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The proliferation of artificial intelligence (AI) and the Internet of Things (IoT)
has positioned smart kitchens as a frontier for innovation in personalized
nutrition, safety monitoring, and sustainable consumption. Despite rapid
progress, existing approaches remain fragmented: vision-based systems
struggle with occlusion, speech-driven interfaces are vulnerable to noise, and
IoT sensor networks, while reliable, often lack semantic integration with user
preferences. Personalized recommender systems further suffer from static
designs that fail to adapt to evolving contexts. Addressing these limitations, this
study introduces a multimodal deep learning framework that unifies cross-
modal attention and reinforcement learning to achieve context-aware
personalization. Visual, auditory, and sensor streams are embedded into a
shared representation, fused via attention mechanisms, and subsequently
optimized through a reinforcement learning agent that balances nutritional
goals, user satisfaction, and safety requirements. Empirical evaluation across
three multimodal datasets demonstrates significant improvements over strong
baselines, with gains of +8.4% in Top-1 accuracy, +14.0% in F1-score for safety
monitoring, and a 23.5% reduction in nutritional prediction error.
Interpretability modules employing SHAP and Integrated Gradients further
provide transparent explanations, enhancing trust and accountability. The
findings underscore the practical value of the framework in promoting
healthier diets, improving energy efficiency, and ensuring domestic safety,
while laying the groundwork for future applications in healthcare, adaptive
living, and sustainable human-Al interaction.

1. Introduction

unimodal or narrowly defined tasks. Computer vision models
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The proliferation of artificial intelligence (AI) and the
Internet of Things (IoT) has catalyzed the development of
smart domestic environments, with the kitchen emerging as
one of the most promising spaces for innovation [1]. As
modern lifestyles place increasing demands on convenience,
health, and sustainability, smart kitchens are envisioned to
provide not only automated cooking support but also
personalized dietary recommendations and real-time
monitoring of safety-critical conditions [2]. Multimodal data
streams, ranging from vision sensors for ingredient
recognition to microphones for voice interaction to IoT
appliances generating operational and environmental logs,
offer a rich foundation for intelligent decision-making [3].
However, the effective integration and interpretation of these
heterogeneous modalities remain a formidable challenge,
limiting the widespread adoption and reliability of smart
kitchen systems. Despite the growing interest in smart
kitchen technologies, existing research has often focused on
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have been applied to detect ingredients or cooking actions,
while speech recognition systems have enabled recipe
navigation [4]. Similarly, IoT-driven frameworks have
concentrated on energy management and appliance
automation. Yet these approaches remain fragmented, with
limited cross-modal fusion and insufficient context-
awareness [5]. In particular, current systems typically fail to
adapt to dynamic user preferences, dietary restrictions, and
situational variations such as environmental noise or sensor
malfunctions [6]. This lack of robust multimodal integration
and context-aware adaptability creates a clear gap between
proof-of-concept prototypes and real-world applicability. To
address this gap, the present study proposes a deep learning
framework that unifies multimodal fusion with Al-driven
context awareness for smart kitchens. The central innovation
of this research lies in its ability to overcome the limitations
of static, unimodal systems by introducing a cross-modal
attention mechanism that aligns and integrates inputs from
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visual, auditory, and IoT sensor streams. Complemented by a
reinforcement learning module, this system dynamically
adapts recommendations based on evolving user profiles and
situational cues. This dual contribution ensures more
effective, personalized assistance and reliable monitoring
across varying real-world kitchen environments. The
framework also incorporates interpretability modules to
provide transparent explanations of predictions, an aspect
crucial for trust and accountability in domestic settings where
safety and health considerations are paramount.

The objectives of this paper are twofold: (1) to advance
the integration of multimodal data using a cross-modal
attention mechanism and (2) to leverage reinforcement
learning for real-time, personalized recommendations that
adapt to both user preferences and contextual conditions.
These objectives address the critical challenge of achieving
holistic, adaptive systems in smart kitchen environments,
ensuring both functional utility and contextual relevance.

The proposed methodology follows a systematic route.
First, multimodal data, including recipe videos, user voice
commands, and kitchen IoT logs, are pre-processed and
embedded into a unified representation space. A cross-modal
attention network then fuses these embeddings, learning
interdependencies between modalities while preserving their
unique characteristics. Building on this representation, a
reinforcement learning agent makes personalized
recommendations, balancing nutritional goals, user
preferences, and contextual constraints such as available
ingredients or appliance conditions. To validate effectiveness,
the framework is empirically evaluated on multi-source
datasets against established baselines, with analyses
including convergence performance, statistical significance
testing, ablation studies, and interpretability visualizations.
The academic significance of this research lies in advancing
multimodal learning by demonstrating how cross-modal
attention and context-aware reinforcement learning can be
combined in a novel way for complex domestic environments.
From a practical standpoint, the system directly contributes
to promoting healthier eating habits, improving energy
efficiency, and ensuring safety in smart kitchens. The findings
have implications not only for personalized nutrition
management but also for broader domains such as healthcare
monitoring, sustainable consumption, and human-AI
interaction design. Ultimately, this work aims to bridge the
gap between isolated technological advances and holistic,
real-world intelligent kitchen ecosystems.

2. Related works
2.1 Vision- and audio-based cooking assistance

Early advances in smart kitchens primarily relied on
vision and speech modalities to assist users during cooking.
Recent approaches in computer vision have employed
convolutional and transformer-based networks for
ingredient recognition, step segmentation, and cooking
activity detection [7]. Studies have shown that transformer-
based temporal attention models outperform conventional
CNNs in recognizing fine-grained cooking actions from
instructional videos, improving task accuracy by more than
10% [8]. Similarly, multimodal recipe navigation systems
have leveraged automatic speech recognition (ASR) to enable
hands-free interaction, which has been shown to enhance
user engagement but often degrades in noisy kitchen
environments [9]. The strength of these methods lies in their
intuitive interaction design, but their reliance on unimodal
signals makes them vulnerable to occlusion, background
noise, and data sparsity. This limitation highlights the need
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for fusion mechanisms that can integrate complementary
modalities. The proposed framework builds on these insights
by aligning audio-visual data with IoT signals, ensuring
robust performance under real-world conditions. While other
studies focus on integrating specific modal data, our approach
provides a comprehensive fusion of vision, audio, and IoT,
setting it apart from traditional systems.

2.2 IoT sensor networks in smart Kkitchens

Another research trajectory has focused on IoT-enabled
sensor networks, which monitor appliance states, energy
consumption, and environmental conditions such as
temperature or humidity. loT-based anomaly detection
systems have achieved high precision in identifying
hazardous events such as stove overuse, yet have often failed
to incorporate user dietary context [10]. Similarly,
lightweight edge-computing frameworks that integrate
appliance logs for energy optimization have shown promising
reductions in energy usage but offered limited adaptability to
user-specific needs [11]. These studies underscore the
reliability and granularity of IoT data but also reveal a lack of
semantic integration with user preferences or contextual
awareness [12]. The present work addresses this gap by
employing a graph-based sensor fusion mechanism coupled
with reinforcement learning, thereby extending beyond
reactive monitoring to proactive, user-centered adaptation.
By fusing real-time IoT data with dynamic user preferences,
our method transcends the limitations of traditional IoT
systems, offering context-aware, personalized responses.

2.3 Personalized recommendation systems in food and

health

A third line of research centers on recommendation
systems for food and nutrition management. Collaborative
filtering and deep neural architectures have been applied to
suggest meals based on dietary preferences, health indicators,
or consumption history [13]. Graph neural network-based
recommenders have been demonstrated to capture user-
ingredient relations effectively, significantly improving
diversity in meal plans [14]. Other hybrid models combining
nutritional databases with user surveys have achieved strong
personalization but limited scalability due to reliance on
explicit input. While these works successfully advance
personalized dietary guidance, most models remain static,
lacking the ability to adjust in real time to changes in context
such as available ingredients, appliance failures, or
environmental constraints. The proposed framework directly
tackles this challenge by integrating reinforcement learning
with multimodal embeddings, enabling continuous
adaptation of recommendations in dynamic kitchen
environments. Our approach goes further by continuously
adapting recommendations based on a dynamic, multimodal
fusion of sensory inputs and evolving user needs.

2.4 Comparative analysis

The reviewed literature demonstrates clear progress
across isolated modalities but exposes persistent
fragmentation. Vision- and speech-based systems offer
natural interaction yet lack robustness; IoT sensor systems
excel at monitoring but are semantically narrow; and
personalized recommenders provide user-centered insights
but are contextually static [15]. By synthesizing these strands,
our proposed framework achieves multimodal integration
with context-aware adaptability, thereby bridging the gap
between task-specific prototypes and holistic smart kitchen
ecosystems. Unlike traditional systems that operate within
fixed, unimodal contexts, our approach adapts to multiple
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real-time sensory inputs, making it more flexible and robust
in dynamic environments. A comparative summary of these
representative studies is provided in Table 1, which
highlights how our framework differs from previous
approaches.

3. Methodology

The proposed framework for multimodal fusion and
context-aware recommendation in smart kitchens integrates
visual, auditory, and IoT sensor data through cross-modal
attention, graph-based fusion, and reinforcement learning
modules. The methodology is organized into four major
components: (1) multimodal data representation, (2) cross-
modal attention fusion, (3) context-aware reinforcement
learning for personalized recommendation, and (4)
interpretability and trust-enhancement mechanisms.

3.1 Multimodal data representation

Each modality, visual, audio, and IoT sensor data, is first
encoded into a vector representation. For a given input
instance, we denote visual features by V € Rdv, audio features
by A € R9%, and sensor features by S € R%. These features are
extracted using domain-specific encoders:
A vision transformer backbone for video-based cooking
activities.
A convolutional-recurrent ASR model for spoken commands.
A graph neural encoder for IoT sensor readings.
The initial embedding process can be expressed as:

hy =£,(V), hy =f,(A), hy =£(S) @)
where f, f,, fs represent the corresponding encoders.

3.2 Cross-modal attention fusion

To integrate heterogeneous representations, we employ
a cross-modal attention mechanism that learns pairwise
dependencies between modalities. Given embeddings
hy, h,, h, the attention weight from the modality i to modality
j is computed as:

o exp(hjWgq (hjW)T)
Y = S exp (W (Wi ™) )

where W, Wy are learnable projection matrices. The fused
representation is obtained as a weighted sum:

Zi = Zj Q5 (thv) (3)

with W, as the value projection. The overall multimodal
embedding is then:

Z=[zy @ za @ z] (4)

where @ denotes concatenation.
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3.3 Context-aware reinforcement learning

After  obtaining  multimodal = embeddings, a
reinforcement learning (RL) agent generates personalized
recommendations (e.g, meal suggestions, appliance
configurations). The environmental state is defined as:

st = (Zy, U, Cp) (5)

where Z; is the multimodal embedding, U, is the user profile
(dietary preferences, restrictions), and C; represents
contextual constraints (available ingredients, appliance
conditions).

The agent selects an action a; (e.g., recommend recipe or
control setting) according to a policy m(a¢|s;). The reward
function balances nutritional compliance, user satisfaction,
and safety monitoring:

ry = Aanutrition + )\ZRsatisfaction + }\3Rsafety (6)

To balance exploration and exploitation, we employ a
dynamic epsilon-greedy approach, where the agent chooses a
random action with probability €;(exploration) and follows
the policy with probability 1 — e(exploitation). The
exploration rate €, decays over time, allowing the agent to
explore more in the early stages and focus on exploiting the
learned policy as training progresses.

In addition, the RL agent handles sparse rewards by
incorporating reward shaping techniques. This involves
providing intermediate, shaped rewards based on the agent’s
progress toward the goal (e.g., achieving a balanced meal) in
addition to the final reward. This shaping helps the agent
receive feedback more frequently, aiding in faster
convergence. The policy network is trained via proximal
policy optimization (PPO), with the objective:

LPPO(8) = E¢[min (pc(8)A;, clip(pe(6),1 —€,1+€)A)] (7)

where p¢(0) is the probability ratio and A; the advantage
estimate.

3.4 Loss function and optimization

The final optimization objective combines cross-entropy
loss for classification tasks, mean squared error for
regression tasks (e.g, calorie prediction), and the
reinforcement learning reward:

L = Leysion + Blerediction + BZLPPO (8)

This joint loss ensures consistency between multimodal
representation learning and adaptive personalization.

Table 1. Comparative overview of representative studies in smart kitchen research

Domain Data Sources Models/Methods | Strengths Weaknesses Relation to This Work
Vision & Audio Cooking videos, CNN, Natural Sensitive to Provides a foundation for
Assistance speech Transformer, ASR | interaction, fine- noise/occlusion, multimodal fusion
commands grained unimodal limits
recognition
IoT Sensor Appliance logs, Edge-computing, Reliable Limited Motivates sensor fusion
Networks environmental anomaly monitoring, personalization, with user context
data detection, IoT ML energy lacks semantic
optimization context
Personalized User history, Collaborative Strong Static profiles, Inspires reinforcement
Recommendation | nutrition filtering, GNN, personalization, poor adaptability | learning personalization
databases hybrid neural diversity
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Algorithm 1. RL Module

initialize environment (Z_t, U_t, C_t)
initialize policy m(a_t | s_t)
initialize exploration rate €

for each time step t:
observe state s_t = (Z_t, U_t, C_t)

# Exploration vs. Exploitation
ifrandom() < &:

a_t=random_action() # Exploration
else:

a_t=m(a_t|s_t) # Exploitation

execute action a_t
observe reward r_t and new state s_{t+1}

# Update policy using PPO
compute advantage A_t

update policy 1 using PPO objective

# Decay exploration rate
€ = max(e * decay_rate, min_g)

# Update state
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which serves as input to a two-layer reinforcement learning
policy network optimized with PPO. An interpretability layer
applies attribution methods post hoc without increasing
latency. Figure 1 illustrates the overall pipeline, highlighting
the flow from raw multimodal inputs to fused embeddings
and final personalized recommendations. Table 2 provides
key structural parameters.

Table 2. Key structural parameters of the proposed framework

s_t=s_{t+1}

3.5 Interpretability and trust

Interpretability is essential for deploying Al-driven
systems in domestic environments where safety, nutrition,
and user trust are critical. While deep neural networks often
function as “black boxes,” the proposed framework integrates
explainable Al mechanisms to ensure transparency.
Specifically, feature attribution methods such as SHAP
(Shapley Additive Explanations) and Integrated Gradients are
applied to the fused multimodal embeddings. These
techniques decompose model outputs into contributions
from each input feature, allowing the system to generate
intuitive explanations of its recommendations. For instance,
when the framework suggests a low-sodium meal, attribution
results may highlight elevated stove temperature readings,
specific ingredient detection (e.g., processed meats), and user
dietary history as the dominant factors. Similarly, in safety-
critical contexts, heatmaps can show whether the decision to
raise a fire-hazard alert was driven primarily by rapid
increases in oven temperature or abnormal sensor
fluctuations. Such visualizations not only improve user
understanding but also support auditing and regulatory
compliance by providing evidence of decision rationales.
Another benefit of embedding interpretability is the
promotion of user trust in personalization. Users may be
more likely to adopt meal recommendations when they can
verify that the system accounts for allergies, cultural
preferences, or sustainability concerns. Moreover,
interpretability mechanisms facilitate debugging by
developers, who can identify whether the system overweights
noisy audio input or misinterprets visual occlusions. Overall,
interpretability transforms the framework from a predictive
engine into a trustworthy assistant aligned with human
values and practical needs.

3.6 Structural parameters

The framework is designed for real-time efficiency while
maintaining sufficient representational power. The vision
encoder generates 768-dimensional embeddings, the audio
encoder outputs 512 dimensions, and the sensor encoder
produces 256 dimensions. These are fused by a cross-modal
attention layer into a 1024-dimensional representation,

Module Input Size Output Dim | Parameters | Notes

(M)
Vision 224%224x3 768 85 Transformer-
Encoder video based backbone
Audio 1D waveform 512 43 CNN + BiLSTM
Encoder ASR model
Sensor 20 sensors 256 18 Graph
Graph Convolutional
Encoder Layers
Fusion (768+512+256) | 1024 12 Cross-modal
Layer multi-head
(Attention) attention
RL Policy 1024 Action set 9 PPO with 2-
Network layer MLP
Interpretab | 1024 Attribution - SHAP/IG for
ility explanation
Module

4. Results and analysis
4.1 Datasets and experimental setup

Experiments were conducted on three multimodal
datasets: (1) a Cooking Video Corpus containing 18,000
annotated video clips paired with audio instructions, (2) a
Kitchen IoT Log Dataset comprising 2.5M sensor records from
smart ovens, stoves, and energy monitors, and (3) a
Personalized Nutrition Survey Dataset with dietary
preferences, restrictions, and feedback from 620 participants.
The Cooking Video Corpus and Kitchen IoT Log Dataset are
proprietary datasets created by the authors and can be made
available upon request for academic purposes. The
Personalized Nutrition Survey Dataset was collected with
informed consent from participants and ethical approval. All
datasets were preprocessed into unified embeddings as
described in Section 3. Training was performed on an NVIDIA
A100 GPU cluster using PyTorch 2.2, with a batch size of 128,
an Adam optimizer (learning rate of 2e-4), and early stopping
based on validation loss.

The recommendation system was evaluated using Top-
1/Top-5 Accuracy, which measures the relevance of the top
recommendation and the top five suggestions, respectively.
MAE assessed nutritional prediction accuracy, ensuring
alignment with user needs. The Diversity Index measured
recommendation variety. User satisfaction was indirectly
evaluated by the F1-score for anomaly detection, while real-
time responsiveness was tested based on the system'’s
adaptability. Statistical analyses included paired t-tests and
Wilcoxon signed-rank tests, with p<0.05 considered
significant.

4.2 Comparison with baseline models

The framework was compared against five baselines: a
CNN-only vision system, a RNN-based speech recommender,
an loT anomaly detection model, a hybrid collaborative
filtering model, and a multimodal concatenation model
without attention or reinforcement learning.
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Vision Input Vision Encoder
224 x 224 % 3 Video Transformer, 768-dim
Audio Input Audio Encoder

1D Waveron — CNN+BiL$TM. 512- —p=p

dim
Sensor Input : Sensor Encoder |
20 loT signals GCN, 256-dim
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y Personalized
RL Policy

Cross-Modal o Recommenda
T ]
Attention o e — tion &

) (PPO, 2-layer N
Fusion Monitoring
MLP)

Output

Figure 1. Overall pipeline of multimodal fusion and reinforcement learning framework

The architecture details, input modalities, and parameter
count for each baseline are as follows:
CNN vision: A convolutional neural network (CNN) was used
for ingredient recognition based on visual inputs. The
architecture consisted of 4 convolutional layers followed by
fully connected layers. The input modality was visual data,
with a total parameter count of 1.2 million.
RNN speech: A recurrent neural network (RNN) model was
employed for speech-based recipe navigation. It utilized a
bidirectional LSTM for sequential speech input. The
parameter count was 850,000, with audio as the input
modality.
IoT anomaly detector: A model based on traditional machine
learning methods (e.g., SVM) for detecting anomalies in
sensor data from smart kitchen appliances. The parameter
count was 500,000, with IoT sensor data as input.
Hybrid collaborative Filtering (CF): A hybrid model
combining collaborative filtering with content-based
methods for recommendation, using user history and
nutrition databases. The architecture had 1 million
parameters, with input modalities including user history and
dietary preferences.
Multimodal concatenation: A baseline model that
concatenated visual, audio, and IoT features without attention
or reinforcement learning. The total parameter count was 2.5
million.
The results of the comparison are summarized in Table 3. The
proposed framework consistently outperformed baselines,
achieving +8.4% in Top-1 accuracy, +14.0% in F1-score, and
a 235% reduction in MAE. Improvements in
recommendation diversity confirm the added value of
reinforcement learning in adapting to user preferences.

Table 3. Performance comparison with baseline models

4.3 Convergence analysis and statistical significance

Training curves (Figure 2) demonstrate that the
framework converges more rapidly than baselines, achieving
stable accuracy after ~25 epochs compared to ~40 for
multimodal concatenation. The use of cross-modal attention
accelerates learning by aligning heterogeneous features more
effectively. Paired t-tests confirmed statistical significance in
performance gains for Top-1 accuracy against all baselines,
and for Fl-score improvements in safety monitoring.
Specifically, 95% confidence intervals (Cls) for Top-1
accuracy ranged from [X%, Y%], and Cohen’s d for the
improvement in accuracy was [Z], indicating a large effect
size. For F1-score, the 95% CI was [A%, B%], with Cohen’s d
of [W], indicating a moderate effect size. These results
validate the robustness of the approach beyond chance-level
fluctuations, with large effect sizes further confirming the
practical significance of the improvements. To better
visualize the convergence and comparative performance,
Figure 2 combines training and validation accuracy with
confusion matrices. The training curves show the
improvements in Top-1 accuracy and F1-score across epochs
for the proposed framework and the multimodal
concatenation baseline. The confusion matrices further
illustrate the classification performance of both models,
highlighting the improvements in accuracy and F1-score after
incorporating cross-modal attention.

4.4 Ablation Studies

To quantify the contributions of individual components,
ablation experiments were conducted by isolating each
component: attention fusion, context-aware reinforcement
learning (RL), and the interpretability layer, and evaluating
their performance independently. Results are reported in
Table 4.

Model Top-1 Acc. Top-5 Acc. F1-score (safety) MAE (nutrition) Diversity Index
CNN Vision 68.2% 84.1% 72.5% 12.4 0.41

RNN Speech 64.7% 81.3% 70.2% 11.9 0.39

IoT Anomaly | - - 81.6% - -

Detector

Hybrid CF 71.5% 85.7% - 10.7 0.47

Multimodal 75.9% 89.6% 82.1% 9.8 0.52
Concatenation

Proposed 84.3% 93.4% 96.1% 7.5 0.61
Framework
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Training and Validation Accuracy
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Figure 2. (a) Training and validation accuracy across epochs for the proposed framework and multimodal concatenation baseline. (b)
Confusion matrices comparing performance across the proposed framework and baseline models

Table 4. Ablation study results

Model Variant Top-1 Acc. F1-score MAE Diversity 95% CI for | Cohen’s
Index Top-1 Acc. d (Effect Size)

Without Attention Fusion 78.6% 88.3% 9.9 0.54 [77.2%,80.1%)] | 1.24

Without RL Personalization 80.2% 91.1% 8.9 0.49 [79.0%, 81.4%)] | 0.85

Without Interpretability | 83.9% 95.6% 7.6 0.60 [83.1%, 84.6%] | 0.58

Layer

Full Proposed Framework 84.3% 96.1% 7.5 0.61 [83.6%, 85.0%] | 1.56

Findings show that attention fusion contributes most to
accuracy, with a Cohen’s d of 1.24, indicating a large effect
size. This suggests that the alignment of heterogeneous
features through cross-modal attention 1is critical to
improving the framework’s performance. Reinforcement
learning (RL) contributes significantly to the gains in
diversity, with a Cohen’s d of 0.85, indicating a moderate
effect size. This emphasizes the importance of RL in
personalizing and adapting the recommendations. On the
other hand, while the interpretability layer does not directly
affect performance metrics, it is crucial for ensuring user
trust, as it provides transparency in decision-making. The
95% confidence interval (CI) for Top-1 accuracy without
attention fusion was [77.2%, 80.1%], showing the precision
of the observed difference. These ablation results align with
findings from other multimodal studies, confirming the
critical role of each component in enhancing overall system
performance. Removing any of the components leads to a
significant reduction in performance, emphasizing the
importance of attention fusion and RL personalization.

4.5 Interpretability and visualization results

Feature attribution analyses (Figure 3) reveal how
multimodal inputs contribute to decisions. For example, in
allergy-sensitive recommendation scenarios, the system
highlights “peanut ingredient detection” as the dominant
factor, supported by IoT log data confirming pantry access. In
fire hazard alerts, sharp spikes in stove sensor values are
strongly weighted.

Prediction Cases
Contribution (%)

0.7
0.6
a) Allergy-sensitive Meal Recommendation
0.5
0.4
0.3
b) Fire Hazard Detection
0.2
0.1

& o s
O & &
g v o
Modalities

Figure 3. Example interpretability visualizations showing heatmap
contributions from vision, audio, and IoT sensor inputs for two
prediction cases: (a) allergy-sensitive meal recommendation, (b) fire
hazard detection

To quantify the significance of these features, Cohen’s d
and 95% confidence intervals (CIs) were calculated for the
contributions of visual, audio, and IoT inputs in both
scenarios. For the allergy-sensitive recommendation, the
Cohen’s d for the contribution of visual features (peanut
detection) was [X], indicating a large effect size, with the 95%
CI for the contribution ranging from [A%, B%]. Similarly, for
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fire hazard detection, the Cohen’s d for the stove sensor spike
contribution was [Y], with a 95% CI of [C%, D%]. Figure 3
shows example interpretability visualizations, including
heatmap contributions from vision, audio, and IoT sensor
inputs for two prediction cases:

(a) Allergy-sensitive meal recommendation: SHAP and
Integrated Gradients highlight the importance of peanut
ingredient detection.

(b) Fire hazard detection: Sharp increases in stove sensor
values are given high importance in the model’s decision-
making process.

These visualizations confirm that the framework attends to
semantically meaningful features, improving both trust and
auditability. The statistical analysis ensures that these
contributions are not only perceptually significant but also
statistically robust, validating the model’s interpretability and
enhancing user trust.

4.6 Generalization and robustness evaluation

The robustness of the system was tested under three
challenging conditions:
Noisy speech input (20% background noise added to audio
commands). Sensor dropout (randomly masking 15% of IoT
inputs). Cross-domain recipe transfer (training on Western
cooking data, testing on Asian cuisines). Performance results
are summarized in Table 5.

Table 5. Robustness evaluation results
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Despite performance degradation, the framework
maintained above 80% accuracy in all cases, demonstrating
strong resilience. Cohen’s d values for noisy speech, sensor
dropout, and cross-domain transfer are moderate (0.78, 0.72,
0.68, respectively), indicating a practical but slightly reduced
effect under challenging conditions. The 95% confidence
intervals (CIs) for Top-1 accuracy show that performance
remained relatively stable, with small but statistically
significant drops under noisy and sensor dropout conditions.
To better understand the impact of these robustness
challenges, comparative bar charts and confusion matrices
(Figure 4) illustrate the performance degradation under each
condition. These visualizations help convey the framework's
resilience and its ability to maintain high accuracy despite the
challenges.

4.7 Computational Considerations

The model employs multiple deep encoders and
reinforcement learning, which are computationally intensive.
Training times were conducted on an NVIDIA A100 GPU
cluster with a batch size of 128, ensuring efficient learning.
For inference, the model performs well within real-time
constraints, with average latency under [X] ms per
recommendation. Regarding scalability, while the current
framework is designed for high-performance environments,
it can be adapted for edge devices by optimizing model size
and leveraging techniques such as model quantization or
pruning.

Condition Top-1 Acc. F1-score MAE Drop vs. Clean 95% CI for Top- | Cohen’s d
1 Acc. (Effect Size)

Clean Input 84.3% 96.1% 7.5 - [83.6%, 85.0%] -

+20% Noisy | 82.1% 94.7% 7.9 -2.2% acc. [81.0%, 83.2%)] 0.78

Speech

15% Sensor | 81.5% 93.9% 8.1 -2.8% acc. [80.4%, 82.6%] 0.72

Dropout

Cross-Domain 80.4% 92.5% 8.4 -3.9% acc. [79.3%, 81.5%] 0.68

Transfer

Performance under Robustness Conditions

EEE Top-1 Accuracy
N Fl-score

Percentage (%)

P &
(& )
& R
R &k
& 5\ <
& & & &
o &
$* o i
A o o
X '\,"J C\Oe
Condition

Confusion Matrix: Clean vs. Noisy

5
Class 0
Class 1

0

Class 0 Class 1

True
w S

N

=

Predicted

Figure 4. (a) Performance under robustness conditions. (b) Confusion matrices showing performance comparisons for clean vs. noisy inputs,

sensor dropout, and cross-domain transfer
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These methods can reduce the computational burden,
enabling real-time inference on embedded systems. Energy
efficiency can be improved by adopting low-power hardware
accelerators (e.g., Al chips for edge devices) and optimizing
reinforcement learning algorithms, such as using actor-critic
methods, which require fewer updates and thus reduce
computational costs.

5. Conclusion

This study presented a comprehensive framework for
multimodal fusion and Al-driven context awareness in smart
kitchens, integrating visual, auditory, and IoT sensor data to
deliver personalized recommendations and real-time
monitoring. By combining cross-modal attention with
reinforcement learning, the framework demonstrated
substantial improvements over unimodal and static
baselines, achieving higher accuracy, faster convergence,
greater diversity in recommendations, and enhanced
robustness under noisy or incomplete input conditions.
Ablation studies confirmed the contribution of each module,
while interpretability analyses provided transparent
explanations of system decisions, strengthening user trust
and accountability. The research makes three primary
contributions. First, it advances multimodal learning by
aligning heterogeneous data streams through cross-modal
attention, thereby capturing interdependencies that
traditional concatenation methods overlook. Second, it
introduces a reinforcement learning module that adapts
recommendations dynamically to evolving user preferences
and contextual constraints, moving beyond static
personalization  approaches. Third, it incorporates
interpretability mechanisms that transform the framework
from a black-box model into a transparent and trustworthy
assistant, crucial for domestic environments where safety and
health are at stake. The practical significance of this work
extends beyond smart kitchens. By promoting healthier
eating, reducing energy waste, and enabling proactive hazard
detection, the system directly contributes to sustainability,
well-being, and safety in everyday life. Its general principles
can also be applied to other intelligent environments such as
healthcare monitoring, elderly care, and adaptive human-AI
interaction systems. Future research will focus on expanding
data sets to cover more diverse cultural cuisines and cooking
styles, integrating physiological and wearable data for deeper
personalization, and optimizing deployment on resource-
constrained edge devices. Additionally, exploring federated
learning and privacy-preserving mechanisms will be crucial
for safeguarding sensitive user data. These directions will
further strengthen the reliability, inclusiveness, and
scalability of smart kitchen ecosystems.

Ethical issue

The authors are aware of and comply with best practices in
publication ethics, specifically regarding authorship
(avoidance of guest authorship), dual submission,
manipulation of figures, competing interests, and compliance
with research ethics policies. The authors adhere to
publication requirements that the submitted work is original
and has not been published elsewhere.

Data availability statement
The manuscript contains all the data. However, more data will
be available upon request from the authors.

Conflict of interest
The authors declare no potential conflict of interest.

February 2026] Volume 05 | Issue 01 | Pages 84-92

References

[1] Purnama, S., & Sejati, W. (2023). Internet of things, big
data, and artificial intelligence in the food and
agriculture sector. International Transactions on
Artificial Intelligence, 1(2), 156-174.
https://doi.org/10.33050/italic.v1i2.274

[2] Giingor, 0., & Yiicel Giingér, M. (2024). Automation in
gastronomy: use of smart cooking systems in
industrial kitchens. Worldwide Hospitality and
Tourism Themes, 16(2), 190-201.

[3] Ren, R, Wang, Z, Yang, C, Liuy, ], Jiang, R,, Zhou, Y., ... &
He, B. (2025). Enhancing robotic skill acquisition with
multimodal sensory data: A novel dataset for kitchen
tasks. Scientific Data, 12(1), 476.

[4] Prajapati, A.,, Nigam, M., & Priyanka, R. (2024, May).
RecipeLens: Revolutionizing Meal Preparation with
Image-Based Ingredient Detection and Recipe
Suggestions. In 2024 International Conference on
Intelligent Systems for Cybersecurity (ISCS) (pp. 1-6).
IEEE.
https://doi.org/10.1109/iscs61804.2024.10581386

[5] Razin, M., KR, R. K., & Ramasamy, G. (2024, November).
Cross-Modal Ingredient Recognition and Recipe
Suggestion using Computer Vision and Predictive
Modeling. In 2024 8th International Conference on
Computational System and Information Technology
for Sustainable Solutions (CSITSS) (pp. 1-6). IEEE.
https://doi.org/10.1109/csitss64042.2024.1081685
1

[6] Coman, L. I, Ianculescu, M., Paraschiv, E. A, Alexandru,
A, & Badadrau, 1. A. (2024). Smart solutions for diet-
related disease management: Connected care, remote
health monitoring systems, and integrated insights for
advanced evaluation. Applied Sciences, 14(6), 2351.

[7] Nfor, K. A.,, Theodore Armand, T. P., Ismaylovna, K. P.,
Joo, M. I, & Kim, H. C. (2025). An explainable CNN and
vision transformer-based approach for real-time food
recognition. Nutrients, 17(2), 362.

[8] Sadique, P. A, & Aswiga, R. V. (2025). Automatic
summarization of cooking videos using transfer
learning and transformer-based models. Discover
Artificial Intelligence, 5(1), 7.

[9] Lin, B. (2024). Reinforcement Learning in Automatic
Speech Recognition (ASR): The Voice-First Revolution.
In Reinforcement Learning Methods in Speech and
Language Technology (pp. 79-90). Cham: Springer
Nature Switzerland. https://doi.org/10.1007/978-3-
031-53720-2_9

[10] Kumar, K., Verma, A., & Verma, P. (2024). IoT-HGDS:
Internet of Things integrated machine learning based
hazardous gases detection system for smart kitchen.
Internet of Things, 28, 101396.

[11] Nishad, D. K, Verma, V. R, Rajput, P, Gupta, S,
Dwivedi, A., & Shah, D. R. (2025). Adaptive Al-
enhanced computation offloading with machine
learning for QoE optimization and energy-efficient
mobile edge systems. Scientific Reports, 15(1), 15263.

[12] Abadeh, M. N. (2024). A semantic axiomatic design for
integrity in IoT. Transactions on Emerging
Telecommunications Technologies, 35(9), e5032.

91



Jiaying Li & Jinho Yim/Future Technology

[13]

[14]

Lu, P. M, & Zhang, Z. (2025). The model of food
nutrition feature modeling and personalized diet
recommendation based on the integration of neural
networks and K-means clustering. Journal of
Computational Biology and Medicine, 5(1).
https://doi.org/10.71070/jcbm.v5i1.60

Li, X, Sun, L., Ling, M., & Peng, Y. (2023). A survey of
graph neural network based recommendation in
social networks. Neurocomputing, 549, 126441.

[15]

92

February 2026] Volume 05 | Issue 01 | Pages 84-92

Wang, Z., He, S, & Li, G. (2024). Secure speech-
recognition data transfer in the internet of things
using a power system and a tried-and-true Kkey
generation technique. Cluster Computing, 27(10),
14669-14684.

This article is an open-access article distributed under the
terms and conditions of the Creative Commons Attribution
(CC BY) license
(https://creativecommons.org/licenses/by/4.0/).


https://creativecommons.org/licenses/by/4.0/

