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Anxiety disorders are among the most widespread mental health challenges, yet
conventional treatments face barriers of accessibility, cost, and reliance on
subjective measures. Digital therapeutics offer scalable solutions, but current
systems lack real-time emotion monitoring and adaptive personalization. To
address this gap, this study proposes a multimodal emotion recognition-driven
framework for personalized anxiety management. The framework fuses
electroencephalography, heart rate variability, facial expression, and speech
features via cross-modal attention, and employs a reinforcement learning-
based decision engine to dynamically select interventions such as breathing
exercises, mindfulness, or cognitive reframing. Adaptive feedback further
tailors interventions to user responses. Experiments on DEAP and WESAD
datasets showed superior performance over unimodal and traditional fusion
baselines, with accuracies of 86.2% and 84.7% and AUROCs of 0.91 and 0.89.
Anxiety reduction analysis demonstrated up to 24% improvement in State-
Trait Anxiety Inventory scores. The study advances affective computing by
linking multimodal sensing with adaptive therapeutic design, and offers a
foundation for scalable, interpretable, and clinically relevant digital mental
health interventions.

1. Introduction

affect sensing with intelligent control mechanisms capable of

Anxiety disorders are among the most prevalent mental
health conditions, affecting nearly one in five individuals
worldwide and imposing substantial social and economic
burdens [1]. Conventional treatments such as
pharmacological  therapy  and cognitive-behavioral
interventions are clinically effective but limited by
accessibility, high cost, and stigma [2]. In this context, digital
therapeutics (DTx) have emerged as scalable, data-driven
alternatives that leverage mobile and intelligent systems to
deliver evidence-based care [3]. Meanwhile, recent progress
in artificial intelligence (Al)-driven emotion recognition
offers new opportunities to enhance DTx through objective,
real-time monitoring of emotional states and adaptive
intervention delivery [4]. Despite these advances, current
anxiety-focused DTx largely depend on self-report data and
static engagement metrics that fail to capture rapid emotional
fluctuations. Multimodal emotion recognition (MER) research
combining physiological (EEG, HRV), facial, and vocal cues has
achieved higher accuracy than unimodal approaches [5], yet
most studies remain laboratory-bound and emphasize
recognition accuracy rather than therapeutic adaptation. This
gap underscores the need for systems that link multimodal
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autonomously selecting and adjusting therapeutic actions [6].
To address this gap, this study reconceptualizes emotion
recognition not as an endpoint but as a dynamic input for
adaptive digital therapeutics. The proposed framework
integrates a cross-modal attention mechanism for robust
affect fusion with a reinforcement-learning engine that learns
optimal intervention policies from user feedback. This
synergy between perception and decision-making constitutes
the core methodological novelty and distinguishes the work
from prior static DTx architectures. From a technological
standpoint, the framework advances Al-driven health
systems through a unified architecture that combines cross-
modal attention, actor-critic reinforcement learning, and
adaptive feedback loops. These modules enable continuous
personalization and can be efficiently deployed on mobile or
wearable platforms for real-time, privacy-preserving
inference. The design demonstrates how engineering
innovations in multimodal fusion and policy optimization can
yield clinically meaningful outcomes without sacrificing
computational scalability. The objectives of this research are
threefold: (1) to develop a multimodal emotion-recognition
model that fuses heterogeneous physiological and behavioral
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data for reliable real-time affect inference; (2) to design a
reinforcement-learning-based  decision = engine  that
dynamically selects personalized interventions; and (3) to
evaluate the proposed framework through quantitative
benchmarks and anxiety-reduction analyses demonstrating
both accuracy and therapeutic efficacy. Methodologically,
multimodal data, including EEG, HRV, facial expression, and
speech, are pre-processed for feature extraction and fused via
cross-modal attention. The resulting embeddings inform a
reinforcement-learning agent that adaptively recommends
therapeutic activities such as breathing exercises,
mindfulness prompts, or cognitive reframing. Experimental
validation includes comparisons with unimodal and fusion
baselines, ablation tests, and statistical significance analyses
to verify robustness and interpretability. In summary, this
study contributes to the technological advancement of
affective computing by transforming multimodal emotion
recognition into an adaptive control signal for personalized
digital therapeutics. It provides a reproducible Al
architecture that unites multimodal sensing, real-time
learning, and human-centered feedback, offering a scalable
pathway toward next-generation, intelligent, and ethically
deployable digital interventions for anxiety management.

2. Related works

Research on anxiety-oriented digital therapeutics
intersects three major domains: multimodal emotion
recognition, digital interventions for anxiety management,
and personalized adaptive strategies. Each domain has
generated significant progress, yet notable limitations
remain, highlighting the need for integrated solutions.

2.1 Multimodal emotion recognition

Recent years have witnessed significant advances in
MER, which integrates physiological signals, visual cues, and
vocal features to achieve superior accuracy compared with
unimodal methods. Physiological modalities such as EEG and
HRV offer objective measures of affective states, while facial
expression analysis and speech prosody provide
complementary behavioral cues [7]. Deep learning models,
including convolutional and recurrent architectures, have
been widely applied, with fusion strategies ranging from early
concatenation to attention-based cross-modal integration.
Although these approaches demonstrate improved
recognition rates on benchmark datasets, challenges persist.
The majority of studies rely on controlled laboratory
environments, resulting in reduced robustness in naturalistic
settings. Moreover, most work prioritizes classification
accuracy over explainability, limiting clinical interpretability
[8]. For the present study, these findings underscore the
necessity of combining robust multimodal fusion with
mechanisms that directly inform therapeutic interventions.

2.2 Digital therapeutics for anxiety

DTx for anxiety has evolved from self-guided mobile
applications to immersive platforms incorporating
biofeedback and virtual reality [9]. Early systems primarily
delivered standardized cognitive-behavioral therapy
modules or mindfulness exercises, often relying on self-
reported outcomes. While these tools improved accessibility
and user engagement, they lacked objective monitoring of
emotional states, reducing personalization and real-time
responsiveness [10]. More recent solutions integrate
wearable sensors or mobile-based affect detection; however,
the models employed are typically limited to unimodal data,
such as heart rate or voice tone, and intervention delivery
remains largely static [11]. Consequently, effectiveness varies
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significantly across individuals, and long-term adherence
remains a critical issue. For this research, existing digital
therapeutic frameworks provide a baseline of clinically
validated intervention strategies, but their limitations
highlight the need for a data-driven approach that adapts
dynamically to individual emotional fluctuations.

2.3 Personalized intervention strategies

Personalization in anxiety interventions has increasingly
focused on tailoring therapeutic content and delivery through
machine learning. Recommendation systems have been
employed to match intervention modules with user profiles,
while reinforcement learning models have shown promise in
dynamically optimizing intervention timing and selection
[12]. These methods improve adherence and treatment
outcomes but are often detached from real-time emotional
input, relying instead on static demographic or historical data
[13]. Furthermore, many approaches overlook the
interpretability of personalization mechanisms, raising
concerns about trust and clinical adoption [14]. Integrating
personalization with multimodal emotion recognition has the
potential to address these shortcomings by grounding
intervention selection in objective, dynamic indicators of
emotional states [15]. In this regard, the proposed study aims
to close the gap by linking adaptive algorithms with real-time
affective monitoring.

2.4 Comparative summary

A comparative summary of the three research domains
is presented in Table 1. As shown, multimodal emotion
recognition contributes richer emotional input but suffers
from low robustness and limited explainability. Digital
therapeutics provide validated intervention methods yet
remain constrained by static designs and unimodal reliance.
Personalized strategies improve adherence but lack real-time
emotion integration. These observations highlight the
necessity of integrating strengths across domains into a
unified framework.

3. Methodology
3.1 Overall framework design

The proposed methodology is built upon the integration
of multimodal emotion recognition with a personalized
intervention engine to deliver adaptive digital therapeutics
for anxiety management. The system follows a closed-loop
design in which multimodal signals are continuously
collected, processed, and analyzed to infer the user’s
emotional state, which subsequently informs the selection of
individualized therapeutic interventions. The framework is
structured into four major modules: multimodal data
acquisition and preprocessing, emotion recognition via cross-
modal attention-based deep learning, reinforcement
learning-driven intervention generation, and adaptive
feedback coupled with explainability. This modular
organization allows the system to function as a dynamic cycle
rather than a static pipeline, where emotion sensing, decision-
making, and feedback interact iteratively to improve
personalization and robustness. Figure 1 presents the overall
architecture, illustrating the data flow from multimodal
inputs to personalized therapeutic outputs.

3.2 Multimodal emotion recognition module

The first stage of the framework focuses on robust
detection of emotional states using multimodal inputs,
including electroencephalography (EEG), heart rate
variability (HRV), facial expression data, and speech features.
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Table 1. Comparative summary of related work across three domains
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Domain Data/Modalities Models/Methods Advantages Limitations Relation to
Used Applied This Study
Multimodal EEG, HRYV, facial CNN, RNN, attention- Higher accuracy, Low robustness, Provides an
Emotion expressions, speech based fusion richer features limited emotional input
Recognition explainability foundation for
interventions
Digital Mobile apps, VR, CBT modules, High accessibility, | Static interventions, Supplies
Therapeutics for wearable sensors mindfulness tasks, validated methods unimodal input clinically
Anxiety biofeedback relevant
intervention
components
Personalized User profiles, Recommendation Improved Limited real-time Informs
Strategies behavioral logs systems, reinforcement adherence, emotion integration dynamic
learning adaptive delivery adaptation to
emotional
fluctuations

Multimodal
Inputs

Feature Cross-Modal Emotion Intervention Personalized
Extraction Fusion Classifier Decision Intervention

Model Update

User Feedback

Figure 1. Overall System Architecture

Each modality undergoes preprocessing to remove noise
and standardize input length. For EEG, signals are segmented
and filtered to retain key frequency bands. HRV data are
derived from electrocardiographic signals through R-R
interval analysis. Facial expressions are represented via
landmark embeddings, while speech signals are transformed
into spectrogram-based features such as Mel-frequency
cepstral coefficients (MFCCs). Feature extraction is modeled
using modality-specific neural networks. EEG and HRV
signals are processed using one-dimensional convolutional
neural networks (CNNs), facial features through a ResNet-
based visual encoder, and speech data via bidirectional gated
recurrent units (BiGRU). Let x(™ denote the feature vector
from modality m. The shared embedding space is constructed
through linear transformations:

h(m) — Wm)ym) 4 pm)
1)

where W™ and b(™ are learnable weights and biases.

The fusion of multimodal embeddings is achieved through
cross-modal attention. For each modality i, attention weights
over other modalities j are computed as:

__exp((hOWhPwi)T) 2
% = Seexp(OWQ OWiT) )

The fused representation is then:
7z = % o (hOwy)
(3)

Finally, the joint emotion representation is formed by
concatenation:

The classifier produces probability distributions over
emotional states:

§ = Softmax(W.z + b.)
(5)

This probabilistic estimation is optimized by cross-entropy
loss:

Lemo = — XYilog(§1)
(6)

where y is the ground truth label.

This module transforms heterogeneous signals into coherent
emotional representations, providing a physiologically
grounded foundation for subsequent personalized
therapeutic decisions.

3.3 Personalized intervention module

Building on emotion inference, the second stage
translates detected emotional states into tailored therapeutic
actions. Here, the system shifts from passive recognition to
active decision-making, forming the adaptive core of the
framework. Formally, the user’s emotional state s, at time t is
provided as input, and the agent selects an intervention action
a;. The environment, representing the user’s response,
generates a reward r; based on reductions in anxiety scores
or physiological stress markers. The policy m(als) is
optimized to maximize expected cumulative rewards:

J(8) = Eno[ZT0v' 1] ()

Where y is the discount factor and 6 denotes policy
parameters. Policy optimization is achieved using an actor-

67



Lusha Zhu & Jinho Yim/Future Technology

critic framework, ensuring a balance between exploration
and exploitation.
The action-value function is updated iteratively:

Q(spap) < Q(spay) +1 (rt + ymaz,ix Q(st+1,2") — Q(st, at)) (8)

Through repeated user interaction, the system learns to
associate specific emotional patterns with effective
interventions, thereby achieving personalized and adaptive
therapeutic outcomes beyond rule-based designs.

3.4 Adaptive feedback and explainability

The final module ensures continuous learning and
transparency. After each therapeutic session, engagement
metrics and physiological responses are analyzed to assess
the effectiveness of the selected intervention. These outcomes
update both the emotion recognition model and the RL policy,
enabling future recommendations to align with individual
user trajectories. This adaptive feedback mechanism forms
the link between recognition and intervention, ensuring the
system evolves with each user’ s emotional dynamics. For
instance, if a user consistently benefits from mindfulness
prompts, the policy increases the likelihood of recommending
similar strategies in subsequent sessions. Explainability is
integrated to enhance reliability and clinical trust. Attention
visualizations reveal modality-specific importance (e.g., EEG
vs. HRV), while Shapley Additive Explanations (SHAP)
identify key contextual features influencing intervention
selection. Together, these interpretability tools transform the
model from a black box into a transparent and verifiable
decision-support system suitable for real-world mental
health deployment.

3.5 Implementation details and key parameters

The framework is implemented in PyTorch and trained
on an NVIDIA A100 GPU (40 GB). Training employs the Adam
optimizer (learning rate = le-4, batch size = 64) with early
stopping based on validation loss. Emotion recognition
models are trained for 100 epochs, while the RL agent runs
for 10,000 episodes. Key architectural parameters are
summarized in Table 2.

Table 2. Key structural parameters of the proposed framework

Module Input Data Model Type Key
Parameters
EEG EEG signals 1D CNN 3 conv layers,
Processing (128 channels) kernel size 5,
dropout 0.3
HRV ECG-derived 1D CNN 2 conv layers,
Processing HRYV features max-pooling,
dropout 0.2
Facial Image frames ResNet-18 Pretrained
Expression (224x224) weights, fine-
Encoder tuned
Speech MFCC BiGRU 2 layers, hidden
Encoder spectrograms size 256
Fusion Layer Multimodal Cross-modal 8 attention
embeddings attention heads,
embedding size
512
Emotion Concatenated Fully Hidden size 256,
Classifier vector connected + | output 5 classes
Softmax
Intervention Emotional Actor-Critic Discount factor
Policy state vector RL 0.95, learning
rate le-4
Feedback User Online SHAP, attention
Module responses update maps for
mechanism interpretability
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Key parameters such as learning rate, batch size, and
dropout rate were tuned via grid search on the validation set.
A learning rate of 1e-4 and batch size of 64 achieved the most
stable convergence and highest validation accuracy,
balancing training speed and generalization performance.
The following experimental design (Section 4) evaluates
these modules jointly, demonstrating how each component
contributes to overall system performance and clinical
relevance.

This methodology establishes an integrated framework
that unites multimodal sensing, adaptive learning, and
interpretable feedback within a single closed-loop
architecture. By emphasizing the interaction among
recognition, decision, and feedback modules, this section
provides a conceptual bridge to the experimental validation
in Section 4, where the system’s performance, generalization,
and therapeutic impact are empirically demonstrated. The
combination of accuracy, adaptivity, and transparency
distinguishes the framework as a robust foundation for next-
generation digital therapeutics in anxiety management.

4. Results and analysis
4.1 Dataset and experimental setup

All experiments were conducted using ethically
approved, publicly available datasets (DEAP and WESAD).
Both datasets include informed-consent statements from all
participants and comply with institutional review and data-
usage licenses. No personally identifiable information was
accessed, and all analyses were performed in accordance with
the respective ethical and licensing guidelines. The DEAP
dataset includes EEG, HRYV, facial, and speech data from 32
participants watching 40 one-minute music video clips,
annotated on valence and arousal scales. WESAD provides
wearable sensor signals (EDA, ECG, temperature, and
accelerometer) from 15 participants under induced stress,
amusement, and neutral conditions. These two datasets
together enable evaluation across controlled and wearable
environments, supporting assessment of both model
robustness and ecological validity.

For preprocessing, EEG signals were band-pass filtered
(0.5-50 Hz) to remove electrical and muscle-motion noise
while preserving emotion-related frequency bands. Each EEG
channel was z-score standardized to reduce inter-subject
variability. HRV features were extracted from ECG R-R
intervals to capture autonomic fluctuations linked to stress
response. Facial frames were aligned and cropped using
landmark detection to ensure consistent expression regions,
and speech recordings were converted to Mel-spectrograms
for frequency-domain representation. All modalities were
segmented into 5-second windows with 50 % overlap to
balance temporal resolution and sample volume, and
normalized to a common scale for multimodal fusion. This
pipeline ensures signal quality, alignment, and comparability
across participants and modalities.

The proposed framework was implemented in PyTorch
and trained on an NVIDIA A100 GPU (40 GB). Training
employed the Adam optimizer (learning rate = 1 X 10°¢,
batch size = 64) with early stopping based on validation loss.
Experiments were conducted under five-fold cross-validation
and five independent random seeds to ensure reliability.
Evaluation metrics included accuracy (ACC), F1-score, AUROC
for emotion recognition, and reductions in State-Trait
Anxiety Inventory (STAI) scores for therapeutic outcomes.
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4.2 Comparative evaluation with baselines

To contextualize the performance gains of the proposed
system, multiple baseline models were implemented under
identical conditions. These included: (i) unimodal models
trained separately on EEG, HRV, facial, and speech features;
(ii) early-fusion models using direct feature concatenation;
and (iii) late-fusion ensemble models combining softmax
outputs. For fair comparison, all baselines adopted the same
preprocessing pipeline and were trained with identical
hyperparameters (Adam optimizer, learning rate = le—4,
batch size = 64, early stopping). Each unimodal model
employed its respective encoder structure: 1D CNN for EEG
and HRV, ResNet-18 for facial frames, and BiGRU for speech
features. The early-fusion model concatenated modality
embeddings before the classification layer, whereas the late-
fusion model averaged softmax probabilities from unimodal
branches. This alignment ensures that performance
differences stem from fusion strategy rather than parameter
variation. On the DEAP dataset, the proposed cross-modal
attention framework achieved an accuracy of 86.2%,
compared with 75.8% for the best unimodal model (EEG),
80.1% for early fusion, and 82.4% for late fusion. AUROC
improved correspondingly to 0.91, outperforming all
baselines (best baseline = 0.85). On WESAD, the model
achieved 84.7% accuracy and 0.89 AUROC, surpassing the
strongest unimodal baseline (HRV, 78.5%, AUROC = 0.82).
Table 3 summarizes the comparative results, illustrating that
the cross-modal attention mechanism effectively captures
complementary information across modalities and
outperforms  traditional fusion techniques. These
improvements confirm that multimodal integration guided by
cross-modal attention provides substantial and statistically
consistent gains over conventional architectures.

Table 3. Comparative performance across models
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Statistical significance was assessed via paired t-tests
across all folds. On DEAP, the improvement in accuracy was
statistically significant (p < 0.01) with a medium-to-large
effect size; similar results were obtained on WESAD (p <
0.05). These findings demonstrate that the observed gains
reflect genuine performance advantages rather than random
variance, reinforcing the robustness of the proposed
approach. All experiments were conducted under five
independent random seeds to control initialization variance.
Performance metrics were averaged across these runs, and
95% confidence intervals were computed using bootstrap
resampling across validation folds. This procedure ensures
statistical robustness and reproducibility of the reported
results.

4.4 Ablation studies

To examine the contribution of each framework
component, ablation experiments were conducted by
removing key modules individually. Configurations included:
(i) removal of cross-modal attention (replaced by simple
concatenation), (ii) exclusion of the reinforcement learning
module (replaced by fixed-rule intervention), and (iii)
omission of adaptive feedback loops. On DEAP, accuracy
dropped from 86.2% to 82.1% without attention, 81.4%
without reinforcement learning, and 80.6% without adaptive
feedback. Correspondingly, anxiety reduction fell from 23%
to 17-19%. Table 4 summarizes these results, highlighting
that each module contributes materially to both recognition
accuracy and therapeutic effectiveness.

Table 4. Ablation study results (DEAP dataset)

Dataset | Metric | Unimodal | Early Late Proposed
Best Fusion | Fusion Model
DEAP ACC 75.8% 80.1% | 82.4% 86.2%
DEAP AUROC 0.84 0.83 0.85 091
WESAD ACC 78.5% 80.7% | 81.9% 84.7%
WESAD | AUROC 0.82 0.83 0.84 0.89

Configuration ACC AUROC Anxiety
Score
Reduction
Full Model 86.2% 091 23%
w/o Attention 82.1% 0.86 18%
w/o 81.4% 0.85 17%
Reinforcement
Learning
w/o Adaptive 80.6% 0.84 19%
Feedback

4.3 Convergence and Statistical Analysis

To further validate training stability and statistical
reliability, convergence patterns and significance tests were
analyzed. The loss curves (Figure 2) show smooth and
monotonic convergence within 60 epochs on both datasets,
indicating effective optimization and generalization.

—— Training Loss

Validation Loss

0 10 20 30 40 50 60
Epochs

Figure 2. Loss curves

These ablation findings substantiate the necessity of
integrating all three mechanisms, attention-based fusion,
adaptive decision-making, and feedback refinement, to
achieve optimal system performance.

4.5 Interpretability and visualization

Beyond quantitative metrics, model interpretability was
analyzed to confirm physiological plausibility. Attention
weight distributions (Figure 3) revealed that EEG and facial
features contributed most to valence prediction, whereas
HRV and speech were more informative for arousal. EEG
accounted for 41% of the weight in high-valence detection,
and HRV contributed 36% in high-arousal states,
demonstrating  the  alignment  between  learned
representations and established psychophysiological
patterns in anxiety research. This interpretability reinforces
clinical trust and model transparency.

4.6 Generalization and robustness

To evaluate real-world applicability, the system’s ability
to generalize therapeutic effectiveness was analyzed across
multiple intervention strategies. Figure 4 compares the
average reduction in STAI scores achieved by the complete
model versus baseline systems. Breathing exercises under the
proposed model yielded a 24% reduction compared to 14%
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for the baseline, while mindfulness and cognitive reframing
achieved 21% and 19%, respectively, both significantly
higher than their static counterparts. These results confirm
the clinical relevance and robustness of the adaptive
intervention  design, illustrating  how  Al-driven
personalization translates to measurable psychological
benefits.

. EEG
= HRV
W Facial
B Specch

04

o

Attention Weight

0.1

0.0

High Valence Low Valence High Arousal Low Arousal

Figure 3. Attention weights

30
Bascline
BN Proposed Model

Anxiety Reduction (%)

0 I I I

Breathing Mindfulness Cognitive Reframing

Figure 4. Comparative reduction in anxiety scores across
intervention strategies

4.7 Discussion and practical implications

Synthesizing the above results, several theoretical and
practical insights emerge. The substantial contributions of
EEG and HRV features correspond to neural and autonomic
markers of stress regulation, aligning with prior studies
linking alpha-band suppression and reduced HRV to elevated
anxiety. The 24% improvement in STAI scores approximates
the lower range of outcomes reported for cognitive
behavioral therapy (CBT) and mindfulness-based
interventions (typically 20-35%), suggesting that Al-driven
digital therapeutics can complement traditional treatments.
From an implementation perspective, challenges remain in
ensuring generalization to diverse user populations,
mitigating sensor noise in wearable contexts, and optimizing
data synchronization and energy efficiency for mobile
deployment. Future work should incorporate transfer
learning, domain adaptation, and lightweight model
compression to enhance scalability. Overall, this section

February 2026] Volume 05 | Issue 01 | Pages 65-71

demonstrates that the proposed framework achieves both
algorithmic advancement and practical therapeutic impact,
bridging the gap between affective computing research and
deployable digital mental health solutions.

5. Conclusion

This study proposed a multimodal emotion recognition-
driven framework for personalized digital therapeutics in
anxiety management. By integrating EEG, HRYV, facial, and
speech modalities through cross-modal attention, the system
achieved robust emotion detection and adaptive intervention
selection via a reinforcement learning-based engine with
feedback loops. Experiments demonstrated consistent gains
in recognition accuracy and significant reductions in State-
Trait Anxiety Inventory scores, confirming the framework’s
therapeutic effectiveness. Ablation results highlighted the
necessity of cross-modal attention, personalization, and
feedback mechanisms, while interpretability analyses
revealed psychologically meaningful modality contributions.
The framework establishes a practical pathway for
integrating affective computing with clinical digital
therapeutics, offering a scalable foundation for anxiety
interventions across mobile and wearable applications. Its
generalization across datasets and resilience to modality
dropout underscore readiness for real-world deployment.
Furthermore, the architecture can be implemented on mobile
or wearable platforms using embedded sensors and edge
inference to ensure efficlency and privacy. Ethical
deployment requires transparent data handling, informed
consent, and interpretability mechanisms that preserve user
trust. Incorporating privacy-preserving learning and
transparent feedback will be essential for responsible scaling
and clinical adoption.
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