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Software defect prediction (SDP) is one of the most critical aspects of software
quality improvement and efficient use of testing resources. Traditional machine
learning models tend to lack both generalizability and performance, especially
when faced with imbalanced or small datasets. To overcome these limitations,
the current research proposed a stacked ensemble learning model that
combines Random Forest, Gradient Boosting, and AdaBoost as base learners,
and logistic regression as a meta-learner. A selected collection of 500 software
modules was sampled out of four benchmark repositories: CM1, PC1, JM1, and
KC1. Stratified sampling, Min-Max normalization, SMOTE-based class balancing,
feature selection via Recursive Feature Elimination (RFE), and mutual
information ranking were used as preprocessing steps. The training of the
models used 10-fold cross-validation, and hyperparameter optimization was
done using Grid Search. The findings showed that the stacked ensemble
performed better than any single classifier on all measures, with the highest
accuracy of 0.88 and statistically significant improvements in precision, recall,
and F1-score (p < 0.05). Data balancing and feature selection methods also
increased model stability and interpretability. In summary, the suggested
framework will provide a powerful, scalable, and resource-optimal system to
predict software defects. This method can be replicated in future studies on
larger datasets and with deep learning-based meta-models to improve
adaptability. Its integration of Recursive Feature Elimination and mutual-
information feature ranking within an optimized stacking design, applied to
NASA repositories for the first time, demonstrates measurable improvements
in generalization and robustness.

1. Introduction

where they can be used to learn patterns of code complexity,

Future Publishing LLC

Software dependability has become a critical issue in
contemporary software engineering due to the increased
adoption of software systems in safety-critical, financial, and
real-time applications. =~ With the accelerated pace of
development through agile and DevOps practices, software
defect prediction (SDP) has become an essential procedure
for identifying possible faults before deployment. Effective
SDP enables early detection of problematic code elements,
allowing developers to focus testing resources on high-risk
modules and enhance software quality assurance. ML
approaches have become prominent in SDP in recent years,
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size, coupling, and other software metrics, and classify
modules as defective or clean. Nevertheless, traditional ML
classifiers, such as Naive Bayes models, support vector
machines, and decision trees, struggle with generalization
and thus perform poorly on imbalanced and high-
dimensional data [1,2]. Such shortcomings have prompted
the researchers to consider more effective and flexible
methods, with ensemble learning models proving to be the
most effective. Ensemble learning employs a combination of
several base learners to enhance prediction accuracy by
avoiding overfitting and achieving more stable models.
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Abbreviations

SDP Software Defect Prediction

ML Machine Learning

SMOTE Synthetic Minority Over-sampling Technique

RFE Recursive Feature Elimination

AUC-ROC  Area Under the Receiver Operating Characteristic
Curve

CNN Convolutional Neural Network

Bi-LSTM Bidirectional Long Short-Term Memory

GRU Gated Recurrent Unit

ANN Artificial Neural Network

MDP Metrics Data Program (NASA dataset source)

CI/CD Continuous Integration / Continuous Deployment

JM1/PC1/CM1/KC1 NASA Software Defect Datasets

Random Forest, Gradient Boosting, and AdaBoost are
tree-based ensembles that have performed well on a number
of SDP tasks because of their capacity to model complex
decision boundaries [3,4]. Stacking generalization is a more
recent advanced ensemble method that has attracted
attention due to its potential to combine heterogeneous
classifiers and to learn optimal combinations using meta-
learning layers. Stacking optimized tree-based ensembles has
performed remarkably well, surpassing individual models
with improved defect detection and robustness across
diverse datasets [1]. In parallel, feature selection has become
a critical element in boosting the effectiveness of models for
predicting defects. The presence of irrelevant or redundant
features not only increases model complexity but also
reduces predictive accuracy. Employing effective feature
selection techniques before training allows ensemble
learners to focus on the most informative software metrics,
resulting in improved classification performance and
computational efficiency [2-4]. Integrating deep learning
approaches with ensemble frameworks such as CNN-BiLSTM
hybrids has recently emerged as a frontier area, offering the
capacity to automatically extract high-level representations
from raw data and sequential software behaviors [5, 6].

Although ensemble-based models have advanced the
state of defect prediction, several unresolved challenges
continue to limit their full potential. One of the foremost
issues is the generalizability of existing models across
different  software repositories. Many approaches
demonstrate high performance on specific benchmark
datasets but fail to maintain their effectiveness when applied
to new or heterogeneous projects, thus limiting their practical
applicability in real-world development scenarios [7, 8].
Another significant limitation lies in the homogeneous nature
of many ensemble techniques. While bagging and boosting
leverage the diversity of training data, they often use the same
base learner types. In contrast, heterogeneous ensembles,
particularly stacking models that integrate multiple diverse
classifiers, can exploit different inductive biases to yield
better results. However, the design and optimization of such
stacked frameworks remain complex and underexplored
within SDP [9, 10]. Furthermore, most stacking methods do
not effectively incorporate domain-specific insights from
software engineering, such as the relevance of individual
software metrics or module characteristics [1-3].

Despite the success of deep learning across various
domains, its integration with ensemble learning for defect
prediction remains limited. Hybrid models combining deep
networks like CNN and Bi-LSTM with ensemble classifiers
have the potential to identify patterns in software data that
are both spatial and temporal, yet current research in this
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area is sparse and lacks comprehensive evaluations [8,9].
Many existing studies do not rigorously examine the interplay
between feature selection techniques and ensemble models,
leading to suboptimal configurations that limit predictive
strength [2-4]. Despite notable progress, existing studies lack
aunified framework that jointly tackles feature selection, data
imbalance, and ensemble heterogeneity in software defect
prediction. This study addresses that gap by integrating
Recursive Feature Elimination, mutual-information ranking,
and SMOTE-based class balancing into a stacked ensemble
model to enhance robustness and cross-dataset
generalization. Addressing these gaps has significant
implications for both academic research and industrial
software development. By introducing innovative ensemble
strategies that combine heterogeneous classifiers, deep
architectures, and intelligent feature selection, the study aims
to deliver a defect prediction framework that is not only
accurate but also scalable and generalizable across different
software environments. From a theoretical standpoint, the
study advances our knowledge about how ensemble
diversity, model stacking, and feature optimization interact to
affect prediction outcomes. It further enables the
combination of deep learning and ensemble pipelines,
providing new insights into hybridizing architecture methods
in software analytics. In practice, better prediction accuracy
will allow developers to focus on inspection and testing,
manage technical debt efficiently, and ensure high software
reliability and customer satisfaction. The possibility of
generalization across diverse datasets enables the proposed
models to be integrated into automated pipelines in various
software projects, including open-source, enterprise, and
embedded systems. It can also be helpful to add explainable
feature selection modules to interpret model outputs and
build greater trust and better decision-making within
engineering teams. This method can be replicated in future
studies on larger datasets and with deep learning-based
meta-models to improve adaptability, while its integration of
Recursive Feature Elimination and mutual-information
feature ranking within an optimized stacking design applied
to NASA repositories for the first time demonstrates
measurable improvements in generalization and robustness.

1.1 Research objectives

e To assess whether integrating Recursive Feature
Elimination and mutual-information feature ranking
enhances generalization and mitigates overfitting in
software defect prediction models.

e To evaluate how a heterogeneous stacking ensemble that
combines tree-based classifiers with a logistic meta-
learner performs compared with individual base models
across NASA benchmark datasets.

e To examine whether hyperparameter optimization and
SMOTE-based class balancing significantly improve model
stability, precision, and recall across varied software
datasets.

2. Literature review

Pre-deployment detection of software bugs has been a
major goal in software engineering, and a recent wave of
research on predictive modeling has adopted both machine
learning (ML) and ensemble-based methods. The
development of predictive models has been significantly
motivated by access to historical defect data, e.g., NASA, and
by the discovery that software metrics could be successfully
applied to predict fault-proneness.
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Software defect prediction has been considered using a
variety of machine learning methods, including simple
classifiers to more complex ensemble and neural networks.
Empirical investigations into methods like support vector
machines, k-nearest neighbors, and decision trees have
shown variable performance, largely influenced by the nature
of input features and class imbalance within datasets. Using
NASA repositories, the study conducted a comparative
analysis across multiple ML models and highlighted the
differential effectiveness of individual techniques across
distinct project contexts [11]. Their findings underscored that
no single classifier consistently outperforms others, thus
advocating for ensemble-based solutions to mitigate variance
and bias. To address the limitations of standalone classifiers,
ensemble learning has become a widely endorsed strategy.
The study was among the early proponents of applying
ensemble techniques on feature-selected datasets,
demonstrating marked improvements in prediction accuracy
and robustness when ensembles were trained on reduced,
informative feature subsets [12]. Further validating this
approach, another study proposed an ensemble classification
framework specifically integrated with feature selection
methods. The model was able to not only increase the rate of
defect detection but also manage to reduce the
dimensionality, thereby decreasing the computational
overhead without affecting the accuracy [11].

Hyperparameter optimization is a major determinant of
the success of predictive frameworks. One of the studies has
empirically evaluated optimization methods of predicting the
number of defects in software and concluded that the benefit
of tuning hyperparameters was a significant ingredient in
software model accuracy, especially in neural and ensemble
models [13]. The paper also highlighted the importance of
configuration strategies in order to achieve the predictive
potential of base learners as well as ensemble meta-learners.
Simultaneously, deep learning has provided possibilities to
extract complex patterns in software metrics. One of the
studies has proposed a hybrid deep neural architecture in the
form of Gated Recurrent Units (GRU) coupled with
Convolutional Neural Networks (CNN) and resampling with
SMOTE-Tomek that addresses the issue of data imbalance
[14]. The model showed better results on imbalanced data,
suggesting the potential of combining deep and sequential
learning with data-level interventions [15]. Nevertheless,
such models require more computational resources, which
can be enhanced with the help of ensemble pruning or
stacking.

Recent systematic reviews have summarized the results
of different neural structures. One study has reported an in-
depth examination into the techniques of defect prediction
that have been developed by artificial neural networks (ANN),
noting that ANN in their pure form may be underperforming
without prior processing involved in the prediction process,
which could be in the form of feature selection or ensemble
enhancement [16]. Their results suggest having hybrid
models that integrate the power of various algorithms in
ensemble structures to obtain scalability and generalization.

Feature selection remains central to building effective
SDP models. A study demonstrated that preprocessing data
through correlation analysis and removing irrelevant metrics
significantly = improved model performance. Their
sustainability-focused research applied ML techniques in
software lifecycle management, confirming that data
preparation and feature engineering are decisive factors in
predictive success [13]. Their conclusions align with earlier
studies, which argue that model performance depends not
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only on the learning algorithm but also on the quality and
relevance of the input data. Ensemble-based SDP is still in the
process of improvement as more intelligent architectures are
being invented. In one of the papers, an ensemble model,
which combines a few learners such as AdaBoost, Random
Forest, and Gradient Boosting, each of which was set with
various parameters, was proposed. Individual classifiers had
a poorer model than theirs (their model had higher precision
and recall values) as they performed better when tested on
large-scale and real-life datasets [17]. Another article
proposed a machine learning model, which comprises both
sophisticated methods of ensemble and data balancing and
metric selection. Their approach gave significant
enhancements in the detection rates, especially on the
imbalanced datasets that are highly imbalanced [18]. The
trend of combining the intelligence of ensembles, data-based
optimization, and feature-centric approaches is moving in the
same direction, and they are the most promising way to
predict software defects. Smartly constructed ensemble
models that learn to interpolate between learning paradigms
and incorporate strict feature selection and hyperparameter
optimization are always better than more traditional ones
[19]. The synergy of deep learning and ensemble design is a
promising emerging field that significantly enhances
prediction accuracy, especially in complex and heterogeneous
software environments.

3. Methodology
3.1 Research design

A quantitative research design was adopted to ensure
that the competence of an ensemble learning framework
could be built and experimented with in the software defect
prediction. The study targeted the empirical analysis of
machine learning classifiers and ensemble formats, and
feature selection techniques on publicly available defect sets
of data. An experimental approach was sought to compare the
performances of different models based on pre-established
evaluation standards. The conditions in the simulated
environment were manipulated in order to make the study
reproducible and internally valid.

3.2 Data collection method

The information on software defects was acquired
according to the NASA Metrics Data Program (MDP) and
PROMISE repositories. These data provided historical,
module-level measures and related defect labels of several
actual software development projects. The data collection
was performed by downloading the cleaned and pre-
processed CSV files from the repository archives. Each dataset
had sets of fixed software measurements, such as lines of
code, cyclomatic complexity, coupling, cohesion, and object-
oriented design measurements, and binary defect labels. The
applied data sets were Spacecraft Instrumentation Software
(CM1), Flight Software to process Image (PC1), Real-time
Predictive Ground System Software (JM1), and Storage
Management Software (KC1), which are popular benchmarks
in the field of defect prediction. Before the experiment, the
data was verified for consistency, data missing, and
imbalances. Four NASA datasets, CM1, PC1, JM1, and KC1,
were carefully selected because they are commonly accepted
standards in software defect prediction and represent
different software spheres. Their diversity ensures
comparability, reproducibility, and adequate coverage of
varied code complexities for evaluating model robustness.
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3.3 Population and sampling

The target population consisted of open-source and
NASA-based software projects in the form of software
modules. The static code metrics describing each software
module were viewed as a data point of predictive modeling.
The process of stratified sampling was employed to ensure
that there was proportional representation of the defective
and non-defective instances during model training and
testing. Datasets with severe class imbalance were handled
using SMOTE (Synthetic Minority Over-sampling Technique)
to ensure that the training data contained adequate positive
class representation for learning algorithms. The sample size
of 500 modules was selected to maintain balanced class
distribution and ensure efficient hyperparameter
optimization during multiple cross-validation cycles without
exceeding computational limits.

3.4 Data analysis technique

The dataset underwent normalization using Min-Max
scaling to ensure uniform feature ranges across models.
Feature selection was performed using Recursive Feature
Elimination (RFE) and mutual information-based ranking to
identify the most informative subset of attributes. The RFE
method iteratively removed less significant features based on
model importance scores until an optimal subset of about 15
metrics was obtained. Mutual-information ranking captured
nonlinear relationships with defect labels, and the top 20% of
features were retained. This two-step selection ensured
relevant, non-redundant metrics and improved model
interpretability. Three baseline classifiers, Random Forest,
Gradient Boosting, and AdaBoost, were trained and evaluated.
A heterogeneous ensemble framework based on stacking was
constructed by combining the predictions of the base
classifiers and training a logistic regression model as a meta-
learner. Ten-fold cross-validation was employed to validate
model performance and minimize bias due to data
partitioning. Evaluation metrics included Accuracy, Precision,
Recall, F1-score, and Area Under the Receiver Operating
Characteristic Curve (AUC-ROC). Hyperparameter tuning was
carried out using Grid Search with cross-validation to
optimize model configurations. All experiments were
implemented using the Python programming language with
Scikit-learn and XGBoost libraries and executed on a high-
performance computing environment with 32 GB RAM and 8-
core Intel Xeon processors. Statistical comparisons between
models were conducted using paired t-tests to assess the
significance of observed performance differences.

3.5 Ethical consideration

Publicly available secondary datasets were used, all of
which were anonymized and devoid of any personally
identifiable information. No direct interaction with human
subjects was involved, thereby eliminating the need for
institutional ethical review. All data usage complied with
repository licensing terms. Experimental scripts and models
were documented and version-controlled to ensure
transparency and reproducibility. Computational resources
were used responsibly, and all model results were reported
without manipulation or selective omission. The
implementation code and experiment scripts have been
archived in a private GitHub repository and are available from
the corresponding author upon reasonable request.

4. Results

Performance evaluation was carried out on a balanced
dataset of 500 software modules, equally sourced from CM1,
PC1, JM1, and KC1 (125 modules each). Stratified sampling
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maintained the original class distribution, while SMOTE
addressed minor imbalances during training. Features were
normalized using Min-Max scaling, and selection was
performed via Recursive Feature Elimination (RFE) and
mutual information ranking. Ten-fold cross-validation and
Grid Search were applied to ensure model robustness and
optimal hyperparameter configurations.

4.1 Accuracy evaluation

As presented in Table 1, the proposed stacked ensemble
model consistently outperformed baseline models across all
datasets. The ensemble achieved the highest accuracy on CM1
(0.88), PC1 (0.85),]M1 (0.82), and KC1 (0.86), demonstrating
a clear performance margin over individual learners. Random
Forest and Gradient Boosting followed closely but did not
match the predictive strength of the ensemble. Figure 1
displays the accuracy performance of four machine learning
models across the CM1, PC1, JM1, and KC1 datasets. Darker
cells indicate higher accuracy. The stacked ensemble
consistently outperformed all individual models, particularly
on CM1 and KC1, highlighting its robustness and superior
generalization capabilities in software defect prediction.

Table 1. Accuracy scores across datasets (sample size = 500)

Dataset Random Gradient | AdaBoost Stacked
Forest Boosting Ensemble

CM1 0.83 0.82 0.81 0.88

PC1 0.80 0.79 0.77 0.85

JM1 0.76 0.75 0.74 0.82

KC1 0.81 0.80 0.78 0.86

Heatmap of Model Accuracy Across Datasets

0.88
= 0.88
b= )
& 0.86
0.84
0.80 0.79 0.77 0.85

—
Ok
a

0.82

- 0.80
-0.78

-0.76

Dataset

M1

KC1

[=]

Random Forest ' 3
4
@
o
(=3
S
w
°
S
&

Gradient Boosting =

0.75 0.74

-0.74

AdaBoost -

Stacked Ensemble

Model

Figure 1. Heatmap of model accuracy across four benchmark
datasets

4.2 Precision analysis

Precision scores, shown in Table 2, indicated the
ensemble’s superior capability in correctly identifying
defective modules while minimizing false positives. The
stacked model reached a precision of 0.80 on CM1 and 0.78
on PC1. AdaBoost consistently yielded the lowest precision
values, confirming that ensemble design and feature
optimization significantly influenced classification reliability.
This improvement highlights how the combination of class
balancing through SMOTE and feature selection using RFE
and mutual information directly enhanced the ensemble’s
precision outcomes, as further validated by statistical testing
(p <0.05).
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Figure 2 illustrates the classification accuracy of four
machine learning models—Random Forest, Gradient
Boosting, AdaBoost, and Stacked Ensemble evaluated on CM1,
PC1,JM1, and KC1 datasets. Stacked Ensemble performed the
best and had the maximum accuracy in all datasets, which
confirms its efficiency. The performance trend also indicates
relatively lower precision scores on JM1 and greater stability
on CM1 and KC1 datasets.

Table 2. Precision scores across datasets (sample size = 500)

Dataset | Random Gradient AdaBoost | Stacked
Forest Boosting Ensemble

CM1 0.76 0.75 0.74 0.80

PC1 0.72 0.71 0.69 0.78

M1 0.68 0.67 0.65 0.74

KC1 0.74 0.72 0.70 0.78

4.3 Recalling performance

Table 3 gives recall values, which are an indication of the
sensitivity of the models to the defective class. The ensemble
had the best recall in all the datasets, with the highest recall
being 0.84 in CM1 and 0.82 in KC1. The performance of the
SMOTE-based strategy of class balancing in terms of high
recall scores justified the approach and proved the
effectiveness of the ensemble in reducing the false-negative
rate.

Table 3. Recall scores across datasets (sample size = 500)

Dataset | Random Gradient AdaBoost | Stacked
Forest Boosting Ensemble
CM1 0.78 0.77 0.76 0.84
PC1 0.74 0.73 0.71 0.81
M1 0.70 0.69 0.67 0.79
KC1 0.76 0.75 0.73 0.82
0.9
0.76 0.75
0.8 072 0.74 0.71 0.72
0.7 . 0.67
0.6
0.5
0.4
0.3
0.2
0.1
0
Random Forest Gradient Boosting

ECM1 EPC1 EJM1

Figure 2. Comparing model accuracy across datasets
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Figure 3 demonstrates the better classification
performance of Random Forest, Gradient Boosting, AdaBoost,
and Stacked Ensemble models on CM1, PC1, JM1, and KC1
datasets. The Stacked Ensemble once more scored the best,
particularly on CM1 (0.84) and PC1 (0.81), and has once again
demonstrated the predictive advantage on a variety of
software defect datasets.

4.4 F1-Score comparison

Table 4 F1-scores give a harmonic compromise between
precision and recall. Throughout the datasets, the ensemble
received better scores, including 0.82 on CM1 and 0.80 on
KC1. These scores highlighted the overall performance of the
model, which was well-rounded, meaning that it learned well
the patterns of defects irrespective of the small dataset size.
Figure 4 shows the heatmap that represents the accuracy of
four machine learning models on the CM1, PC1, JM1, and KC1
datasets. Darker shades indicate higher performance, clearly
emphasizing the superior accuracy of the Stacked Ensemble
model. Visual comparison facilitates quick interpretation of
model effectiveness across varying dataset complexities.

Table 4. F1-score across datasets (sample size = 500)

Dataset Random Gradient AdaBoost Stacked
Forest Boosting Ensemble
CM1 0.77 0.76 0.75 0.82
PC1 0.73 0.72 0.70 0.79
M1 0.69 0.68 0.66 0.76
KC1 0.75 0.73 0.72 0.80
08 978  0.78

0.74 0.74
0.69 0.7
| I | |

AdaBoost Stacked Ensemble

KC1
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Figure 3. Depicting enhanced model accuracy on the benchmark dataset
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Figure 4. Model accuracy on benchmark datasets

4.5 Model accuracy

Table 5 presents the accuracy comparison of four
machine learning models across four benchmark datasets
using a sample size of 500 modules. The stacked ensemble
model consistently achieved the highest accuracy on all
datasets, ranging from 0.82 (JM1) to 0.88 (CM1). This
performance indicates superior generalization and predictive
capability compared to individual models. The results
highlight the effectiveness of integrating diverse base
learners through stacking to enhance classification accuracy
in software defect prediction tasks. Beyond overall accuracy,
the stacked ensemble demonstrated a balanced precision-
recall trade-off across datasets, consistently improving F1-
scores and model stability without increasing false positives.

4.6 Hyperparameter optimization

Table 6 presents the Grid Search-based tuning, which
resulted in observable performance gains between 2% to 5%
across all models. For example, the optimal number of
estimators in Random Forest was 120, and the best learning
rate for Gradient Boosting was 0.07. Logistic Regression was
selected as the meta-learner in the stacked ensemble due to
its ability to integrate base model predictions without
overfitting effectively.

Table 5. Comparative accuracy of models across datasets (sample
size = 500)

Dataset | Random Gradient AdaBoost | Stacked
Forest Boosting Ensemble

CcM1 0.83 0.82 0.81 0.88

PC1 0.80 0.79 0.77 0.85

JM1 0.76 0.75 0.74 0.82

KC1 0.81 0.80 0.78 0.86

Table 6. Optimized hyperparameters for machine learning models
via grid search

Model Hyperparameters Tuned Optimal Values
Selected

Random Estimators, Max depth, Min 120 estimators, max

Forest samples split depth = 20, min split
=2

Gradient Learning rate, Estimators, Learning rate = 0.07,

Boosting Max depth 150 estimators, max
depth =4
AdaBoost Estimators, Learning rate 100 estimators,
learning rate = 0.5
Stacked Base models: RF, GB, AB; C=1.0, solver =
Ensemble Meta-learner: Logistic ‘liblinear’
Regression

4.7 Statistical significance testing

Paired t-tests conducted between the stacked ensemble
and each baseline model revealed statistically significant
improvements (p < 0.05) in all four metrics across the
datasets, as mentioned in Table 7. These findings confirm that
performance enhancements were not due to random variance
but were attributable to methodological rigor and
architectural design.

5. Discussion

Findings from the study demonstrated that the proposed
stacked ensemble model consistently outperformed
individual classifiers, Random Forest, Gradient Boosting, and
AdaBoost, across all four evaluated datasets, even with a
reduced and balanced sample size of 500 modules. Metrics
such as Accuracy, Precision, Recall, and F1-score all indicated

43




PK. Tamrakar et al. /Future Technology

superior performance for the ensemble model, with the
highest accuracy of 0.88 achieved on the CM1 dataset and the
lowest yet competitive score of 0.82 on JM1. These results
support the effectiveness of stacking heterogeneous base
learners to capture diverse predictive signals, especially
when combined with robust feature selection and class
rebalancing strategies. The model’s balanced precision-recall
performance further reinforces its robustness, demonstrating
that its superiority extends beyond accuracy to reliable
detection of defective modules across datasets.

Table 7. Paired t-test results comparing the stacked ensemble with
baseline models

Metric Stacked vs. Stacked vs. Stacked vs.
Random Gradient AdaBoost (p-
Forest (p- Boosting (p- value)
value) value)

Accuracy | 0.012 0.018 0.004

Precision | 0.021 0.016 0.008

Recall 0.017 0.019 0.006

F1-Score 0.014 0.015 0.005

The results align with and extend earlier findings in
ensemble-based defect prediction research. Alazba and
Aljamaan [1] achieved about 0.84 accuracy on the CM1
dataset using optimized tree ensembles, while the proposed
model reached 0.88. Likewise, Ali et al. [2] reported roughly
0.82 accuracy on KC1 with feature-based stacking, whereas
our configuration attained 0.86. These improvements
highlight that integrating RFE and mutual-information
feature ranking within a heterogeneous stacking framework
enhances generalization and predictive stability. Feature
selection using RFE and mutual information contributed
meaningfully to model performance by eliminating irrelevant
or redundant attributes, thereby helping reduce overfitting
and enhancing generalization. Hyperparameter optimization
via Grid Search further improved baseline and ensemble
configurations, producing observable gains in metric
outcomes across the board. The consistent superiority of the
stacked ensemble across all evaluation metrics aligns with
expectations drawn from ensemble theory, which suggests
that model diversity and aggregation can lead to reduced
error and variance. Despite the relatively small sample size,
the statistical significance of improvements (p < 0.05)
confirms the reliability of the results. Current findings
reinforce prior assertions in the literature that ensemble
models outperform standalone machine learning classifiers in
software defect prediction. The empirical study
demonstrated that ensemble learning, particularly stacking
and boosting, achieved significantly better results than
individual models across multiple datasets, confirming the
architectural value of such frameworks in real-world defect
prediction tasks [20]. The study emphasized that ensemble
paradigms leverage complementary strengths of classifiers
and improve stability, a conclusion mirrored in the robust
performance observed in the present study [21]. Adaptive
ensemble models continue to gain traction due to their ability
to dynamically capture nonlinear relationships in high-
dimensional software metrics. A study developed an
ensemble method using the adaptive sparrow search
algorithm, which yielded high accuracy and robustness across
various repositories, further affirming that optimizing learner
diversity and integration techniques leads to tangible
performance gains [22]. Deep learning approaches have also
gained momentum in recent years. A study demonstrated that
convolutional and recurrent architectures outperform
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traditional ML methods when sufficient data volume and
computational resources are available [23]. Another study
highlighted the efficacy of deep forest models in capturing
complex defect patterns without requiring the extensive
tuning overhead typical of neural networks [24]. However,
such deep models are often resource-intensive, making them
less suitable for smaller datasets or constrained
environments. By contrast, the current study's ensemble
model achieved high performance with only 500 samples and
moderate computational requirements, underscoring its
practical applicability. A study reviewed the Al landscape in
defect prediction and emphasized that preprocessing, feature
engineering, and model ensemble configurations are crucial
performance drivers, a viewpoint supported by the
methodological rigor and empirical success of the present
framework [25]. The study also reported that while deep
learning models show promise, ensemble-based strategies
remain competitive and more interpretable in many
industrial applications, particularly when integrated with
explainable Al techniques [26].

In terms of dataset use, Siddiqui and Mustageem [27]
affirmed that NASA datasets continue to serve as effective
benchmarks for predictive modeling, although dataset quality
and preprocessing methods significantly influence outcomes.
The present study addressed this through normalization,
SMOTE balancing, and cross-validation, ensuring reliability
even with a limited data pool. Several limitations were
acknowledged during the research. The use of only four
datasets, albeit standard and diverse, restricts the
generalizability of the findings across other domains or
software development environments. The reduced dataset
size, although adequate for controlled experiments, may limit
generalization to larger or more complex software systems,
which future studies should address by scaling to full
repositories. These NASA repositories were selected because
they are widely accepted benchmarks that offer reliable,
publicly available, and domain-diverse defect data, allowing
consistent evaluation and comparison with prior studies.
Although stratified sampling and SMOTE were employed to
address class imbalance, synthetic oversampling might not
fully represent real-world distributions and could introduce
minor noise or bias, potentially affecting model
interpretability and performance in production settings.
Future work should validate results on naturally balanced
datasets to confirm robustness. While feature selection and
hyperparameter tuning were carefully executed, they were
limited to conventional algorithms. The use of more advanced
methods like Bayesian optimization or embedded feature
selection within ensemble frameworks could yield even
better results. The model architecture relied on classical
machine learning algorithms, and while effective in this setup,
comparisons with more modern deep neural architectures
were not included within the scope of this study. Future
studies should address these constraints by applying
automated hyperparameter optimization, testing on broader
repositories, and integrating explainable Al to enhance model
scalability and transparency. Findings from the research
carry substantial implications for both academic and
industrial stakeholders. In academic contexts, the results
affirm the efficacy of integrating diverse base learners in a
stacked ensemble structure, particularly ~ when
complemented by strategic data preprocessing and feature
engineering. The approach serves as a template for future
experimental setups using limited but balanced datasets.
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From an industry perspective, the ensemble model offers
a low-cost, high-accuracy defect prediction solution that can
be embedded within software quality assurance pipelines.
The real-world adoption of predictive models hinges on their
performance, interpretability, and ease of integration into
existing workflows, all of which were considered in the
present design [28, 29]. Future work will focus on extending
the model to larger, contemporary datasets such as GitHub
and Apache repositories to validate scalability. Integration
into CI/CD pipelines can enable real-time defect prediction
during software builds. Additionally, applying explainable Al
tools such as SHAP or LIME will help interpret model
decisions and improve stakeholder confidence in practical
deployments.

6. Conclusion

This study presented a general and scalable model for
software defect prediction that integrates recursive feature
elimination, mutual information ranking, and stacked
ensemble learning. By addressing critical challenges such as
data imbalance, overfitting, and limited generalization, the
proposed model achieved reliable improvements across
NASA benchmark datasets, outperforming traditional
ensemble and single classifiers in all evaluation metrics. The
findings confirm that heterogeneous stacking achieved
through the diversity of base learners enhances both
predictive accuracy and sensitivity while maintaining
interpretability and computational efficiency. The statistically
significant gains (p < 0.05) validate the strength of the
presented method and demonstrate that intelligent feature
selection and class balancing are decisive factors in
optimising predictive performance. Beyond empirical
success, this research contributes to both theoretical and
practical knowledge in software defect prediction. The study
reinforces the principle that integrating multiple learners
through optimal meta-learning leads to consistent and
reliable outcomes. In practical applications, the framework
can be incorporated into industrial CI/CD pipelines to enable
early defect detection, efficient resource allocation, and
improved software reliability. It offers a reproducible and
cost-effective foundation for organizations seeking to
implement predictive analytics without extensive
computational expense. Although the research was restricted
to a balanced subset of NASA datasets, its architecture
provides a solid basis for future studies involving more
sophisticated meta-learners, Bayesian hyperparameter
optimization, and explainable Al components. Overall, this
work advances the growing field of intelligent software
analytics by delivering a robust, interpretable, and scalable
defect prediction paradigm that bridges the gap between
machine learning theory and practical software engineering.
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