaling to ensure uniform feature ranges across models. 
Feature selection was performed using Recursive Feature 
Elimination (RFE) and mutual information-based ranking to 
identify the most informative subset of attributes. The RFE 
method iteratively removed less significant features based on 
model importance scores until an optimal subset of about 15 
metrics was obtained. Mutual-information ranking captured 
nonlinear relationships with defect labels, and the top 20% of 
features were retained. This two-step selection ensured 
relevant, non-redundant metrics and improved model 
interpretability. Three baseline classifiers, Random Forest, 
Gradient Boosting, and AdaBoost, were trained and evaluated. 
A heterogeneous ensemble framework based on stacking was 
constructed by combining the predictions of the base 
classifiers and training a logistic regression model as a meta-
learner. Ten-fold cross-validation was employed to validate 
model performance and minimize bias due to data 
partitioning. Evaluation metrics included Accuracy, Precision, 
Recall, F1-score, and Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC). Hyperparameter tuning was 
carried out using Grid Search with cross-validation to 
optimize model configurations. All experiments were 
implemented using the Python programming language with 
Scikit-learn and XGBoost libraries and executed on a high-
performance computing environment with 32 GB RAM and 8-
core Intel Xeon processors. Statistical comparisons between 
models were conducted using paired t-tests to assess the 
significance of observed performance differences. 

3.5 Ethical consideration 
Publicly available secondary datasets were used, all of 

which were anonymized and devoid of any personally 
identifiable information. No direct interaction with human 
subjects was involved, thereby eliminating the need for 
institutional ethical review. All data usage complied with 
repository licensing terms. Experimental scripts and models 
were documented and version-controlled to ensure 
transparency and reproducibility. Computational resources 
were used responsibly, and all model results were reported 
without manipulation or selective omission. The 
implementation code and experiment scripts have been 
archived in a private GitHub repository and are available from 
the corresponding author upon reasonable request. 

4. Results 

         Performance evaluation was carried out on a balanced 
dataset of 500 software modules, equally sourced from CM1, 
PC1, JM1, and KC1 (125 modules each). Stratified sampling 

maintained the original class distribution, while SMOTE 
addressed minor imbalances during training. Features were 
normalized using Min-Max scaling, and selection was 
performed via Recursive Feature Elimination (RFE) and 
mutual information ranking. Ten-fold cross-validation and 
Grid Search were applied to ensure model robustness and 
optimal hyperparameter configurations. 

4.1 Accuracy evaluation 
As presented in Table 1, the proposed stacked ensemble 

model consistently outperformed baseline models across all 
datasets. The ensemble achieved the highest accuracy on CM1 
(0.88), PC1 (0.85), JM1 (0.82), and KC1 (0.86), demonstrating 
a clear performance margin over individual learners. Random 
Forest and Gradient Boosting followed closely but did not 
match the predictive strength of the ensemble. Figure 1 
displays the accuracy performance of four machine learning 
models across the CM1, PC1, JM1, and KC1 datasets. Darker 
cells indicate higher accuracy. The stacked ensemble 
consistently outperformed all individual models, particularly 
on CM1 and KC1, highlighting its robustness and superior 
generalization capabilities in software defect prediction. 

Table 1. Accuracy scores across datasets (sample size = 500) 

 

 
Figure 1. Heatmap of model accuracy across four benchmark 
datasets 

4.2 Precision analysis 
Precision scores, shown in Table 2, indicated the 

ensemble’s superior capability in correctly identifying 
defective modules while minimizing false positives. The 
stacked model reached a precision of 0.80 on CM1 and 0.78 
on PC1. AdaBoost consistently yielded the lowest precision 
values, confirming that ensemble design and feature 
optimization significantly influenced classification reliability. 
This improvement highlights how the combination of class 
balancing through SMOTE and feature selection using RFE 
and mutual information directly enhanced the ensemble’s 
precision outcomes, as further validated by statistical testing 
(p < 0.05).

Dataset Random 
Forest 

Gradient 
Boosting 

AdaBoost Stacked 
Ensemble 

CM1 0.83 0.82 0.81 0.88 

PC1 0.80 0.79 0.77 0.85 

JM1 0.76 0.75 0.74 0.82 

KC1 0.81 0.80 0.78 0.86 
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Figure 2 illustrates the classification accuracy of four 
machine learning models—Random Forest, Gradient 
Boosting, AdaBoost, and Stacked Ensemble evaluated on CM1, 
PC1, JM1, and KC1 datasets. Stacked Ensemble performed the 
best and had the maximum accuracy in all datasets, which 
confirms its efficiency. The performance trend also indicates 
relatively lower precision scores on JM1 and greater stability 
on CM1 and KC1 datasets. 

Table 2. Precision scores across datasets (sample size = 500) 

 
4.3 Recalling performance 

Table 3 gives recall values, which are an indication of the 
sensitivity of the models to the defective class. The ensemble 
had the best recall in all the datasets, with the highest recall 
being 0.84 in CM1 and 0.82 in KC1. The performance of the 
SMOTE-based strategy of class balancing in terms of high 
recall scores justified the approach and proved the 
effectiveness of the ensemble in reducing the false-negative 
rate. 

Table 3. Recall scores across datasets (sample size = 500) 

 

 
Figure 2. Comparing model accuracy across datasets  

 
 
 

Figure 3 demonstrates the better classification 
performance of Random Forest, Gradient Boosting, AdaBoost, 
and Stacked Ensemble models on CM1, PC1, JM1, and KC1 
datasets. The Stacked Ensemble once more scored the best, 
particularly on CM1 (0.84) and PC1 (0.81), and has once again 
demonstrated the predictive advantage on a variety of 
software defect datasets. 

4.4 F1-Score comparison 
Table 4 F1-scores give a harmonic compromise between 

precision and recall. Throughout the datasets, the ensemble 
received better scores, including 0.82 on CM1 and 0.80 on 
KC1. These scores highlighted the overall performance of the 
model, which was well-rounded, meaning that it learned well 
the patterns of defects irrespective of the small dataset size. 
Figure 4 shows the heatmap that represents the accuracy of 
four machine learning models on the CM1, PC1, JM1, and KC1 
datasets. Darker shades indicate higher performance, clearly 
emphasizing the superior accuracy of the Stacked Ensemble 
model. Visual comparison facilitates quick interpretation of 
model effectiveness across varying dataset complexities. 

Table 4. F1-score across datasets (sample size = 500) 

 
 
 
 
 
 
 

 
 

 

 

Dataset Random 
Forest 

Gradient 
Boosting 

AdaBoost Stacked 
Ensemble 

CM1 0.76 0.75 0.74 0.80 

PC1 0.72 0.71 0.69 0.78 

JM1 0.68 0.67 0.65 0.74 

KC1 0.74 0.72 0.70 0.78 

Dataset Random 
Forest 

Gradient 
Boosting 

AdaBoost Stacked 
Ensemble 

CM1 0.78 0.77 0.76 0.84 

PC1 0.74 0.73 0.71 0.81 

JM1 0.70 0.69 0.67 0.79 

KC1 0.76 0.75 0.73 0.82 

Dataset Random 
Forest 

Gradient 
Boosting 

AdaBoost Stacked 
Ensemble 

CM1 0.77 0.76 0.75 0.82 

PC1 0.73 0.72 0.70 0.79 

JM1 0.69 0.68 0.66 0.76 

KC1 0.75 0.73 0.72 0.80 
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Figure 4. Model accuracy on benchmark datasets  

4.5 Model accuracy  
         Table 5 presents the accuracy comparison of four 
machine learning models across four benchmark datasets 
using a sample size of 500 modules. The stacked ensemble 
model consistently achieved the highest accuracy on all 
datasets, ranging from 0.82 (JM1) to 0.88 (CM1). This 
performance indicates superior generalization and predictive 
capability compared to individual models. The results 
highlight the effectiveness of integrating diverse base 
learners through stacking to enhance classification accuracy 
in software defect prediction tasks. Beyond overall accuracy, 
the stacked ensemble demonstrated a balanced precision–
recall trade-off across datasets, consistently improving F1-
scores and model stability without increasing false positives.  

4.6 Hyperparameter optimization 
Table 6 presents the Grid Search-based tuning, which 

resulted in observable performance gains between 2% to 5% 
across all models. For example, the optimal number of 
estimators in Random Forest was 120, and the best learning 
rate for Gradient Boosting was 0.07. Logistic Regression was 
selected as the meta-learner in the stacked ensemble due to 
its ability to integrate base model predictions without 
overfitting effectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Comparative accuracy of models across datasets (sample 
size = 500) 

 

Table 6. Optimized hyperparameters for machine learning models 
via grid search 

 

4.7 Statistical significance testing 
Paired t-tests conducted between the stacked ensemble 

and each baseline model revealed statistically significant 
improvements (p < 0.05) in all four metrics across the 
datasets, as mentioned in Table 7. These findings confirm that 
performance enhancements were not due to random variance 
but were attributable to methodological rigor and 
architectural design.  

5. Discussion 

Findings from the study demonstrated that the proposed 
stacked ensemble model consistently outperformed 
individual classifiers, Random Forest, Gradient Boosting, and 
AdaBoost, across all four evaluated datasets, even with a 
reduced and balanced sample size of 500 modules. Metrics 
such as Accuracy, Precision, Recall, and F1-score all indicated 

Dataset Random 
Forest 

Gradient 
Boosting 

AdaBoost Stacked 
Ensemble 

CM1 0.83 0.82 0.81 0.88 

PC1 0.80 0.79 0.77 0.85 

JM1 0.76 0.75 0.74 0.82 

KC1 0.81 0.80 0.78 0.86 

Model Hyperparameters Tuned Optimal Values 
Selected 

Random 
Forest 

 Estimators, Max depth, Min 
samples split 

120 estimators, max 
depth = 20, min split 
= 2 

Gradient 
Boosting 

Learning rate, Estimators, 
Max depth 

Learning rate = 0.07, 
150 estimators, max 
depth = 4 

AdaBoost Estimators, Learning rate 100 estimators, 
learning rate = 0.5 

Stacked 
Ensemble 

Base models: RF, GB, AB; 
Meta-learner: Logistic 
Regression 

C = 1.0, solver = 
‘liblinear’ 

Figure 3. Depicting enhanced model accuracy on the benchmark dataset 
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superior performance for the ensemble model, with the 
highest accuracy of 0.88 achieved on the CM1 dataset and the 
lowest yet competitive score of 0.82 on JM1. These results 
support the effectiveness of stacking heterogeneous base 
learners to capture diverse predictive signals, especially 
when combined with robust feature selection and class 
rebalancing strategies. The model’s balanced precision–recall 
performance further reinforces its robustness, demonstrating 
that its superiority extends beyond accuracy to reliable 
detection of defective modules across datasets. 

Table 7. Paired t-test results comparing the stacked ensemble with 
baseline models 

Metric Stacked vs. 
Random 
Forest (p-
value) 

Stacked vs. 
Gradient 
Boosting (p-
value) 

Stacked vs. 
AdaBoost (p-
value) 

Accuracy 0.012 0.018 0.004 
Precision 0.021 0.016 0.008 
Recall 0.017 0.019 0.006 
F1-Score 0.014 0.015 0.005 

 

The results align with and extend earlier findings in 
ensemble-based defect prediction research. Alazba and 
Aljamaan [1] achieved about 0.84 accuracy on the CM1 
dataset using optimized tree ensembles, while the proposed 
model reached 0.88. Likewise, Ali et al. [2] reported roughly 
0.82 accuracy on KC1 with feature-based stacking, whereas 
our configuration attained 0.86. These improvements 
highlight that integrating RFE and mutual-information 
feature ranking within a heterogeneous stacking framework 
enhances generalization and predictive stability.       Feature 
selection using RFE and mutual information contributed 
meaningfully to model performance by eliminating irrelevant 
or redundant attributes, thereby helping reduce overfitting 
and enhancing generalization. Hyperparameter optimization 
via Grid Search further improved baseline and ensemble 
configurations, producing observable gains in metric 
outcomes across the board. The consistent superiority of the 
stacked ensemble across all evaluation metrics aligns with 
expectations drawn from ensemble theory, which suggests 
that model diversity and aggregation can lead to reduced 
error and variance. Despite the relatively small sample size, 
the statistical significance of improvements (p < 0.05) 
confirms the reliability of the results. Current findings 
reinforce prior assertions in the literature that ensemble 
models outperform standalone machine learning classifiers in 
software defect prediction. The empirical study 
demonstrated that ensemble learning, particularly stacking 
and boosting, achieved significantly better results than 
individual models across multiple datasets, confirming the 
architectural value of such frameworks in real-world defect 
prediction tasks [20]. The study emphasized that ensemble 
paradigms leverage complementary strengths of classifiers 
and improve stability, a conclusion mirrored in the robust 
performance observed in the present study [21]. Adaptive 
ensemble models continue to gain traction due to their ability 
to dynamically capture nonlinear relationships in high-
dimensional software metrics. A study developed an 
ensemble method using the adaptive sparrow search 
algorithm, which yielded high accuracy and robustness across 
various repositories, further affirming that optimizing learner 
diversity and integration techniques leads to tangible 
performance gains [22]. Deep learning approaches have also 
gained momentum in recent years. A study demonstrated that 
convolutional and recurrent architectures outperform 

traditional ML methods when sufficient data volume and 
computational resources are available [23]. Another study 
highlighted the efficacy of deep forest models in capturing 
complex defect patterns without requiring the extensive 
tuning overhead typical of neural networks [24]. However, 
such deep models are often resource-intensive, making them 
less suitable for smaller datasets or constrained 
environments. By contrast, the current study's ensemble 
model achieved high performance with only 500 samples and 
moderate computational requirements, underscoring its 
practical applicability. A study reviewed the AI landscape in 
defect prediction and emphasized that preprocessing, feature 
engineering, and model ensemble configurations are crucial 
performance drivers, a viewpoint supported by the 
methodological rigor and empirical success of the present 
framework [25]. The study also reported that while deep 
learning models show promise, ensemble-based strategies 
remain competitive and more interpretable in many 
industrial applications, particularly when integrated with 
explainable AI techniques [26]. 

In terms of dataset use, Siddiqui and Mustaqeem [27] 
affirmed that NASA datasets continue to serve as effective 
benchmarks for predictive modeling, although dataset quality 
and preprocessing methods significantly influence outcomes. 
The present study addressed this through normalization, 
SMOTE balancing, and cross-validation, ensuring reliability 
even with a limited data pool. Several limitations were 
acknowledged during the research. The use of only four 
datasets, albeit standard and diverse, restricts the 
generalizability of the findings across other domains or 
software development environments. The reduced dataset 
size, although adequate for controlled experiments, may limit 
generalization to larger or more complex software systems, 
which future studies should address by scaling to full 
repositories. These NASA repositories were selected because 
they are widely accepted benchmarks that offer reliable, 
publicly available, and domain-diverse defect data, allowing 
consistent evaluation and comparison with prior studies. 
Although stratified sampling and SMOTE were employed to 
address class imbalance, synthetic oversampling might not 
fully represent real-world distributions and could introduce 
minor noise or bias, potentially affecting model 
interpretability and performance in production settings. 
Future work should validate results on naturally balanced 
datasets to confirm robustness. While feature selection and 
hyperparameter tuning were carefully executed, they were 
limited to conventional algorithms. The use of more advanced 
methods like Bayesian optimization or embedded feature 
selection within ensemble frameworks could yield even 
better results. The model architecture relied on classical 
machine learning algorithms, and while effective in this setup, 
comparisons with more modern deep neural architectures 
were not included within the scope of this study. Future 
studies should address these constraints by applying 
automated hyperparameter optimization, testing on broader 
repositories, and integrating explainable AI to enhance model 
scalability and transparency. Findings from the research 
carry substantial implications for both academic and 
industrial stakeholders. In academic contexts, the results 
affirm the efficacy of integrating diverse base learners in a 
stacked ensemble structure, particularly when 
complemented by strategic data preprocessing and feature 
engineering. The approach serves as a template for future 
experimental setups using limited but balanced datasets. 
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From an industry perspective, the ensemble model offers 
a low-cost, high-accuracy defect prediction solution that can 
be embedded within software quality assurance pipelines. 
The real-world adoption of predictive models hinges on their 
performance, interpretability, and ease of integration into 
existing workflows, all of which were considered in the 
present design [28, 29]. Future work will focus on extending 
the model to larger, contemporary datasets such as GitHub 
and Apache repositories to validate scalability. Integration 
into CI/CD pipelines can enable real-time defect prediction 
during software builds. Additionally, applying explainable AI 
tools such as SHAP or LIME will help interpret model 
decisions and improve stakeholder confidence in practical 
deployments. 

6. Conclusion 

This study presented a general and scalable model for 
software defect prediction that integrates recursive feature 
elimination, mutual information ranking, and stacked 
ensemble learning. By addressing critical challenges such as 
data imbalance, overfitting, and limited generalization, the 
proposed model achieved reliable improvements across 
NASA benchmark datasets, outperforming traditional 
ensemble and single classifiers in all evaluation metrics. The 
findings confirm that heterogeneous stacking achieved 
through the diversity of base learners enhances both 
predictive accuracy and sensitivity while maintaining 
interpretability and computational efficiency. The statistically 
significant gains (p < 0.05) validate the strength of the 
presented method and demonstrate that intelligent feature 
selection and class balancing are decisive factors in 
optimising predictive performance. Beyond empirical 
success, this research contributes to both theoretical and 
practical knowledge in software defect prediction. The study 
reinforces the principle that integrating multiple learners 
through optimal meta-learning leads to consistent and 
reliable outcomes. In practical applications, the framework 
can be incorporated into industrial CI/CD pipelines to enable 
early defect detection, efficient resource allocation, and 
improved software reliability. It offers a reproducible and 
cost-effective foundation for organizations seeking to 
implement predictive analytics without extensive 
computational expense. Although the research was restricted 
to a balanced subset of NASA datasets, its architecture 
provides a solid basis for future studies involving more 
sophisticated meta-learners, Bayesian hyperparameter 
optimization, and explainable AI components. Overall, this 
work advances the growing field of intelligent software 
analytics by delivering a robust, interpretable, and scalable 
defect prediction paradigm that bridges the gap between 
machine learning theory and practical software engineering.  
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