February 2026| Volume 05 | Issue 01 | Pages 148-158

Future Technology

Journal homepage: https://fupubco.com/futech
Open Access Journal

ISSN 2832-0379

https://doi.org/10.55670/fpll.futech.5.1.13 Future Publishing LLC

Article

Exploring various neural network configurations
for the NN-based MPC in a multi-agent system

Piyush Chaubey!2, Anilkumar Markana?l*, Dhaval Vyas!, Deepak Kumar Goyal?

1Pandit Deendayal Energy University, Gandhinagar Gujarat, India
2Government Engineering College, Bharatpur Rajasthan, India

ARTICLE INFO

ABSTRACT

Article history:

Received 18 August 2025
Received in revised form

15 October 2025

Accepted 02 November 2025

Keywords:
Multimodal fusion, Context awareness,
Smart Kkitchens, Reinforcement

Personalized recommendation
*Corresponding author

Email address:
Anil.markana@spt.pdpu.ac.in

DOI: 10.55670/fpll.futech.5.1.13

learning,

Multi-robot cooperation, unmanned aerial vehicle (UAV) formation control,
intelligent transport systems, and distributed sensor networks are just a few
domains where multi-agent systems are crucial, as they require coordinated
behavior to achieve common goals such as exploration, resource allocation,
distributed sensing, and target tracking. This paper investigates various neural
network configurations utilized in the NN-MPC framework for consensus
control of multi-agent robotic systems. The NN-MPC control is applied to the
consensus problem of a leader-follower multi-agent system, where agents
coordinate to achieve collective behavior. In this approach, MPC is utilized to
predict the future values of the control objective, which is optimized by
minimizing a cost function with various neural network architectures. Different
neural network configurations based on feed-forward, recurrent neural
networks, Fitnet, and cascade networks are explored for the NN-MPC-based
multi-agent systems. The analysis is performed through a simulation-based
model of a quadrotor fleet system. Results show that the follower agents
achieve consensus 60% faster than with RNN-MPC in comparison to the
feedforward neural network, whereas the results are more effective when
compared with the cascade network configuration-based MPC, where agents
reach consensus 90% early if paired with suitable training structures. Overall,
the article contributes to the recent topic of research on learning-based MPC of
the multi-agent system in achieving consensus for the leader-follower strategy.

1. Introduction

minimal communication overhead is crucial. Model Predictive

Multi-agent systems are gaining prominence in the area
of applications like autonomous vehicles, smart grids,
healthcare systems, and environmental monitoring [1]. MAS
presents unique challenges due to the need for coordination
and cooperation among multiple agents, often in dynamic and
uncertain environments [2]. The consensus problem in a
leader-follower MAS refers to the process by which a group
of agents (followers) coordinate their states to match that of
a designated leader through local interactions and
information exchange. In such types of problems, the leader
acts as a reference providing a desired trajectory or state,
while the followers adjust their states according to their
neighbor states and, in some cases, directly from the leader.
The main objective is to design control protocols that ensure
all followers asymptotically track the leader’s state despite
challenges such as communication delays, switching
topologies, nonlinear dynamics, or external disturbances.
Leader-follower consensus algorithm proves helpful in
applications like formation control of autonomous vehicles,
cooperative robotics, sensor networks, and distributed
decision-making systems, where achieving coordination with

148

Control has evolved as a smart control strategy for controlling
complex systems, offering advantages such as constraint
handling, disturbance rejection, and trajectory optimization
[3]. The integration of learning techniques with the MPC has
opened new avenues for enhancing the performance and
adaptability of multi-agent systems. Integrating learning
techniques with MPC offers the potential to improve the
multi-agent systems' performance considerably, enabling
adaptation to dynamic environments, learning from past
experiences, and refining decision-making processes [4].
Driverless vehicle [5], power system management [6], and
industrial control [7-9] are just a few of the control challenges
that MPC has been employed to address. Neural network-
based learning enhances MPC by adapting the system
dynamics, cost functions, or constraint sets based on data
[10]. The shallow neural network involves learning intricate
functions, presenting inherent limitations when contrasted
with deep architectures [11]. There are various architectures
for shallow neural networks with distinguished
characteristics.

mailto:Anil.markana@spt.pdpu.ac.in
https://doi.org/10.55670/fpll.futech.5.1.13
https://fupubco.com/futech

P. Chaubey et al. /Future Technology

Abbreviations & List of Symbols

NN Neural Network

RNN Recurrent Neural Network

MPC Model Predictive Control

MAS Multiagent system

SAC Soft actor—critic

6(t) Mode of communication topology in
continuous time (t)

0(k) Switching topology mode in discrete time
at sample (k) instant

xi(k) Position variable of it follower agent in
discrete form at (k) sample instant

xo(Kk) Position variable of the leader agent in a
discrete form at (k) sample instant

Ui(t) Input control variable in continuous time
Q]

U(k) Consensus control input in discretized
form at sample (k) instant

Pp Positive Definite Matrix

Kk Optimal control input gain

di(t) Disturbance Input

E(k) Error between the im follower and the
leader agent state variable

J(E(k)) Predicted cost function over a future
horizon h

V(E(k)) Quadratic cost function associated with
the error state

The FitNet neural network topology is the most basic
feed-forward neural network; it has no feedback connections
within or between layers and propagates activity
unidirectionally from the input to the output stage. Feed-
forward networks schematically stack perceptron layers on
top of one another, allowing for the approximation of complex
non-linear functions through the composition of simple linear
transformations and non-linear activation functions [12].
Another neural network structure is the cascade-forward
network, in which each layer receives input from all previous
layers [13]. In the cascade network structure, unlike standard
feed-forward networks, where only the first layer directly
receives the input, every layer receives the input directly,
facilitating the learning of more intricate and hierarchical
representations of the input data [14]. Recurrent neural
networks incorporate feedback connections, allowing them to
model systems with memory and temporal dependencies
[15]. The use of internal memory enables RNNs to retrieve
data from past history, enabling a loop from the hidden node
to itself [16]. The key contributions of this article are as
follows:

e This work compares different neural network
architectures within the NN-MPC framework for achieving
optimal leader-follower consensus in multi-agent systems.

o As the prediction is done with MPC and optimization is
carried out by the neural network-based architectures, the
computational burden on the MPC is minimized, which
helps in the improvement of system performance.

e The results are validated using mean square error (MSE)
for all the structures and outcomes, with the best training
function presented with a trade-off between fast response
and least error performance.

e Results are compared with previously published findings
on event-triggered control, and it has been shown that the
results of RNN-based MPC follower agents achieve
consensus faster than the previous work suggested.

February 2026] Volume 05 | Issue 01 | Pages 148-158

2. Literature review

This section describes the recent trends in the control
techniques for the leader-follower multi-agent system
consensus problem. This includes event-triggered-based
control strategy, MPC-based strategy, and learning based
strategy. Finally, discussed the research gap in the present
literature and the future scope for improvement in
overcoming these research gaps.

2.1 Event-triggered-based strategy

Event-triggered control to reduce communication
overhead and handle faults very effectively. Over the past few
decades, event-triggered leader-follower consensus control
strategy has gained significant importance for improving
communication efficiency and robustness in multi-agent
systems. Chen and Peng [17] proposed an event-triggered
impulsive control scheme capable of handling packet loss in
leader-follower networks, achieving the consensus using the
Lyapunov stability theory, where sufficient criteria are
identified to realize leader-follower quasi-consensus,
ensuring reliable consensus under intermittent
communication links. Similar work is explained by Zhi et al.
[18], where a finite-time consensus control scheme
employing an observer is proposed for second-order systems
under velocity unknown, thereby achieving reduced
communication updates through terminal sliding mode
control. Also, Wu et al. [19] developed a fixed-time event-
triggered consensus approach that guarantees convergence
within a predetermined time despite delays and disturbances.

2.2 MPC-based strategy

The application of Model Predictive Control (MPC) to
multi-agent systems is well established, as it effectively
facilitates leader-follower consensus by predicting future
trajectories, managing system constraints, and optimizing
controls in real time. Kuriki et al. [20] explained how to
combine consensus-based control with a decentralized MPC
technique for multi-UAV formation, allowing for collision
avoidance while preserving formation goals. In order to
improve scalability and safety, Dubay and Pan [21] have
extended this concept by proposing a distributed MPC
framework for multiple quadcopters. In this framework, each
agent computes its control action locally to reach consensus
while avoiding collisions. By resetting the MPC optimization
under specific circumstances, Saeednia and Khayatian [22]
presented a reset MPC-based control technique for the MAS
with fast convergence speed and robustness. Collectively,
these research investigations demonstrate that MPC is ideal
for applications like autonomous vehicles, cooperative
robotics, and UAV swarms because it not only guarantees
precise leader tracking but also offers a methodical approach
to integrating safety, constraints, and optimal performance
into leader-follower consensus control.

2.3 Learning based strategy

Learning-based controllers identify unknown dynamics
while maintaining synchronization. Reinforcement learning
frameworks effectively coordinate follower behavior without
prior knowledge of the leader’s state. Applying learning-
based techniques to the leader-follower system has advanced
significantly in recent times, especially for situations with
non-linearities, uncertainties, and communication
limitations. The aim of recent developments in learning-based
control for multi-agent systems (MAS) is to reduce
communication requirements, robustness to uncertainty, and
model-free adaptation. For nonlinear MAS, Filiberto et al. [23]
suggested a distributed control method based on Gaussian

149

P. Chaubey et al. /Future Technology

Process regression, which ensures Lyapunov stability and
allows for precise leader-follower agreement without the
need for explicit system models. In order to enable accurate
formation tracking with constrained residual errors, Yang et
al. [24] presented a dynamical neural network-based control
method that approximates unknown nonlinearities and
disturbances. By combining radial basis function neural
networks with fixed, relative, and switch triggering strategies,
Wang et al. [25] built on communication efficiency to provide
an adaptive event-triggered leader-follower control
framework that prevents Zeno behavior and maintains
consensus. Lastly, Li et al. [26] designed an adaptive
distributed formation control method using a recurrent SAC
reinforcement learning algorithm, enabling agents to achieve
formation tracking in dynamic and uncertain environments
with improved stability and adaptability. These works
collectively reflect an ongoing shift toward data-driven,
adaptive, and communication-effective solutions for the
leader-follower consensus, enabling MAS to perform reliably
in complex, uncertain, and resource-constrained
environments. Table 1 presents a comparative analysis of
event-triggered-based, MPC-based, and learning-based
strategies. Various advantages and limitations of these
strategies can be easily identified, and research gaps can be
identified to further improve performance, such as fast
convergence, reduced computational cost, stability, and
constraint handling.

February 2026] Volume 05 | Issue 01 | Pages 148-158

2.4 Research gap

From Table 1, it can be observed that even with great
advancements in this research area, there are still
considerable research gaps in applying event-triggered, MPC,
and learning-based approaches to the leader-follower
consensus problem. Designing asynchronous triggers for
event-triggered control that ensure stability and performance
regardless of packet failures, communication delays, and
heterogeneous agent dynamics, while completely avoiding
Zeno behavior, continues to be a challenge. Despite its
effectiveness in managing restrictions and maximizing
performance, the MPC-based approaches have limitations in
terms of scalability for large networks, real-time viability on
platforms with limited resources, and tolerance to
nonlinearity and uncertainty. Although learning-based
techniques like neural networks and reinforcement learning
provide flexibility in unpredictable situations, they frequently
lack formal stability guarantees, have significant data
requirements, and present difficulties for safe real-world
implementation. = Moreover, integrated frameworks
combining these methods remain underexplored, particularly
in developing hybrid schemes that balance communication
efficiency, scalability issues, robustness, and fast convergence
for leader-follower consensus in dynamic and uncertain
multi-agent environments. Table 2 shows a wide scope for
improvement across various aspects of addressing the
consensus problem in multi-agent systems, including model
dependencies, constraint handling, and the computational
burden imposed by the MPC strategy.

Tablel. Comparison of related past work for the consensus problem of multi-agent systems

Strategy | Related Key Features / Working Principle Advantages Limitations
Works
2.1 [17-19] « Control actions and communications » Reduces unnecessary » Requires careful design of
Event- occur only when specific events or communication and energy triggering conditions to avoid
triggered thresholds are triggered, reducing consumption. Zeno behavior.
based communication load. » Handles packet loss and ¢ Performance may degrade with
strategy ¢ Uses Lyapunov-based conditions for intermittent communication | high network delays or noise.
stability and convergence. effectively. « Limited scalability for very large
* Provides finite-time or networks.
fixed-time convergence.
2.2 MPC- | [20-22] * Uses Model Predictive Control to « Systematic handling of » High computational cost due to
based predict future trajectories and optimize constraints (safety, collision | online optimization.
strategy control inputs under constraints. avoidance). Requires accurate system
¢ Each agent solves an optimization Provides optimal and models and prediction horizons.
problem locally to achieve consensus coordinated performance. ¢ Limited applicability in real-
while respecting safety and collision Enables scalability and time or highly dynamic
avoidance. robustness for multi-agent environments with
systems. communication delays.
2.3 [23-26] * Employs data-driven or reinforcement * Model-free and adaptive— | e Training requires extensive data
Learning- learning techniques to handle unknown suitable for uncertain and and computation.
based dynamics and uncertainties. nonlinear systems. « Stability and convergence
strategy » Uses neural networks or Gaussian » Reduces dependency on proofs are complex.
Process regression for adaptive control accurate modeling and prior | ¢ May suffer from poor
without explicit models. knowledge. generalization or instability
« Capable of learning under unseen conditions.
optimal coordination » Implementation in real-time
policies over time. may be challenging.

150

P. Chaubey et al. /Future Technology

February 2026] Volume 05 | Issue 01 | Pages 148-158

Table2. Improvement of Al-based MPC over traditional leader-follower consensus strategies

conditions for stability.

prediction and
optimization.

interpretability.

Aspect Event-triggered Classical MPC Learning-based Al-based MPC - Improvements
Control Control

Model Relies on known system Requires accurate Model-free but lacks Al learns or approximates system

Dependence dynamics and triggering | mathematical models for constraint dynamics online, reducing

dependency on exact models
while retaining MPC’s structure.

Adaptability

Limited adaptability to
nonlinear or time-
varying systems.

Struggles with strong
nonlinearities unless
extended (e.g,, nonlinear
MPC).

Highly adaptive but
sometimes unstable.

Al enables online adaptation
using reinforcement or continual
learning, improving robustness
to dynamic environments.

Computational
Efficiency

Reduces communication
but not computation.

Computationally heavy
due to repeated
optimization.

High training cost,
sometimes offline only.

Al-based surrogates or neural
approximators replace solvers,
improving real-time efficiency.

Communication

Excellent - triggers only

No inherent

Sometimes includes

Al-based MPC can learn optimal

Efficiency on events. communication saving. communication- communication schedules,
efficient frameworks. combining event-triggering with
adaptive learning.
Constraint Heuristic or limited. Strong theoretical Weak or implicit Maintains MPC’s explicit
Handling constraint handling. constraint constraint satisfaction while
management. learning new constraints
adaptively.
Convergence Strong analytical Stable if model is Difficult to guarantee Combines safe RL and Lyapunov-
and Stability guarantees under known | accurate. convergence formally. based design for provable
models. stability under learned models.
Application Suitable for resource- Best for structured and Effective for uncertain Unified approach—robust,
Scope constrained or periodic well-modeled systems. and nonlinear systems. | adaptive, and safe; ideal for

update systems.

autonomous vehicles, UAVs, and
robotics.

Also, communication failures encountered by event-
triggered strategies, which work effectively only under
excellent trigger conditions, make the control strategy
unreliable. Lastly, the independently used learning-based
strategies also lack convergence to the optimal solution and
are ineffective at handling constraints in the problem. Among
the control strategies used in the pastliterature, the NN-based
MPC strategy (Figure 1) can be shown to be helpful in
combining the advantages of learning-based and MPC
strategies and eliminating limitations such as constraint
handling, high computational cost, and model-based
dependencies, as it allows operation in a model-free
environment. NN- MPC also reduces the chances of
communication failure faced by event-based strategies as it
provides distributed control through proper communication
between leader-follower and follower-follower with graph
theory and switching topology using Markovian switching.
Overall, these advantages help achieve consensus in the
minimum time, as discussed in the results section.

3. Methodology

This section details the framework and analytical
formulation used to develop and validate a NN-MPC system
for a multi-agent robotic system. The section details the
method for optimizing the consensus-based objective
problem in multi-agent systems, where future states are
predicted using model predictive control over the prediction
horizon.

This integration of a neural network-based strategy with
MPC shows remarkable improvement in achieving consensus
for the multi-agent systems.

3.1 Preliminary

The problem formulation and mathematical analysis of
the control strategy implemented are discussed in this
section. This includes details about the consensus among
followers and the leader. It also provides a brief on graph
theory and switching topology, which provides the basic
information on communication among agents.
Consensus tracking of multiple agents: This research work
addressed the consensus problem in a leader-follower multi-
agent system (MAS), where the goal is for all agents to achieve
a desired state that is common to all through local
interactions over a communication network [29-31]. For a
network of N followers connected through a communication
system, where the followers Xi(t), where i = 1, 2.... N aims to
track the trajectory of a leader Xo(t). Consensus tracking is
achieved if, for any initial conditions, the states of all followers
reach the consensus, Lt - |Xi(t)-Xo(t)|=0.
Graph theory: The basic structure used for communication
among agents in the graph theory is modeled using a
weighted graph G = {V, E}. The vertex set V = {v1, v2, .., VN}
represents the placement of agents in the communication
network, while the edge set E < VxV, denotes the
communication links. The weighted adjacency matrix is given
by A=[aij] € NxN of the graph G is defined such that aij > 0 if
(vj,vi) € E and aij=0 otherwise. This graph connection is the

151

P. Chaubey et al. /Future Technology

basic communication network of the leader-follower agents,
where followers communicate with other follower agents and
with the leader. A directed graph is used in this work.

Switching leader-follower connection: The proposed work of
neural network-based MPC works with a switching topology
of the follower agents with a leader connection. The switching
is performed on the basis of the switching system and the

Laplacian matrix as lii(e(k)) = 2]N=1,j=ti ai]-(e(k)) and
lij(e(k)) = —ai]-(G(k)) for j # i. Here, 8(k) is the switching
topology mode. This switching is followed by a probability
matrix based on a Markovian chain, which is available in the
simulation study section of this paper.

3.2 Problem formulation
Each agent is modeled with a first-order integrator
system for the multi-agent system:

%i(t) = ui(t) (€9)]

where xi(t) and ui(t) are the state and control variables,
respectively.

The consensus control input in discretized form is defined as:
u(k) = (L(6(K) *Ki) x(k) (2)

where Kk represents the control gain and x(Kk) is the collective
state variables of all followers.

To achieve the control objective given in equation (6), we
consider an NN-MPC control strategy as illustrated in Fig. 1.
The MPC layer predicts system behavior and computes a cost
function, while the NN layer learns to optimize the cost by
adjusting Kk using inputs x(k) and 6(k). In a more general
setting, the agent dynamics can include non-linearity and
unknown disturbance:

xi(t) = Axi(t) +Bui(t) + f (t, xi(t)) + Ba di(t) 3)

where f (t, xi(t)) models nonlinear internal dynamics.

The proposed approach is simulated using MATLAB 2022,
and the performance is analyzed for various NN training
algorithms to achieve consensus in a fleet of quadrotors [32].

February 2026(Volume 05 [Issue 01 | Pages 148-158

This section outlines the integration of prediction with
MPC and optimization using a neural network for achieving
consensus in the quadrotor fleet multi-agent system as
proposed in reference [16]. Consider the first-order multi-
agent system as given in equation (1), the objective of the
follower agent is to track the leader state position. The
consensus is shown as an error between the iw follower and
the leader agent state variable:

E(K) = xi(k) - xo(k) (4)

where xi(k) and xo(k) are the state variables of the i follower
and leader agent.

To guide the system towards the consensus, we define a
quadratic cost function associated with the error state:

V(E(t), 6(1) = ET()Pp E(V),)
The predicted cost function is given by
JER) = I Bk [V (E(), 8(D)] (6)

where J(E(k) is the predicted cost function over a future

horizon h.

To minimize this cost, the optimal control input gain is

computed by:

Ky = arg min J(E(k)) (7N
Ky Kith

where Kk is the optimal control gain for the optimization

function J(E(k)).

This optimization is handled by an NN-based learning

mechanism that updates the gain Kk by training the network

to reduce the predicted cost J(E(k)) over iterations. This

combined NN-MPC framework enables the multi-agent

system to reach consensus effectively in the dynamic network

environment.

Control Action

Neural Network
based Optimizer

Figure 1. Block diagram of NN-Based MPC for multi-agent systems

Output
Data
Multiagent

system

(Multi-Robots

/ Drones)

152

P. Chaubey et al. /Future Technology

3.3 Neural network architectures for NN training

This section describes various neural network
architectures used for training are explained in this section.
The basic training function used in each architecture is
Levenberg-Marquardt. The L-M training algorithm uses a
second-order approximation for the performance evaluation
as a sum of squares instead of computing the actual Hessian
matrix. Figure 2 shows the architecture of the Fit Net neural
network. This is the basic network with one hidden layer [27].
It finds application in problems involving function
approximation and regression analysis. The output equation
of the Fit Net architecture is given by:

J=y=f(Wz2-f(W1x+b1) + b2) (8)

] =y is the optimized output from the trained network, where
the network is trained by adjusting the weight matrices W1
and W2 during the training. Here, the sigmoid activation
function f(.) is used for training the weighted inputs, whereas
b1 and bz are the bias vectors. The node h is a neuron layer
between input x and output y where input weights are
adjusted for the network during training. Once the training is
completed, the inputs are applied to the network and an
optimal solution y is obtained, which is the minimum of errors
of the state matrices between the leader and follower states.
The same is applied as control gain Kk according to equation
(7) to the control gain matrix given by equation (2), which
further updates the state given by the system model equation
(1) at each iteration, and the process repeats until consensus
is achieved. Figure 3 shows the architecture of a feedforward
neural network. This network includes two or more hidden
layers [27], useful for learning complex features. The output
equation of the feedforward network architecture is given by:

J=y=f(Ws-f(Wz-f(Wix+bi) +b2) +b3))
x1 h_1 \
x2 h2 ——>» y
X3 h3

Figure 2. Architecture of the Fit Net neural network training set

x1 h h21

N2y ——> iy

Figure 3. Architecture Of Feedforward Neural Network Training Set

February 2026(Volume 05 [Issue 01 | Pages 148-158

This architecture is similar to the Fitnet, except it can
have more hidden layers, which can improve the network's
accuracy, but at the same time make the network more
complex. Figure 4 shows the architecture of a recurrent
neural network. A Cascade-forward network allows
connections from all layers in parallel, including input to the
output directly [28], enhancing learning flexibility. Equation
(10) gives the output of the cascade network configuration.

J=y=f (W3- f(W2-f(Wix+bi) +Wax +b2)+bs (10)

The uniqueness of this configuration is that it includes a
direct connection between the inputs and outputs, also during
the network learning. The same activation function is used in
this architecture as is used in the Fitnet and feedforward
network configuration. The weights are adjusted during
training and learning of the network. Once the network is
trained, the optimal solution is obtained and applied to the
control gain matrix Kk, which further updates the system.
Process repeats until consensus. Figure 5 shows the RNNs
that include loops to retain memory over time steps [16, 28].
They are ideal for sequence-based tasks. The output equation
for the recurrent neural network is given by Eq (11) and Eq
(12).

he = f (Wxxt + Whhe-1 + b) (11)
] =ye=1f(Wyht+c) (12)

The above output] = yt is the optimized output from the
trained recurrent. Sigmoid activation function f(.) is used for
tuning the input weights for RNNs.

The hidden layer has a loop between h: and ht.1, where
hidden weights Wh are adjusted for the previous hidden state
during training. Once the training is completed, the inputs are
applied to the network, and the optimal solution y is obtained.
The input x(t) to the neural network represented by Eq (13)
is as follows:

x() = [1 KL .. Kin ... Km1, . Kpa] (13)

The algorithm used for the optimization of the objective
cost function is shown in Figure 6, which explains how the
optimization is achieved with the various neural network
architectures for NN-based predictive control. At the
beginning of the simulation, the control gain Kk is assigned an
initial value of zero to ensure a safe starting point for the
learning process.

x1 n

Input Direct
B x

x3

Figure 4. Architecture of cascade neural network training set

153

P. Chaubey et al. /Future Technology

>

Xt ———» p T/ "t

Figure 5. Architecture of the recurrent neural network training set

Initialize x(0), 6(0),
K=0

— Neural Network Architecture Training
J=y=f(F fWx+ 1) +b)

!

Optimization:

Ky = arg min JE(K))
Ko Ky

Control Gian Calculation
u(k) = (L(&K) «Xp) x(k)

!

Prediction with MPC :
Kot

XE®) = T Egz [VEQD, 60)]

=K
7 Yes ()
<r >—p Stop

“No I

e

V7

Update X, J

Figure 6. Flow chart of the algorithm for the NN-MPC-based multi-
agent system

Figure 6 illustrates the algorithm for the NN-based MPC
for a leader-follower system with various neural network
configurations. The network training starts with initialization
of the values x(k), 6 (k), and Kk. The neural network is trained
for different cases based on Eqgs (8-12). Then, the initial
optimization is done using the trained network. The value of
the Kk is used for the control gain u(k) calculation as given by
equation (2). Then, the optimal cost is predicted using
equations (4-6) with MPC, based on the future values of errors
in the follower and leader states. After every iteration, the
criteria for optimization are checked J< v, if the condition is
satisfactory, then the iteration stops; otherwise, it continues
with updating the values of] and K.

February 2026(Volume 05 [Issue 01 | Pages 148-158

4. Results and discussion
4.1 Simulation study

The system model used for the simulation purpose is the
same as that used in the reference [32], and the data is taken
from [16] and [29]. For the system model given by equation
(3), f (¢ xi(t)) = 0.01 sin(xi(t)), and the initial values are the
same as those considered in [16]. A, B, and B4 matrices are
given as:

o —oshB=[ral Ba=[gl

The Laplacian matrices are considered as follows,

|

1 0 0 0
_|-1 1 0 0
L = 0 -1 1 of
-1 0 0 1
1 -1 0 0
- 0 1 0 O
L= 1 0 1 0
0 0 -1 1
- e . _1[095 0.05
The probability matrix is given by: ©m = 002 098

The directed graph is used in this work as shown in Figure 7.
and switching of the graph is carried out between L(1) and
L(2) based on the probability matrix . Sampling time for the
discretization is Ts = 0.01.

(a) L(1) Directed Graph (b) L(1) Directed Graph

Figure 7. Directed graph topology

The simulation is carried out using N = 10 neurons. To
achieve optimal results for all the cases, the prediction
horizon is taken as 100. This horizon is deemed sufficient for
reaching the optimal point. Convergence is obtained for A =
0.01. For validation, the chosen performance metric, the MSE
is defined as:

MSE = & 5 glen ()12 (14

Where, eri(k) denotes the error values ei(k).

Figure 8 reflects that for the NN-MPC with the Fit Net
architecture. All the agents achieve consensus at 3 sec in
‘position variable’ while it reaches consensus after 4 sec for
the ‘velocity variable’. Figure 9 also reflects that NN-MPC has
the feed-forward network configuration. It reflects that all the
agents achieve consensus at 3.5 sec in the ‘position variable’
and 4 seconds in the ‘velocity variable’ respectively. The
agents achieve consensus 16.6% faster with the Fit Net
architecture-based NN in comparison to the feedforward-
based NN architecture for multi-agent systems.

154

P. Chaubey et al. /Future Technology

4 T T T
Fit Net Follower Agent - x11
c Fit Net Follower Agent - x12
g Fit Net Follower Agent- x13 |
e Fit Net Follower Agent - x14
o
= 1
Ny
2 . L . L L
"] 2 4 6 8 10 12
time
1-
Fit Net Follower Agent - x21
2z ot — Fit Net Follower Agent - x22 |
g Fit Net Follower Agent - x23
© Fit Net Follower Agent - x24
> 4
=
2k
3 I L I L L |
0 2 4 6 8 10 12
time

Figure 8. Position and velocity variable response for the followers

with the Fit Net architecture

T
Feed Forward Net Follower Agent - x11
Feed Forward Net Follower Agent - x12
Feed Forward Net Follower Agent - x13
Feed Forward Net Follower Agent - x14

x,‘(k) / position

Feed Forward Net Follower Agent - x21
Feed Forward Net Follower Agent - x22

>
E Feed Forward Net Follower Agent - x23
@ Feed Forward Net Follower Agent - x24
>
=
™
=<
3 . . L L . .
0 2 4 6 8 10 12
time

Figure 9. Position and velocity variable response for the followers

with a feed-forward net architecture

Figure 10 reflects RNN-MPC with the recurrent neural
network architecture. It reflects that all the agents reach
consensus at 2 sec for the ‘position state’ while just after 3 sec
for the ‘velocity state’. NN-MPC with the cascade network
architecture is shown in Figure 11. It reflects that all the
agents reach the leader position at 4 sec for ‘position state’
and at 5 sec for the ‘velocity state’. With RNN-MPC, control
agents can achieve consensus almost 100 % faster in
comparison to the cascade-forward-based NN architecture

for multi-agent systems.

February 2026(Volume 05 [Issue 01 | Pages 148-158

Table 3 shows the comparison of mean squared errors
for the ‘position and velocity variable’ of various neural
network architectures for achieving consensus of follower
agents. It can be observed that the least error is found with
three cases as Fit Net, RNN, and CFN for ‘position state’ and
‘velocity state’.

3 T T T T T

Recurrent Neural Network Follower Agent - x11
Recurrent Neural Network Follower Agent - x12
Recurrent Neural Network Follower Agent - x13 |
Recurrent Neural Network Follower Agent - x14

(&}
T

x,‘(k) / position

Recurrent Neural Network Follower Agent - x21
Recurrent Neural Network Follower Agent - x22
Recurrent Neural Network Follower Agent- x23
Recurrent Neural Network Follower Agent - x24

xz(k)/ velocity

. . . . |
4 6 8 10 12
time

Figure 10. Position and velocity variable response for the followers
with a recurrent neural network architecture

3g : . . .
'ﬂ\‘-\ Cascade Forward Net Follower Agent - x11
= ",_ Cascade Forward Net Follower Agent - x12
3 2 -\g \ Cascade Forward Net Follower Agent - x13 | -
a \ \\ Cascade Forward Net Follower Agent - x14
= hS
- —
ERI
— \, /"
3 .
0 L . L L L
0 2 4 6 8 10 12

time

Cascade Forward Net Follower Agent - x21
Cascade Forward Net Follower Agent - x22
Cascade Forward Net Follower Agent - x23
Cascade Forward Net Follower Agent - x24

xZ(K) ! velocity

time

Figure 11. Position and velocity variable response for the followers
with a cascade forward net architecture

Table3. Mean squared error comparison of various neural network architectures for NN-MPC based multi-agent system

Feed forward | Cascade Recurrent Gao et al.

(it agent, rw state) FITNET (FFN) Forward Net | Neural Network Least MSE
(CFN) (RNN)

(1,1 0.0866 0.0947 0.1028 0.0671 0.3395 RNN
(1,2) 0.0967 0.0943 0.0740 0.1278 0.0781 CFN
2,1) 0.0010 0.0019 0.0022 0.0022 0.0588 FITNET
2,2) 0.0204 0.0230 0.0237 0.0232 0.0194 Gao et al.
31 0.1972 0.0305 0.0149 0.0134 0.0824 RNN
(3,2) 0.3387 0.2198 0.1978 0.1948 0.1029 Gao et al.
4,1) 0.0826 0.0664 0.0377 0.0644 0.4142 CFN
(4,2) 0.3825 0.3663 0.3324 0.4014 0.1823 CFN

P. Chaubey et al. /Future Technology

MSE is least with RNN architecture for the ‘position state’
of follower ‘1’ and both ‘position and velocity state’ of follower
‘3’. Whereas, MSE is least for both ‘position state’ and ‘velocity
state’ error for the followers ‘2’ if a Fit Net architecture is
used, a neural network structure. In other cases, like ‘Position
state’ of follower ‘4’ and ‘velocity state’ of follower ‘1’ and ‘4’,
the MSE is minimum with the CNN architecture. It can be
observed that no single architecture can give the least MSE for
all the follower agents possible, but a compromise can be
possible for a configuration that can give a better response
(fast response) with the least MSE required for the consensus
of the agents. From the above observations, we can say that
RNN-MPC reaches the consensus in the minimum time,
thereby showing the least MSE for the ‘position state’ of
followers ‘1’ and ‘3’. Results of Gao et al. show minimum MSE
for the ‘velocity state’ of followers ‘2’ and ‘3’. However, there
is no single training configuration that provides the least MSE
for all agents for the ‘position state’ and ‘velocity state’.

4.2 Comparison to the related work

If the comparison is made with the previous work for
achieving consensus of follower agents presented by Gao et
al. [32], it can be said that the RNN-MPC gives desired results
in minimum time thereby follower agents reaching to the
consensus in the minimum time at 2 sec thereby showing
much better performance in achieving consensus than the
event triggered based strategy where consensus is achieved
in more than 10 seconds. However, there can be more chances
of improvement as far as MSE is concerned for the position
and velocity variables of the followers. The proposed NN-MPC
approach differs from conventional MPC and existing
learning-based MPC strategies by incorporating neural
networks as FITNET, feedforwardnet, cascadenetwork, and
recurrent neural network within the control framework.
Traditional MPC predicts the future states and optimizes the
objective cost by itself, which limits its performance in
nonlinear or uncertain environments. In contrast, the
proposed NN-MPC takes the optimization burden of the MPC
with various neural networks—such as feedforward,
recurrent, Fitnet, and cascade architectures—that learn in the
complex system dynamics and inter-agent interactions. This
integration allows the controller to predict future and
optimize the error between the state trajectories of the
leader-follower agents more accurately and adapt to changing
conditions in real time. In the future, the existing learning-
based MPCs that typically utilize a single neural network
trained offline can be replaced by the proposed framework
systematically, which can compare multiple neural
architectures to determine the most effective configuration
for achieving consensus in leader-follower multi-agent
systems. Consequently, the NN-MPC enhances adaptability,
robustness, and coordination performance while preserving
the optimization and constraint-handling advantages of the
MPC structure.

5. Conclusion

Conclusions drawn from the above results suggest that
the RNN-MPC-based configuration of the neural network
gives a fast response to the leader-follower system in
achieving consensus in minimum time over other neural
network-based architectures like FITNET, feedforward
network, and cascade network. Also, there is a considerable
reduction in the MSE for the ‘position variable’ of followers ‘1
and 3’ that validates the effectiveness of the recurrent neural
network-based training network. However, there is no
architecture found that provides the least MSE for all agents

February 2026] Volume 05 | Issue 01 | Pages 148-158

for the ‘position state’ and ‘velocity state’. Future research
efforts should be focused on finding such a learning-based
MPC that can provide fast response as well as the least MSE
for most of the agents to achieve the consensus of the multi-
agent quadrotor fleet system.

Ethical issue

The authors are aware of and comply with best practices in
publication ethics, specifically regarding authorship
(avoidance of guest authorship), dual submission,
manipulation of figures, competing interests, and compliance
with research ethics policies. The authors adhere to
publication requirements that the submitted work is original
and has not been published elsewhere.

Data availability statement
The manuscript contains all the data. However, more data will
be available upon request from the authors.

Conflict of interest
The authors declare no potential conflict of interest.

References

[1] K. M. Khalil, M. Abdel-Aziz, T. T. Nazmy and A. B. M.
Salem, “Machine Learning Algorithms for Multi-Agent
Systems,” Proceedings of the International
Conference on Intelligent Information Processing,
Security and Advanced Communication, pp. 1-5, Nov.
2015. https://doi.org/10.1145/2816839.2816925

[2] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D.
Giardino, M. Re and S. Spano, “Multi-Agent
Reinforcement Learning: A Review of Challenges and
Applications,” Applied Sciences, vol. 11, no. 11, p.
4948, 2021.https://doi.org/10.3390/app11114948

[3] D. Q. Mayne, “Model Predictive Control: Recent
Developments and Future Promise,” Automatica, vol.
50, no. 12, pp. 2967-2986, 2014.
https://doi.org/10.1016/j.automatica.2014.10.128

[4] A. Norouzi, H. Heidarifar, H. Borhan, M. Shahbakhti
and C. R. Koch, “Integrating Machine Learning and
Model Predictive Control for Automotive
Applications: A Review and Future Directions,”
Engineering Applications of Artificial Intelligence, vol.
120, p. 105878, 2023.
https://doi.org/10.1016/j.engappai.2023.105878

[5] B.Yi, P. Bender, F. Bonarens and C. Stiller, “Model
Predictive Trajectory Planning for Automated
Driving,” IEEE Transactions on Intelligent Vehicles,
vol. 4, no. 1, pp. 24-38, 2018.
https://doi.org/10.1109/T1V.2018.2886683

[6] P. Kumar, M. Karamta and A. Markana, “Dynamic
State Estimation for Multi-Machine Power System
Using WLS and EKF: A Comparative Study,”
Proceedings of the 2019 IEEE 16th India Council
International Conference (INDICON), pp. 1-4, Dec.
2019.https://doi.org/10.1109/INDICON47234.2019.
9030371

[7] M. Anilkumar, N. Padhiyar and K. Moudgalya, “Multi-
Objective Prioritized Control of a Semi-Batch Process
with Multiple Feed and Multiple Products Using
Economic MPC,” Proceedings of the 2018 Indian
Control Conference (ICC), pp. 264-269, Jan. 2018.
https://doi.org/10.1109/INDIANCC.2018.8307989

156

P. Chaubey et al. /Future Technology

[8] A. Markana, N. Padhiyar and K. Moudgalya, “Multi-
Criterion Control of a Bioprocess in Fed-Batch
Reactor Using EKF Based Economic Model Predictive
Control,” Chemical Engineering Research and Design,
vol. 136, pp. 282-294, 2018.
https://doi.org/10.1016/j.cherd.2018.05.032

[9] J. M. Maciejowski, Predictive Control: With
Constraints. Harlow, U.K.: Prentice Hall, 2002. ISBN:
0201398230.

[10] A.Ashoori, B. Moshiri, A. Khaki-Sedigh and M. R.
Bakhtiari, “Optimal Control of a Nonlinear Fed-Batch
Fermentation Process Using Model Predictive
Approach,” Journal of Process Control, vol. 19, no. 7,
pp. 1162-1173, 2009.
https://doi.org/10.1016/j.jprocont.2009.03.006

[11] Y. Bengio, “On the Challenge of Learning Complex
Functions,” Progress in Brain Research, vol. 165, pp.
521-534, 2007. https://doi.org/10.1016/S0079-
6123(06)65033-4

[12] H.C.Myungand Z. Z. Bien, “Design of the Fuzzy
Multiobjective Controller Based on the Eligibility
Method,” International Journal of Intelligent Systems,
vol. 18, no. 5, pp. 509-528, 2003.
https://doi.org/10.1002/int.10101

[13] L.Dubreuil-Vall, G. Ruffini and J. A. Camprodon, “Deep
Learning Convolutional Neural Networks
Discriminate Adult ADHD from Healthy Individuals
on the Basis of Event-Related Spectral EEG,” Frontiers
in Neuroscience, vol. 14, p. 251, 2020.
https://doi.org/10.3389/fnins.2020.00251

[14] Y. Zhu, J. Wang, H. Li, C. Liu and W. M. Grill, “Adaptive
Parameter Modulation of Deep Brain Stimulation
Based on Improved Supervisory Algorithm,”
Frontiers in Neuroscience, vol. 15, p. 750806, 2021.
https://doi.org/10.3389/fnins.2021.750806

[15] S.Seyedzadeh, F. P. Rahimian, I. Glesk and M. Roper,
“Machine Learning for Estimation of Building Energy
Consumption and Performance: A Review,”
Visualization in Engineering, vol. 6, no. 1, p. 5, 2018.
https://doi.org/10.1186/s40327-018-0064-7

[16] Chaubey, P., Markana, A., Vyas, D.R.. “RNN-Based
Model Predictive Control of Multi-agent System Using
Switching Topologies.” Data Science and Applications.
ICDSA 2023. Proceedings in Lecture Notes in
Networks and Systems, vol 821. Springer, Singapore,
pp157-168 (February 2024).
https://doi.org/10.1007 /978-981-99-7814-4_13

[17] R.Chen and S. Peng, “Leader-Follower Quasi-Consensus
of Multi-Agent Systems with Packet Loss Using Event-
Triggered Impulsive Control,” Mathematics, vol. 11,
no. 13, p. 2969, 2023.
https://doi.org/10.3390/math11132969

[18] Y.Zhi, Z. Zhao and M. Qi, “Event-Triggered Finite-Time
Consensus Control of Leader-Follower Multi-Agent
Systems with Unknown Velocities,” Transactions of
the Institute of Measurement and Control, vol. 45, no.
13, pp. 2515-2525, 2023.
https://doi.org/0.1177/01423312221140619

[19] Y.Wuy,]. Ma, X. Chen,]. Sun and F. Zhao, “Fixed-Time
Leader-Follower Consensus for Multi-Agent Systems
Under Event-Triggered Mechanism,” in Proceedings

February 2026] Volume 05 | Issue 01 | Pages 148-158

of the Chinese Conference on Swarm Intelligence and
Cooperative Control, pp. 275-284, Nov. 2023.
https://doi.org/10.1007/978-981-97-3340-8_25

[20] Y. Kuriki and T. Namerikawa, “Formation Control with
Collision Avoidance for a Multi-UAV System Using
Decentralized MPC and Consensus-Based Control,”
SICE Journal of Control, Measurement, and System
Integration, vol. 8, no. 4, pp. 285-294, 2015
https://doi.org/10.9746/jcmsi.8.285

[21] S.Dubay andY.]. Pan, “Distributed MPC Based
Collision Avoidance Approach for Consensus of
Multiple Quadcopters,” Proceedings of the 2018 IEEE
14th International Conference on Control and
Automation (ICCA), pp. 155-160, June 2018.
https://doi.org/10.1109/1CCA.2018.8444273

[22] N.Saeednia and A. Khayatian, “Reset MPC-Based
Control for Consensus of Multiagent Systems,” IEEE
Transactions on Systems, Man, and Cybernetics:
Systems, 2024.,
https://doi.org/10.1109/TSMC.2024.3510092

[23] F.Muiioz,]. M. Valdovinos, J. S. Cervantes-Rojas, S. S.
Cruz and A. M. Santana, “Leader-Follower Consensus
Control for a Class of Nonlinear Multi-Agent Systems
Using Dynamical Neural Networks,” Neurocomputing,
vol. 561, p. 126888, 2023.
https://doi.org/10.1016/j.neucom.2023.126888

[24] Z.Yang, S. Sosnowski, Q. Liu, J. Jiao, A. Lederer and S.
Hirche, “Distributed Learning Consensus Control for
Unknown Nonlinear Multi-Agent Systems Based on
Gaussian Processes,” Proceedings of the 2021 60th
IEEE Conference on Decision and Control (CDC), pp.
4406-4411, 2021
https://doi.org/0.1109/CDC45484.2021.9683522

[25] Z.Wang, Y. Gao, A. L. Rikos, N. Pang and Y. Ji, “Fixed-
Relative-Switched Threshold Strategies for
Consensus Tracking Control of Nonlinear Multiagent
Systems,” Proceedings of the 2025 IEEE 19th
International Conference on Control & Automation
(ICCA), pp. 899-905, June 2025.
https://doi.org/10.48550/arXiv.2411.19571

[26] M.Lj, H. Liu, F. Xie and H. Huang, “Adaptive
Distributed Control for Leader-Follower Formation
Based on a Recurrent SAC Algorithm,” Electronics,
vol. 13, no. 17, p. 3513, 2024.
https://doi.org/10.3390/electronics13173513

[27] K.G. Dastidar, O. Caelen and M. Granitzer, “Machine
Learning Methods for Credit Card Fraud Detection: A
Survey,” IEEE Access, 2024.
https://doi.org/10.1109/ACCESS.2024.3487298

[28] K. Aitken and S. Mihalas, “Neural Population Dynamics
of Computing with Synaptic Modulations,” eLife, vol.
12, p.e83035, 2023.
https://doi.org/10.7554 /eLife.83035

[29] B.R.Floriano, A. N. Vargas, J. Y. Ishihara and H. C.
Ferreira, “Neural-Network-Based Model Predictive
Control for Consensus of Nonlinear Systems,”
Engineering Applications of Artificial Intelligence, vol.
116, p. 105327, 2022.
https://doi.org/10.1016/j.engappai.2022.105327

[30] W.Ren, R. W. Beard and E. M. Atkins, “Information
Consensus in Multivehicle Cooperative Control,” IEEE

157

P. Chaubey et al. /Future Technology

[31]

[32]

Control Systems Magazine, vol. 27, no. 2, pp. 71-82,
2007. https://doi.org/10.1109/MCS.2007.338264
T. Zhang and Y. U. Hui, “Average Consensus in
Networks of Multi-Agent with Multiple Time-Varying
Delays,” International Journal of Communications,
Network and System Sciences, vol. 3, no. 2, pp. 196-
203, 2010.
http://dx.doi.org/10.4236/ijcns.2010.32028

J. Gao,]J. Li, H. Pan, Z. Wu, X. Yin and H. Wang,
“Consensus via Event-Triggered Strategy of Nonlinear
Multi-Agent Systems with Markovian Switching
Topologies,” ISA Transactions, vol. 104, pp. 122-129,
2020. https://doi.org/10.1016/j.isatra.2019.11.013

158

February 2026(Volume 05 [Issue 01 | Pages 148-158

This article is an open-access article distributed under the
terms and conditions of the Creative Commons Attribution
(CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/

