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A B S T R A C T 

Accurate cycle-time forecasting remains a persistent challenge in 
semiconductor wafer fabrication due to highly dynamic, multivariate process 
conditions. This study proposes an optimized Hierarchical Transfer Learning 
with Hyperparameter Optimization (HTL-HPO) framework that integrates 
cross-fab knowledge transfer with Bayesian Tree-Structured Parzen 
Estimator–based optimization to improve predictive precision and 
generalization. The methodology involves hierarchical pretraining on source 
fabs, Maximum-Mean-Discrepancy–driven domain alignment, and probabilistic 
hyperparameter tuning for fine-grained adaptation to target lines. Using a real 
industrial multivariate dataset, the model’s performance was benchmarked 
against established baselines—Decision Tree, GRU, and LSTM—under 
consistent experimental protocols. The proposed approach achieved the lowest 
forecasting error (MSE = 0.006; RMSE = 0.079) and the highest explanatory 
power (R² = 0.934; Explained Variance = 0.938), with paired t-tests (p < 0.05) 
confirming statistically significant gains. Results reveal that hierarchical 
knowledge reuse and Bayesian optimization jointly enhance model stability, 
convergence speed, and robustness under noise and domain shifts. The findings 
underscore substantial operational implications for predictive scheduling, 
resource allocation, and sustainable production within smart-fab ecosystems. 
Overall, HTL-HPO offers a scalable, interpretable, and deployment-ready 
framework for next-generation intelligent manufacturing. 

1. Introduction 

The semiconductor industry is the technological 
backbone of the global digital economy, powering everything 
from smartphones to advanced computing systems. As 
manufacturing complexity increases and device geometries 
continue to shrink, semiconductor wafer fabrication has 
become one of the most data-intensive and process-sensitive 
production environments worldwide. Within this context, 
cycle time (CT)—the total elapsed time from wafer lot release 
to final completion—serves as a key performance indicator 
for operational efficiency and competitive advantage [1]. 
Efficient CT forecasting enables proactive decision-making in 
production scheduling, bottleneck control, and throughput 
optimization, which are central to maintaining profitability 
and product delivery reliability in modern fabrication 
facilities. Despite significant industrial advancements, CT 
prediction remains an enduring challenge due to the highly 
stochastic and nonlinear nature of semiconductor 
manufacturing systems [2]. These systems involve hundreds 
of sequential and re-entrant process steps, numerous 
machine setups, and dynamically changing tool states, all of 

which introduce time-varying uncertainty. Factors such as 
equipment downtime, maintenance schedules, lot 
prioritization, and product-mix variability exacerbate 
prediction complexity. Consequently, traditional statistical 
models like regression, ARIMA, and queuing theory fail to 
provide accurate forecasts under real-world dynamic 
conditions [3]. Such models assume stationarity and linear 
relationships between features—assumptions that are rarely 
valid in semiconductor environments. Recent developments 
in machine learning (ML) and deep learning (DL) have 
addressed some of these limitations by leveraging large-scale 
historical data to model nonlinear temporal relationships. A 
systematic review by Leray and De Gendt [2] showed that the 
application of ML across semiconductor processes has 
revolutionized yield enhancement, defect detection, and 
production planning. Their findings emphasize the growing 
reliance on data-driven learning techniques as key enablers 
of smart manufacturing and Industry 4.0 integration. 
Similarly, Chen et al. [3] analyzed the role of advanced ML 
methods in process optimization, concluding that algorithms 
capable of dynamic learning—such as reinforcement and 
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transfer learning—significantly outperform static models in 
nonstationary fab conditions. However, as the size of data and 
model complexity grow, scalability and reproducibility 
become major barriers. Gentner [4] highlighted that while 
deep neural networks achieve high predictive accuracy, they 
often demand extensive computational resources and 
domain-specific fine-tuning, which hinders large-scale 
deployment. To mitigate these challenges, hierarchical model 
architectures and transfer learning (TL) have emerged as 
promising solutions for knowledge reuse between similar but 
distinct fab environments. TL enables models trained on a 
source domain to adapt efficiently to a target domain with 
limited data. Such adaptability is essential when fabs share 
structural similarities—such as process flows or equipment 
configurations—but differ in operational conditions. 

In addition to architecture design, production planning, 
and uncertainty modeling play vital roles in CT forecasting. 
Rashidi et al. [5] demonstrated that stochastic variations in 
demand and yield significantly influence forecasting 
reliability, necessitating predictive frameworks capable of 
dynamically adapting to operational fluctuations. Their 
findings reinforce that forecasting models must integrate 
both data-driven intelligence and uncertainty management to 
support robust decision-making. Complementary to 
forecasting, defect pattern recognition, and fault diagnosis 
have also benefited from ML applications. Taha [6] conducted 
an extensive evaluation of ML techniques for defective-
pattern identification in wafer maps, concluding that hybrid 
deep-learning models improve both classification accuracy 
and generalization. Similarly, Huang et al. [7] provided a 
comprehensive taxonomy of ML and DL methods for 
semiconductor analytics, identifying key research 
opportunities such as federated learning, interpretability, and 
scalable architectures. Their review underscores the urgent 
need for hybrid systems that merge predictive modeling with 
explainability and trustworthiness. Parallel efforts have 
focused on neural-network-based predictive modeling for 
estimating product characteristics and yield behavior. 
Umamahesh Ritty [8] explored neural network architectures 
for semiconductor product quality prediction, demonstrating 
their ability to capture nonlinear process–output 
relationships. Expanding on this, Xu et al. [9] introduced a fast 
ramp-up framework for yield improvement that leverages 
production data analytics to accelerate process stabilization 
during new product introduction phases. These advances 
highlight that data-driven modeling—when combined with 
adaptive transfer learning—can enhance both yield and cycle-
time forecasting accuracy. 

Beyond yield prediction, computer vision and deep 
learning models have been employed for localized fault 
detection and spatial anomaly recognition. Shahroz et al. [10] 
proposed a hierarchical attention-based convolutional 
network for wafer hotspot detection, offering fine-grained 
localization capability and improved interpretability over 
traditional CNN architectures. Likewise, Lee and Lee [11] 
developed a deep reinforcement learning framework to 
optimize scheduling and dispatching decisions under varying 
production loads, proving that adaptive policies can reduce 
overall CT variability without explicit rule-based control. 
Their work demonstrates that RL-based learning can 
effectively bridge the gap between local decision-making and 
system-level optimization. Furthermore, recent studies 
emphasize the transition from reactive to predictive 
maintenance paradigms through remaining useful lifetime 
(RUL) estimation frameworks. Adaloudis [12] presented an 
ML-based RUL prediction approach tailored to 

semiconductor manufacturing, enabling early detection of 
tool degradation and process drifts. Such predictive-
maintenance capabilities not only prevent unexpected 
downtime but also improve cycle-time predictability by 
maintaining equipment reliability and consistency. The 
convergence of these research directions establishes a 
compelling rationale for developing an integrated 
Hierarchical Transfer Learning with Hyperparameter 
Optimization (HTL-HPO) framework. The hierarchical aspect 
captures cross-domain temporal dependencies across 
multiple fabs, while the optimization component automates 
the tuning of critical learning parameters. Together, they 
address three persistent challenges: 
• The limited generalization capability of single-domain 

models. 
• The manual and computationally expensive nature of 

hyperparameter tuning. 
• The need for scalable, data-efficient, and self-adaptive 

forecasting frameworks in high-mix, low-volume 
manufacturing environments. 

In summary, this paper proposes an HTL-HPO framework 
that unifies hierarchical transfer learning with Bayesian and 
TPE-based optimization to enhance CT forecasting accuracy, 
robustness, and adaptability across semiconductor fabs 

2. Literature review 

2.1 Data-driven approaches for cycle time forecasting 
Forecasting cycle time (CT) in semiconductor 

manufacturing has long been a critical research area due to 
the stochastic and nonlinear characteristics of the fabrication 
process. Espadinha-Cruz et al. [13] provided one of the 
earliest comprehensive reviews of data-mining applications 
in semiconductor manufacturing, emphasizing that the 
selection of process drivers, queue-time features, and 
equipment parameters strongly influences the accuracy and 
robustness of CT predictions. Their work established a 
foundation for data-driven modeling by demonstrating how 
feature engineering can reveal latent process dependencies 
that traditional regression or analytical models often 
overlook. To address the limitations of static scheduling 
systems, Xia et al. [14] introduced a dynamic dispatching 
method for large-scale interbay material-handling systems in 
wafer fabs. Their study demonstrated that adaptive, 
feedback-driven dispatching rules could effectively minimize 
CT variability in high-mix production environments. 
Meanwhile, Yoon and Kim [15] advanced the application of 
machine learning to wafer map analysis by proposing a few-
shot and ensemble transfer learning approach for defect 
pattern classification. Their model achieved high accuracy 
using minimal training data, highlighting the potential of 
transfer learning (TL) for data-sparse semiconductor 
contexts. 

Machine learning has also extended beyond process 
monitoring to adjacent manufacturing domains. Jaiswal [16] 
employed machine learning to optimize silicon 
heterojunction solar cell fabrication, illustrating the broader 
applicability of predictive models in manufacturing systems 
characterized by high process complexity. Doinychko [17] 
proposed a multiview learning framework to manage missing 
sensor data and facilitate cross-process modeling, providing 
theoretical support for integrating heterogeneous process 
information. Similarly, Piedrafita Acin [18] conducted a case 
study on semiconductor inventory demand forecasting using 
time-series machine learning methods, underscoring the 
value of data-driven forecasting in upstream supply chain 
management. 
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2.2 Transfer learning and cross-fab adaptation 
The heterogeneity of semiconductor data across fabs and 

toolsets often leads to distributional shifts that degrade the 
performance of single-domain models. To overcome this, 
researchers have explored TL-based methods for knowledge 
reuse. Chien et al. [19] pioneered the use of convolutional 
neural network (CNN) transfer learning for intelligent fault 
detection, enabling cross-domain adaptation of models for 
process monitoring. Maitra et al. [20] extended this paradigm 
through a review of virtual metrology (VM) systems, showing 
that TL enhances generalization across multiple metrology 
tools and production lines. Yang et al. [21] further improved 
interpretability in cross-domain learning by proposing a 
hierarchical ensemble causal-structure-learning approach 
that captures inter-process dependencies and causality in 
wafer manufacturing. Complementing these efforts, Bardossy 
and Duckstein [22] established fuzzy rule-based modeling 
principles that continue to influence uncertainty 
representation in semiconductor processes. Their 
foundational work provided the basis for hybrid fuzzy-deep 
frameworks. Building on this, Wang et al. [23] applied a fuzzy 
deep predictive analytics model to enhance CT-range 
estimation precision, integrating uncertainty quantification 
into forecasting. Similarly, Alizadeh and Ma [24] compared 
hybrid metaheuristic optimization methods and concluded 
that efficient hyperparameter selection significantly 
enhances predictive model performance and convergence in 
industrial environments. 

2.3 Hyperparameter optimization and federated 
learning 
The increasing scale and depth of deep learning models 

necessitate effective hyperparameter optimization (HPO) 
techniques to achieve generalization and avoid overfitting. 
Patel et al. [25] developed a federated learning architecture 
that allows distributed model training across semiconductor 
fabs while maintaining data privacy and interpretability. 
Their explainable-AI framework demonstrated that 
decentralized optimization can retain predictive accuracy 
comparable to centralized approaches. Tin et al. [26] later 
implemented a deep learning-based virtual metrology model 
within foundry operations and highlighted the importance of 
hyperparameter calibration to improve measurement 
prediction accuracy across toolsets. 

Lee and Gao [27] contributed a hybrid fuzzy C-means and 
genetic algorithm model integrated with machine learning for 
job CT prediction, revealing that evolutionary search 
strategies enhance model adaptability. Extending this idea, 
Wang et al. [28] introduced a hierarchical transfer learning 
architecture for wafer CT forecasting, which adapts pre-
trained models to different WIP regimes and production lines, 
resulting in substantial accuracy improvements. Schelthoff et 
al. [29] focused on feature selection and parameter 
optimization for waiting-time prediction, emphasizing that 
combining dimensionality reduction with automated tuning 
significantly enhances interpretability. In parallel, 
Tchatchoua et al. [30] proposed a 1D-ResNet architecture for 
multivariate fault detection, demonstrating improved 
anomaly localization and early detection capabilities in 
complex semiconductor equipment. 

2.4 Emerging trends and research gaps 
The trajectory of research from Ref [13] through Ref [30] 

reflects a consistent progression from traditional data-mining 
models toward intelligent, scalable, and interpretable AI 
systems for semiconductor manufacturing. Early studies 
established the significance of data-driven modeling [13], 

while dynamic scheduling [14] and few-shot transfer learning 
[15] extended adaptability under changing operational 
conditions. More recent works have merged cross-domain 
knowledge transfer [19,21] and federated intelligence [25] 
with advanced hyperparameter optimization [24,29], 
enabling greater automation and scalability in forecasting 
pipelines. Despite this progress, key research gaps remain. 
Most existing studies optimize either prediction accuracy or 
adaptability but rarely address both simultaneously. 
Additionally, while TL and fuzzy logic enhance 
interpretability, their integration with automated HPO 
methods is limited. These gaps motivate the development of a 
Hierarchical Transfer Learning and Hyperparameter 
Optimization (HTL-HPO) framework that unifies cross-
domain adaptability with probabilistic optimization to 
achieve accurate, efficient, and explainable cycle-time 
forecasting across heterogeneous fabs. 

3. Methodology 

This study develops an Optimized Hierarchical Transfer 
Learning Framework integrated with Hyperparameter 
Optimization (HTL-HPO) to enhance cycle-time forecasting in 
semiconductor wafer fabrication. The following section 
details the research design, data collection process, 
population and sampling, analytical approach, and ethical 
considerations. It also elaborates on the implementation of 
hierarchical transfer learning and optimization procedures. 

3.1 Research design 
A quantitative experimental design was adopted to 

evaluate the effectiveness of the proposed HTL-HPO 
framework. The design combines computational modeling, 
machine learning experimentation, and statistical validation 
to ensure both predictive and inferential accuracy. This study 
follows a deductive approach, moving from theoretical 
assumptions about transfer learning and hyperparameter 
optimization to empirical verification through real 
semiconductor data. The experimental workflow consists of 
four stages: 
• Designing and implementing the HTL-HPO architecture; 
• Collecting and preprocessing semiconductor fabrication 

data; 
• Training, validating, and optimizing models using transfer-

learning hierarchies; 
• Statistically validating model performance through 

comparative analysis and t-tests. 
• This design ensures rigor, replicability, and scientific 

validity aligned with IEEE research standards. 

3.2 Data collection method 
The dataset used in this research was derived from the 

publicly available data presented by Tchatchoua et al. [30], 
which originates from semiconductor manufacturing 
equipment fault-detection experiments. This dataset was 
chosen because it provides multivariate time-series process 
variables representative of real wafer fabrication conditions, 
ensuring ecological validity and domain relevance. The data 
comprise readings collected from equipment sensors within 
semiconductor fabrication environments, including 
temperature, pressure, flow rate, and vibration signatures, 
along with operational states and timestamps. Each record 
corresponds to continuous monitoring intervals, 
representing the dynamic behavior of process equipment. 
Following the protocol established in [30], the dataset was 
preprocessed to extract cycle-time components from the 
original process sequences. These were mapped into high-
dimensional feature matrices that describe machine status 
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and process flow behavior. Data were retrieved in compliance 
with open-data usage guidelines for research and academic 
purposes. No confidential, proprietary, or personally 
identifiable information (PII) was used. 

3.3 Population and sampling 
The population for this research includes all process data 

generated from semiconductor fabrication equipment as 
captured in the dataset [30]. To ensure robust model 
generalization, a systematic random sampling approach was 
used. The dataset was partitioned into 70% training, 15% 
validation, and 15% testing subsets. Each subset retained 
proportional representation of different machine states, 
ensuring data balance. A Leave-One-Domain-Out (LODO) 
validation strategy was employed: in each run, one subset of 
process equipment data was treated as a target domain, while 
others served as source domains. This cross-validation 
approach evaluates the model’s transferability to unseen fab 
contexts—a crucial test for hierarchical transfer learning 
frameworks. 

3.4 Data preprocessing and feature engineering 
The raw data from Ref [30] underwent several 

preprocessing and feature-engineering steps before 
modeling: 
• Data cleaning: Outliers were identified using the 

Interquartile Range (IQR) method and removed. 
• Missing data handling: Missing values were imputed 

through multivariate interpolation using correlated 
process variables. 

• Feature encoding: Categorical features (e.g., machine state, 
product ID) were embedded using dense vector encodings, 
while continuous variables were standardized via z-score 
normalization. 

• Temporal sequencing: Process logs were organized into 
time-series windows defined as: 

 𝑋 = {[𝑥𝑡−𝑤, … , 𝑥𝑡], 𝑦𝑡+1}                                             (1) 

where w denotes the sliding lookback window optimized 
during hyperparameter tuning. 
• Balancing: Class distributions were equalized through 

random under-sampling to prevent bias toward dominant 
machine states. 

These preprocessing steps ensured uniform data quality, 
numerical stability, and feature comparability across 
domains. The overall methodological framework of this study, 
illustrated in Figure 1, integrates standard data-mining and 
machine-learning practices commonly adopted in 
semiconductor analytics.         

3.5 Hierarchical transfer learning (HTL) framework 
The proposed HTL-HPO model operates across three 

hierarchical adaptation levels: Global Pretraining, 
Intermediate Adaptation, and Target Fine-Tuning. 
• Global pretraining: A Bidirectional Long Short-Term 

Memory (BiLSTM) network was trained on the source-
domain data to capture temporal dependencies across 
multivariate process sequences. 

• Intermediate adaptation: The pretrained parameters were 
partially frozen and refined using intermediate data (e.g., 
similar tools or product categories). Adaptation employed 
Maximum Mean Discrepancy (MMD) loss to minimize 
domain differences: 

ℒMMD = ‖
1

𝑁𝑠

∑  
𝑁𝑠
𝑖=1  𝜙(𝑥𝑖

𝑠) −
1

𝑁𝑡

∑  
𝑁𝑡
𝑗=1  𝜙(𝑥𝑗

𝑡)‖
2

          (2) 

 

• Target fine-tuning: Final adaptation on the target dataset 
minimized: 

min
𝜃𝑡

 ℒ𝑡(𝑓(𝑥
𝑡; 𝜃𝑡)) + 𝜆Ω(𝜃𝑡 , 𝜃𝑠)           (3) 

where Ω(𝜃𝑡 , 𝜃𝑠)  regularizes weight updates to ensure 
parameter smoothness between domains. This hierarchical 
strategy allows effective knowledge reuse from large data-
rich contexts to smaller or emerging process lines, improving 
forecasting accuracy while reducing data dependency. 

 

Figure 1. Flow chart of the proposed model 

3.6 Hyperparameter optimization 
Model hyperparameters were optimized using Bayesian 

Optimization (BO) with a Tree-Structured Parzen Estimator 
(TPE) surrogate function. The optimization minimized 
validation loss ℒval  : 

ℎ∗ = arg⁡min
ℎ∈ℋ

 ℒ𝑣𝑎𝑙(𝑓(𝑥; ℎ))           (4) 

The optimization searched across parameters: 
• Learning rate ∈ [10−5, 10−2] 
• Batch size ∈ {32,64,128} 
• Hidden layers ∈ {1 − 4} 
• Dropout ∈ [0.1,0.5] 
• Optimizer ∈ { Adam, RMSprop} 
The TPE surrogate model estimated performance gains and 
selected configurations maximizing expected improvement 
(EI). This automated optimization substantially reduced 
computational cost compared to grid search and ensured 
reproducible, near-optimal configurations. 
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3.7 Data analysis technique 
All analyses were conducted using Python 3.11, 

TensorFlow 2.15, and Optuna 3.4 on an NVIDIA A100 GPU (80 
GB) with an Intel Xeon Silver 4214 CPU and 256 GB RAM. 
Model evaluation metrics included Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Coefficient of 
Determination ( 𝑅2 ), defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  𝑁
𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)

2, 𝑀𝐴𝐸 =
1

𝑁
∑  𝑁
𝑖=1 |𝑦𝑖 − 𝑦̂𝑖|,⁡⁡⁡⁡  

𝑅2 = 1 −
∑  𝑖  (𝑦𝑖−𝑦̂𝑖)

2

∑  𝑖  (𝑦𝑖−𝑦‾)
2

            (5) 

To evaluate significance, a paired 𝑡-Test was applied between 
HTL-HPO and baseline models (LSTM, FFNN, RF, SVR). 
Results were deemed statistically significant at 𝑝 < 0.05. 

3.8 Ethical considerations 
Ethical and data-handling principles were followed 

rigorously: 
• Data source acknowledgment: The dataset utilized 

originates from Tchatchoua et al. [30], cited accordingly, 
and was used under fair academic usage. 

• Confidentiality and privacy: No personally identifiable or 
sensitive industrial information was included. 

• Research integrity: All experimental methods, algorithms, 
and citations were transparently documented. 

• Reproducibility: The study design, model parameters, and 
analysis pipeline adhere to open-science practices to allow 
reproducibility. 

• Sustainability and responsibility: The study promotes 
energy-efficient and data-minimal learning methods 
aligned with sustainable semiconductor production. 

4. Experimental results and analysis 
This section presents the comprehensive experimental 

findings from the implementation of the proposed Optimized 
Hierarchical Transfer Learning with Hyperparameter 
Optimization (HTL-HPO) framework. The results validate the 
superiority of the model over conventional forecasting 
approaches in semiconductor wafer fabrication by comparing 
multiple metrics across baseline models. These evaluations 
not only demonstrate quantitative accuracy but also provide 
qualitative insights into the operational and computational 
efficiency achieved through the integration of hierarchical 
transfer learning and Bayesian optimization. The results are 
derived using a real-world semiconductor manufacturing 
dataset published by Tchatchoua et al. [30], which contains 
multivariate time-series data obtained from process 
monitoring equipment. The dataset provides high-
dimensional sensor readings (temperature, flow rate, 
pressure, vibration, and tool status), making it suitable for 
testing advanced forecasting models under realistic industrial 
variability. 

4.1 Experimental setup and evaluation protocol 
All experiments were conducted on a high-performance 

computing (HPC) cluster with the following specifications: 
NVIDIA A100 GPU (80 GB VRAM), Intel Xeon Silver 4214 CPU 
(2.20 GHz, 24 cores), and 256 GB system memory. The 
software environment comprised Python 3.11, TensorFlow 
2.15, Keras 3.0, and Optuna 3.4 for hyperparameter 
optimization. The dataset was partitioned into 70% training, 
15% validation, and 15% testing subsets. To ensure 
robustness, a five-fold cross-validation strategy was 
employed, and model parameters were tuned via Bayesian 
optimization with Tree-Structured Parzen Estimator (TPE). 

Each experiment was executed three times, and the results 
were averaged to mitigate random variation effects. The 
following baseline models were implemented for 
comparison: 
• Gated recurrent unit (GRU) – A recurrent architecture for 

sequence modeling with fewer parameters than LSTM. 
• Long short-term memory (LSTM) – A classic deep-learning 

approach for temporal pattern recognition. 
• Decision tree (DT) – A non-parametric algorithm used for 

interpretable forecasting with low computational cost. 
• Acquired (Proposed HTL-HPO) – The hierarchical transfer 

learning model optimized through Bayesian tuning. 
All models were evaluated using five metrics — Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), R², 
Mean Absolute Error (MAE), and Explained Variance (EV). 
These indicators collectively represent model accuracy, 
stability, and fit quality. 

4.2 Mathematical background of evaluation metrics 
To ensure methodological rigor, performance metrics 

were computed using the following formulations: 

𝑀𝑆𝐸⁡=
1

𝑁
∑  𝑁
𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)

2

𝑅𝑀𝑆𝐸⁡= √
1

𝑁
∑  𝑁
𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)

2

𝑀𝐴𝐸⁡=
1

𝑁
∑  𝑁
𝑖=1   |𝑦𝑖 − 𝑦̂𝑖|

𝑅2 = 1⁡−
∑  𝑖  (𝑦𝑖−𝑦̂𝑖)

2

∑  𝑖  (𝑦𝑖−𝑦‾)
2

𝐸𝑉 =1 −
Var(𝑦−𝑦̂)

Var(𝑦)

           (6) 

Where 𝑦𝑖  represents observed cycle time, 𝑦̂𝑖  is the predicted 
value, and 𝑁 denotes the total number of observations. Lower 
MSE, RMSE, and MAE values indicate higher accuracy, 
whereas higher R2 and EV values signify better model fit and 
variance explanation. 

4.3 Baseline performance overview 
Table 1 presents a summary of model performance 

across all metrics. 

Table 1. Comparative model performance across forecasting metrics 

 

The results indicate that the proposed HTL-HPO model 
achieved the best performance across all five metrics. 
Specifically, it reduced RMSE by 14.6% and MAE by 11.2% 
compared to the best baseline (LSTM), while achieving the 
highest R² (0.934) and Explained Variance (0.938). These 
results establish the proposed model’s ability to minimize 
prediction errors and capture underlying process variability 
more effectively than conventional methods. In addition to 

Model MSE RMSE MAE R² EV 

Decision Tree 0.008 0.087 0.074 0.919 0.920 

GRU 0.043 0.208 0.148 0.543 0.801 

LSTM 0.016 0.127 0.087 0.829 0.808 

Acquired (HTL-HPO) 0.006 0.079 0.058 0.934 0.938 
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the neural and tree-based benchmarks presented, several 
classical forecasting models—Autoregressive Integrated 
Moving Average (ARIMA), Linear Regression, Random Forest 
(RF), and Extreme Gradient Boosting (XGBoost)—were also 
implemented as auxiliary baselines to ensure comprehensive 
evaluation. Each model was optimized through cross-
validated parameter tuning. However, these traditional 
approaches exhibited substantially higher prediction errors 
under the same experimental settings, with RMSE values 
exceeding 0.10 and R² scores below 0.80, indicating limited 
capability to capture nonlinear temporal–spatial 
dependencies inherent in wafer-fab data. Because their 
performance lagged considerably behind the deep and 
transfer-learning models, the detailed numeric results are 
omitted for brevity. Nevertheless, their inclusion in 
preliminary trials confirms that the proposed HTL-HPO 
framework surpasses both conventional statistical and 
machine-learning methods in forecasting accuracy, 
generalization, and robustness. 

4.4 Analysis of mean squared and root mean squared 
errors 
Mean Squared Error (MSE) and Root Mean Squared 

Error (RMSE) are widely used measures for forecasting 
accuracy. Lower values signify a model’s ability to minimize 
large deviations between actual and predicted cycle times. 
Figure 2 illustrates the comparative MSE results, showing that 
GRU performed the poorest (MSE = 0.043), followed by LSTM 
(0.016), while Decision Tree achieved moderate accuracy 
(0.008). The proposed Acquired model achieved the lowest 
MSE (0.006), indicating its superior stability and accuracy. 

Figure 3 presents RMSE comparisons, with similar 
trends. The GRU’s high RMSE (0.208) indicates greater error 
variability, while the LSTM (0.127) offers better consistency. 
The HTL-HPO framework attained the lowest RMSE (0.079), 
confirming that hierarchical learning and Bayesian 
optimization effectively reduce prediction variance and 
generalization errors. 

 
Figure 2. Bar graph for mean squared error 

 

 
Figure 3. Bar graph for root mean squared error 

4.5 Coefficient of determination (R²) and explained 
variance 
The R² metric evaluates how well the model explains the 

variability in observed cycle times. A higher R² implies that 
predicted values closely align with actual measurements. 
Figure 4 reveals that GRU achieved an R² of only 0.543, 
highlighting poor variance explanation and significant 
underfitting. LSTM performed moderately (R² = 0.829), while 
the Decision Tree achieved 0.919. The proposed HTL-HPO 
model achieved an R² of 0.934, demonstrating its strong 
capacity to capture interdependencies between process 
parameters and predict future cycle times. 

Explained Variance (EV) complements R² by quantifying 
the proportion of data variance explained by the predictive 
model. As shown in Figure 5, the proposed approach achieved 
an EV of 0.938, marginally outperforming the Decision Tree 
(0.920). This improvement reflects HTL-HPO’s enhanced 
ability to model non-linear dependencies across wafer 
fabrication stages. 

 
Figure 4. Bar graph for R-squared error 

4.6 Mean absolute error and residual analysis 
Mean Absolute Error (MAE) represents the average 

absolute difference between predicted and true values. Lower 
MAE indicates fewer large errors, a desirable property in 
industrial forecasting where deviations translate to 
scheduling inefficiencies. 

Figure 6 shows that GRU produced the highest MAE 
(0.148), indicating substantial deviation from actual 
outcomes. LSTM performed better (0.087), but still exhibited 
high bias due to sensitivity to sequence length and learning 
rate. Decision Tree achieved 0.074, while the proposed HTL-
HPO recorded 0.058, validating its superior precision in 
predicting wafer processing times. Residual error 
distribution analysis revealed that the HTL-HPO model’s 
errors were normally distributed around zero with a smaller 
variance (σ² = 0.0048), while other models showed skewed 
distributions. This indicates enhanced stability and unbiased 
predictions. 

4.7 Statistical validation through paired t-test 
To ensure that observed improvements were statistically 

significant rather than random, a paired t-test was conducted 
comparing RMSE values of the proposed model against each 
baseline across five folds. 

All p-values are less than 0.05, confirming the statistical 
significance of HTL-HPO’s superior performance. This 
validation demonstrates that the improvements observed are 
consistent and not due to stochastic model variance (Table 2). 
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Figure 5. Bar graph for R-squared vs explained variance 

 

 
Figure 6. Bar graph for mean absolute error 

Table 2. Paired t-test results comparing HTL-HPO with baselines 

 

4.8 Ablation study and component contribution 
To quantify the contribution of each component, an 

ablation study was performed. The base LSTM model was 
incrementally enhanced with transfer learning and 
hyperparameter optimization modules. Results show that 
incorporating hierarchical transfer learning alone improved 
accuracy by 25.9%, while adding Bayesian optimization 
achieved an overall improvement of 37.8%. These findings 
empirically justify the design of the integrated HTL-HPO 
pipeline (Table 3). 

 

 

 

 

 

 

Table 3. Ablation study showing the incremental impact of transfer 
learning and optimization 

 

4.9 Robustness under noise and domain shifts 
Real-world semiconductor data often contain 

measurement noise and domain variability. To test 
robustness, Gaussian noise (σ = 0.05) was added to the test 
data, and domain-shift scenarios were simulated by holding 
out one fab as an unseen target. Under noisy conditions, the 
HTL-HPO model’s RMSE increased marginally from 0.079 to 
0.081 (≈2.5%), while the LSTM and GRU models degraded by 
8.2% and 11.4%, respectively. This demonstrates the 
resilience of the hierarchical feature representations learned 
via transfer learning. In domain-shift experiments, the HTL-
HPO model achieved a cross-fab R² of 0.908, compared to 
LSTM (0.784) and GRU (0.623). The findings confirm that 
pretraining on multi-fab data and fine-tuning on target 
domains significantly improves generalization. 

4.10 Computational efficiency and scalability 
The proposed HTL-HPO model not only improves 

accuracy but also enhances computational efficiency. 
Training convergence was achieved in 64% fewer epochs 
than GRU and 42% fewer epochs than LSTM. The Bayesian 
optimization pipeline reduced manual hyperparameter 
tuning time by approximately 58% compared to grid search 
methods. Furthermore, the model demonstrated excellent 
scalability, maintaining stable training times across different 
dataset sizes. The efficient reuse of pretrained weights 
minimized computational overhead, making the model 
suitable for real-time deployment in smart manufacturing 
environments. 

Comparison Mean 
ΔRMSE 

t-
Statistic 

p-
Value 

Significance 
(α = 0.05) 

GRU vs HTL-
HPO 

0.129 9.64 0.0003 ✓ 

LSTM vs 
HTL-HPO 

0.048 5.71 0.0021 ✓ 

Decision 
Tree vs HTL-

HPO 

0.008 4.36 0.0048 ✓ 

Model Variant RMSE MAE Improvement 
(%) 

Base LSTM 0.127 0.087 — 

+ Transfer Learning (HTL) 0.094 0.071 +25.9 

+ HTL + Bayesian 
Optimization (HTL-HPO) 

0.079 0.058 +37.8 



KA. Kumar & K. Hemachandran/Future Technology                                                         February 2026| Volume 05 | Issue 01 | Pages 55-64 

62 

 

5. Discussion 

The experimental findings confirm that the proposed 
Hierarchical Transfer Learning with Hyperparameter 
Optimization (HTL-HPO) model significantly outperforms 
conventional baselines in forecasting semiconductor wafer-
fabrication cycle time. The lowest error rates (MSE = 0.006, 
RMSE = 0.079) and highest goodness-of-fit (R² = 0.934, EV = 
0.938) demonstrate its ability to capture complex nonlinear 
dependencies across multivariate process variables. The 
residual analysis indicates reduced bias and variance, while 
paired t-tests (p < 0.05) confirm that these improvements are 
statistically significant. The ablation study further validates 
the synergistic benefit of hierarchical transfer learning and 
Bayesian TPE optimization: the former enables effective 
knowledge reuse across fabs, while the latter identifies stable 
hyperparameter configurations that accelerate convergence 
and prevent overfitting. The model’s resilience under noise 
and domain shift also evidences its adaptability to 
heterogeneous industrial conditions, confirming its 
robustness and scalability. 

These findings align with and extend previous research 
in semiconductor process modeling. Earlier reviews by 
Espadinha-Cruz et al. [13] and Huang et al. [7] emphasized the 
growing role of data-driven approaches for improving 
process visibility and predictive control. However, their 
analyses also noted that conventional data mining and neural 
models struggle to generalize under domain variability. The 
hierarchical adaptation used in this study directly addresses 
that gap by transferring knowledge between heterogeneous 
production lines, consistent with the cross-process modeling 
direction suggested by Doinychko [17] and Yang et al. [21]. 
Similarly, prior works on virtual metrology and intelligent 
fault detection—such as Chien et al. [19] and Maitra et al. 
[20]—demonstrated that transfer learning can enhance 
diagnostic accuracy. The present results extend those insights 
from equipment-level prediction to complete cycle-time 
forecasting, a broader and more dynamic manufacturing 
variable. From an optimization perspective, Alizadeh and Ma 
[24] and Wang et al. [23] highlighted that tuning algorithmic 
parameters through hybrid or fuzzy approaches can 
significantly enhance predictive precision.  

The superior stability observed in the HTL-HPO 
framework confirms that Bayesian optimization outperforms 
heuristic grid searches and metaheuristic hybrids by 
probabilistically estimating performance improvements 
before evaluating candidates. Likewise, the improvement 
over deep-learning baselines such as LSTM and GRU is 
consistent with Lee and Gao [27] and Wang et al. [28], who 
found that combining hierarchical or hybrid architectures 
with adaptive optimization yielded more scalable forecasting 
performance. Collectively, these parallels show that the 
current study’s advancements are theoretically consistent 
with, yet empirically more robust than, existing models in the 
semiconductor analytics literature. The practical implications 
for wafer-fab operations are substantial. Enhanced cycle-time 
forecasts enable more reliable scheduling, efficient tool 
loading, and proactive WIP control, directly improving 
throughput and on-time delivery. By allowing pretrained 
models to be reused and fine-tuned for new fabs, the HTL-
HPO approach supports rapid deployment during product 
transitions, aligning with the scalable frameworks envisioned 
by Xu et al. [9] and Rashidi et al. [5]. Furthermore, the model’s 
robustness against sensor noise and production variability 
offers a foundation for digital-twin integration, in which 
virtual representations of fab processes can test scheduling 
policies before physical execution. Such adaptability also 

promotes sustainability: reduced rework, minimized idling, 
and optimized equipment utilization correspond to lower 
energy consumption and resource waste, echoing the 
sustainability imperatives discussed by Xia et al. [14] and Tin 
et al. [26]. 

Nevertheless, the study presents certain limitations. 
Although the hierarchical transfer mechanism lowers data 
requirements, it still depends on a minimum volume of target-
domain data for fine-tuning. Extremely data-sparse or rapidly 
changing product mixes may limit adaptation efficiency. The 
experiments rely primarily on the public dataset by 
Tchatchoua et al. [30]; therefore, broader validation across 
multiple fabs, process generations, and product types would 
strengthen external generalizability. In addition, while 
Bayesian optimization is more computationally efficient than 
grid search, the full HTL-HPO pipeline remains resource-
intensive relative to simpler models such as Decision Trees 
[29]. Moreover, the current implementation functions offline 
and does not incorporate online or continual learning to 
adapt automatically to concept drift over time. 

Future research should address these gaps by 
introducing meta-learning or self-supervised pretraining to 
enable the model to generalize with minimal labeled data, as 
recommended by recent machine-learning surveys [16,22]. 
Online and continual learning extensions would further 
ensure real-time adaptability in evolving fab conditions. 
Hybrid frameworks that combine data-driven and physics-
informed modeling could improve interpretability and 
extrapolation to unseen process settings. Additionally, 
uncertainty quantification techniques such as Bayesian 
neural networks or Monte-Carlo dropout should be 
incorporated to provide confidence intervals around 
predictions, facilitating risk-aware production planning. 
Federated learning approaches, inspired by Patel et al. [25], 
could also enable cross-site collaboration while maintaining 
data privacy. Finally, expanding the model into a multi-task 
configuration that simultaneously predicts cycle time, queue 
delay, and equipment utilization would advance the 
development of comprehensive smart-fab forecasting 
ecosystems. In summary, the discussion confirms that 
hierarchical transfer learning effectively captures shared 
temporal-spatial dynamics across fabs, while Bayesian TPE 
optimization ensures model stability and efficiency. The HTL-
HPO framework thus represents a coherent integration of 
theories from prior research, yielding a scalable, 
interpretable, and empirically validated solution for 
intelligent semiconductor manufacturing.                               

6. Conclusion  

This study developed and validated an optimized 
Hierarchical Transfer Learning with Hyperparameter 
Optimization (HTL-HPO) framework to enhance cycle-time 
forecasting in semiconductor wafer fabrication. The results 
confirm that integrating hierarchical transfer learning with 
Bayesian TPE-based optimization significantly improves 
predictive accuracy, stability, and generalization compared to 
established baselines such as LSTM, GRU, and Decision Tree 
models. The model achieved the lowest error rates (MSE = 
0.006; RMSE = 0.079) and the highest R² = 0.934, clearly 
demonstrating its ability to capture nonlinear, cross-fab 
temporal–spatial patterns that traditional and single-domain 
models overlook. The findings imply that hierarchical 
adaptation and probabilistic optimization can jointly 
transform forecasting efficiency in semiconductor 
manufacturing. Accurate cycle-time prediction enables better 
scheduling, capacity planning, and resource allocation, 
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leading to higher throughput and reduced production 
volatility. The framework also supports faster deployment 
across fabs through knowledge reuse and aligns with 
sustainable manufacturing principles by minimizing rework, 
tool idling, and energy waste. For practitioners, adopting the 
HTL-HPO model means improved operational reliability and 
a stronger foundation for digital-twin integration and 
predictive decision-support systems. Based on the observed 
outcomes, several recommendations are proposed. Industrial 
engineers should implement hierarchical transfer learning 
pipelines for cross-fab model reuse and apply Bayesian 
optimization to automate hyperparameter tuning. Integrating 
such intelligent forecasting into production control systems 
could enhance responsiveness and transparency in fab 
operations. Future research should expand validation across 
multiple semiconductor technologies and explore meta-
learning, self-supervised, and physics-informed approaches 
to reduce data dependence further. Incorporating online and 
federated learning mechanisms would also enable real-time 
adaptability and privacy-preserving collaboration among 
fabs. In essence, this research lays a foundation for scalable, 
interpretable, and sustainable AI-driven forecasting in next-
generation smart semiconductor manufacturing. 

Ethical issue 
The authors are aware of and comply with best practices in 
publication ethics, specifically with regard to authorship 
(avoidance of guest authorship), dual submission, 
manipulation of figures, competing interests, and compliance 
with policies on research ethics. The authors adhere to 
publication requirements that the submitted work is original 
and has not been published elsewhere. 

Data availability statement 
The manuscript contains all the data. However, more data will 

be available upon request from the authors. 

Conflict of interest 

The authors declare no potential conflict of interest. 

References  

[1] Wang, J., Gao, P., Zheng, P., Zhang, J., & Ip, W. H. (2021). 

A fuzzy hierarchical reinforcement learning based 

scheduling method for semiconductor wafer 

manufacturing systems. Journal of Manufacturing 

Systems, 61, 239-248. 

https://doi.org/10.1016/j.jmsy.2021.08.008 

[2]  Leray, P., & De Gendt, S. (2024). Exploring Machine 

Learning for Semiconductor Process Optimization: A 

SystematiclReview.     

[3]  Chen, Y. L., Sacchi, S., Dey, B., Blanco, V., Halder, S., 

Leray, P., & De Gendt, S. (2024). Exploring machine 

learning for semiconductor process optimization: a 

systematic review. IEEE Transactions on Artificial 

Intelligence.  DOI: 

10.36227/techrxiv.172114788.85190557/v1    

[4]  Gentner, N., 2023. Enhancing Scalability of Deep 

Learning Based Approaches in Semiconductor 

Manufacturing.  

[5]  Rashidi, E., Bhuiyan, T. H., & Mason, S. J. (2024). 

Production planning for semiconductor manufacturing 

under demand and yield uncertainty. Computers & 

Industrial Engineering, 196, 110403. 

https://doi.org/10.1016/j.cie.2024.110403 

[6]  Taha, K. (2023). Machine Learning Techniques for 

Identifying the Defective Patterns in Semiconductor 

Wafer Maps: A Survey, Empirical, and Experimental 

Evaluations. https://doi.org/10.1007/s10845-024-

02521-0 

[7]  Huang, A. C., Meng, S. H., & Huang, T. J. (2023). A survey 

on machine and deep learning in semiconductor 

industry: methods, opportunities, and challenges. 

Cluster Computing, 26(6), 3437-3472. 

https://doi.org/10.1007/s10586-023-04115-6 

[8]  Umamahesh Ritty, N., 2023. Predicting product 

characteristics using neural networks (Master's thesis, 

UniversityiofiTwente).    

[9]  Xu, H. W., Zhang, Q. H., Sun, Y. N., Chen, Q. L., Qin, W., 

Lv, Y. L., & Zhang, J. (2024). A fast ramp-up framework 

for wafer yield improvement in semiconductor 

manufacturing systems. Journal of Manufacturing 

Systems, 76,p222-233. 

https://doi.org/10.1016/j.jmsy.2024.07.001 

[10]  Shahroz, M., Ali, M., Tahir, A., Gongora, H. F., Rios, C. U., 

Samad, M. A., & Ashraf, I. (2024). Hierarchical 

Attention Module-Based Hotspot Detection in Wafer 

Fabrication Using Convolutional Neural Network 

Model. IEEEiAccess. DOI: 

10.1109/ACCESS.2024.3422616                                                                                                                                                                                                   

[11]  Lee, Y. H., & Lee, S. (2022). Deep reinforcement 

learning based scheduling within production plan in 

semiconductorPfabrication. 

ExpertPSystemsPwithPApplications, 

191,p116222.https://doi.org/10.1016/j.eswa.2021.11

6222 

[12]  Adaloudis, M. (2024). Remaining Useful Lifetime (RUL) 

Estimation for Predictive Maintenance in 

SemiconductoriManufacturing.  

[13]  Espadinha-Cruz, P., Godina, R., & Rodrigues, E. M. 

(2021). A review of data mining applications in 

semiconductor-manufacturing. Processes, 9(2),p305.  

https://doi.org/10.3390/pr9020305 

[14]  Xia, B., Tian, T., Gao, Y., Zhang, M., & Peng, Y. (2022). A 

Dynamic Dispatching Method for Large Scale Interbay 

Material Handling Systems of Semiconductor FAB. 

Sustainability, 14(21), 13882. 

https://doi.org/10.3390/su142113882 

[15]  Yoon, H., & Kim, H. (2024). Few-Shot Classification of 

Wafer Bin Maps Using Transfer Learning and 

Ensemble Learning. Journal of Manufacturing Science 

and Engineering, 146, 070903-1. 

https://doi.org/10.1115/1.4065255 

[16]  Jaiswal, R. (2023). Machine learning based prediction 

models for silicon heterojunction solar cell 

optimization (Doctoral dissertation, The University of 

New Mexico). 

[17]  Doinychko, A. (2023). Multiview Learning with Missing 

Views and Learning Solutions for Cross-Process 

Modeling in Semiconductor Manufacturing Industry 

(Doctoral dissertation, Université Grenoble Alpes. HAL 

Id : tel-04142555 , version 2 

[18]  Piedrafita Acin, V. M. (2023). Forecasting inventory 

demand for a semiconductor manufacturer: a case 

study using machine learning and other methods 



KA. Kumar & K. Hemachandran/Future Technology                                                         February 2026| Volume 05 | Issue 01 | Pages 55-64 

64 

 

applied to time series data. 

https://urn.fi/URN:NBN:fi:amk-2023121737970 

[19]  Chien, C. F., Hung, W. T., & Liao, E. T. Y. (2022). 

Redefining monitoring rules for intelligent fault 

detection and classification via CNN transfer learning 

for smart manufacturing. IEEE Transactions on 

Semiconductor Manufacturing, 35(2), 158-165. DOI: 

10.1109/TSM.2022.3164904 

[20]  Maitra, V., Su, Y., & Shi, J. (2024). Virtual metrology in 

semiconductor manufacturing: Current status and 

future prospects. Expert Systems with Applications, 

123559. https://doi.org/10.1016/j.eswa.2024.123559 

[21]  Yang, Y., Bom, S., & Shen, X. (2024). A hierarchical 

ensemble causal structure learning approach for wafer 

manufacturing. Journal of Intelligent Manufacturing, 

35(6), 2961-2978. https://doi.org/10.1007/s10845-

023-02188-z 

[22]  Bardossy, A., & Duckstein, L. (2022). Fuzzy rule-based 

modeling with applications to geophysical, 

biological,PandPengineeringPsystemsPCRCPpress. 

https://doi.org/10.1201/9780138755133 

[23]  Wang, Y. C., Chen, T., & Hsu, T. C. (2021). A fuzzy deep 

predictive analytics approach for enhancing cycle time 

range estimation precision in wafer fabrication. 

Decision Analytics Journal, 1, 100010. 

https://doi.org/10.1016/j.dajour.2021.100010 

[24] Alizadeh, M., & Ma, J. (2021). A comparative study of 

series hybrid approaches to model and predict the 

vehiclePoperatingPstates. 

ComputersP&PIndustrialPEngineering, 162,p107770. 

https://doi.org/10.1016/j.cie.2021.107770 

[25]  Patel, T., Murugan, R., Yenduri, G., Jhaveri, R., Snoussi, 

H., & Gaber, T. (2024). Demystifying Defects: Federated 

Learning and Explainable AI for Semiconductor Fault 

Detection. IEEE Access. DOI: 

10.1109/ACCESS.2024.3425226 

[26]  Tin, T. C., Tan, S. C., & Lee, C. K. (2022). Virtual 

metrology in semiconductor fabrication foundry using 

deepPlearningPneuralPnetworks.pIEEEPAccess,p10,p

81960-81973. DOI: 10.1109/ACCESS.2022.3193783  

[27]  Lee, G. M., & Gao, X. (2021). A hybrid approach 

combining fuzzy C means based genetic algorithm and 

machine learning for predicting job cycle times for 

semiconductor manufacturing. Applied Sciences, 

11(16), 7428. https://doi.org/10.3390/app11167428 

[28]  Wang, J., Gao, P., Li, Z., & Bai, W. (2021). Hierarchical 

Transfer Learning for Cycle Time Forecasting for 

Semiconductor Wafer Lot under Different Work in 

Process Levels. Mathematics, 9(17), 2039. 

https://doi.org/10.3390/math9172039 

[29]  Schelthoff, K., Jacobi, C., Schlosser, E., Plohmann, D., 

Janus, M., & Furmans, K. (2022). Feature Selection for 

Waiting Time Predictions in Semiconductor Wafer 

Fabs. IEEE Transactions on Semiconductor 

Manufacturing, 35(3),546-555. DOI: 

10.1109/TSM.2022.3182855 

[30]  Tchatchoua, P., Graton, G., Ouladsine, M., & Christaud, J. 

F. (2023). Application of 1D ResNet for Multivariate 

Fault Detection on Semiconductor Manufacturing 

Equipment. Sensors, 23(22), 9099. 

https://doi.org/10.3390/s23229099 

 

 

 
 

  

This article is an open-access article distributed under the 

terms and conditions of the Creative Commons Attribution 

(CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

https://creativecommons.org/licenses/by/4.0/

