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A B S T R A C T 
 

The rising dependence on internet-based services has exposed network 
infrastructure to increased vulnerability to cyberattacks, especially DDoS 
attacks. The attacks flood target systems with unwarranted traffic that disrupts 
legitimate access and undermines service reliability. To overcome this issue, the 
present paper proposes an optimization-based deep learning model, called 
Fractional Velocity Contour-based Remora Optimization Algorithm-Deep 
Stacked Autoencoder (FVCROA_DSA), for high-efficiency DDoS attack detection 
in a MapReduce environment. The model combines a mean-substitution 
method for filling data gaps and Support Vector Machine Recursive Feature 
Elimination (SVM-RFE) in the mapper step to identify the most significant 
network attributes. This step is followed by the reducer stage, which trains a 
Deep Stacked AutoEncoder (DSA) to recognize attack patterns, which is then 
fine-tuned by the proposed FVCROA algorithm. Fractional Calculus leads to 
increased optimization stability and faster convergence during training. 
Experimental tests on the BOT-IoT and DDoS Attack datasets show that the 
FVCROA architecture with DSA achieves higher detection accuracy, with a 
precision of 93.857, a recall of 94.827, and an F-measure of 94.340, surpassing 
the current baseline techniques in scalability and reliability. 

1. Introduction 

In recent years, a wide range of internet-based 
services—such as newsgroups, social networking, e-
commerce, banking, and online trading—have become 
integral to modern digital infrastructure [1]. The growing 
dependency on interconnected communication systems has 
accelerated data transfer and management across distributed 
networks [2]. However, these advancements have 
simultaneously expanded the surface for cyber threats and 
malicious activities [3]. Among these threats, Distributed 
Denial of Service (DDoS) attacks remain one of the most 
persistent and damaging forms of cyber intrusion [4]. A DDoS 
attack overwhelms targeted servers or applications with 
excessive illegitimate requests, thereby exhausting resources 
and disrupting legitimate access to services [5]. For instance, 
Amazon Web Services (AWS) experienced a 2.3 Tbps DDoS 
attack in February 2020 [6], while Google Cloud reported 46 
million requests per second directed at one of its clients in 
June 2022 [7]. Recent analyses further reveal that the 
frequency and magnitude of DDoS incidents have continued 
to increase globally [8]. These attacks cause severe financial 
losses, service unavailability, and reputational damage, 

making continuous protection of network infrastructure a 
critical cybersecurity requirement [9]. To ensure secure and 
reliable operations, sectors such as government, finance, 
healthcare, and defense increasingly rely on intrusion 
detection systems (IDSs) for threat monitoring [10]. 
However, traditional IDS architectures face scalability and 
responsiveness limitations when processing large, 
heterogeneous network traffic [11]. With the explosive 
growth of network data, big data frameworks such as Hadoop, 
Spark, and MapReduce have emerged as effective platforms 
for parallel and distributed analysis [12]. Among these, 
MapReduce has proven particularly efficient due to its 
scalability and ability to divide high-volume network traffic 
into smaller, manageable batches for distributed processing 
[13]. This capability makes it highly suitable for modern DDoS 
detection systems that require real-time adaptability and 
computational resilience [14]. Previously existing detection 
systems operated mainly using signature-based and 
anomaly-based methods [15]. Signature-based solutions are 
effective at identifying familiar attack patterns [16] but 
ineffective against new or emerging attacks. On the other 
hand, anomaly systems can detect unknown behavior but 
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tend to be very sensitive, with a high number of false 
positives, and prone to instability under changing conditions 
[17]. These shortcomings limit their usefulness in large-scale, 
fast-changing network environments [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To address these limitations, machine learning (ML) 

methods that learn discriminative statistical features to 
distinguish normal from abnormal network traffic have 
gained increased attention [19]. Popular algorithms for 
detecting DDoS and classifying network anomalies include 
Support Vector Machines (SVMs), Decision Trees, and 
Random Forests [20]. These methods, however, are highly 
manual and fail to achieve high detection rates in complex, 
high-dimensional data sets [21]. In recent years, deep 
learning (DL) methods have become highly promising, as they 
can automatically extract hierarchical and nonlinear 
representations from massive data [22]. Convolutional 
Neural Networks (CNN) [23], Recurrent Neural Networks 
(RNN) [24], and Autoencoder models have been shown to 
perform better at detection than more traditional approaches 
to ML. However, these models commonly face high 
computational cost, sensitivity to hyperparameters, and 
limited flexibility in real-time big-data environments [26]. 

To overcome these issues, optimization algorithms were 
implemented within DL frameworks to improve training 
efficiency and detection performance [27]. Whale 
Optimization Algorithm (WOA) [28], Particle Swarm 
Optimization (PSO) [29], and Genetic Algorithms (GA) [30] 
have been optimized to improve parameter optimization and 
reduce the false-positive rate. Nonetheless, most traditional 
optimization approaches are slow and tend to get stuck in 
local optima. Besides, the use of Fractional Calculus (FC) in 
optimization has not been thoroughly investigated, despite its 
ability to provide higher accuracy and dynamic stability for 
more intricate search algorithms [31]. Based on these 
difficulties, this paper suggests a deep learning framework 
based on optimization that combines the Fractional Velocity 
Contour-based Remora Optimization Algorithm (FVCROA) 
with a Deep Stacked Autoencoder (DSA) in a MapReduce 
setup: 
(1) enhance scalability and real-time detection capability 
through distributed MapReduce-based data processing; 
(2) improve feature selection and dimensionality reduction 
using SVM–Recursive Feature Elimination (SVM-RFE) in the 
mapper phase; and 
(3) Optimize DSA hyperparameters via FVCROA to improve 
convergence speed, classification accuracy, and robustness 
against high-dimensional traffic. 
Lastly, the effectiveness of the framework is evaluated using 
two benchmark datasets, namely BOT-IoT and DDoS Attack, 
to demonstrate that it achieves better detection accuracy, 
convergence, and scalability than current ML-, DL-, and 
optimization-based models. The proposed method is an 
intelligent, scalable, and efficient solution to the problem of 
modern DDoS attack detection by combining distributed big-
data processing with fractional-calculus-based optimization. 

2. Literature review 

Several researchers have investigated deep learning and 
optimization algorithms to enhance the accuracy of DDoS 
attack detection while minimizing computational cost. Cil et 
al. [32] developed a Deep Neural Network (DNN) to identify 
and categorize DDoS attacks from network data. The model 
was very accurate, converged quickly, and required minimal 
computational time despite the small amount of training data. 
Nonetheless, it was not capable of functioning in real-time 
detection cases. A deep neural network model was proposed 
by Sumathi and Karthikeyan [1] to classify known and 
unknown DDoS attacks, achieving a high packet delivery ratio 
with low overhead. Despite its strengths, the approach failed 
to incorporate machine learning algorithms, such as Support 
Vector Machines (SVMs), to perform comparative analysis 
and hybrid performance assessment. Akgun et al. [6] 
introduced a Convolutional Neural Network (CNN)-based 
methodology that used information gain to select features. 
This model was not very suitable for high-speed, real-time 
detection of DDoS attacks, though it had fewer parameters 
and incurred lower computational cost. On the same note, 
Anley et al. [29] proposed a CNN architecture using transfer 
learning that could be used to classify binary and multi-class. 
This model minimized overfitting and was robust, but could 
not withstand adversarial attacks or achieve stable 
performance across varied data. Novaes et al. [33] developed 
a Generative Adversarial Network (GAN) to detect DDoS 
attacks via adversarial training and Internet Protocol (IP) 
packet analysis. By tracking network traffic, the model 
minimized response time and maximized detection accuracy. 
However, it did not work well in actual traffic conditions and 
did not extrapolate to nonhomogeneous data. A Deep 
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Contractive Autoencoder (DCAE) was proposed by Aktar and 
Nur [30] for the detection of DDoS attacks, based on a semi-
supervised learning approach. Even though it had high 
reliability in detecting complex attacks with minimal 
reconstruction error, it performed poorly in multiclass 
classification and on large benchmark datasets. Agarwal et al. 
[27] designed a Feature Selection Whale Optimization 
Algorithm Deep Neural Network (FS-WOA-DNN) to optimize 
the accuracy of DDoS attack detection. The model used the 
Whale Optimization Algorithm (WOA) to identify the best 
feature subsets, reducing computation time and improving 
classification accuracy. But it was unable to detect new or 
previously unseen attack types. Sumathi et al. [34] proposed 
a hybrid Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) units, optimized using the Harris 
Hawks Optimization (HHO) and Particle Swarm Optimization 
(PSO) algorithms. This model significantly reduced 
overfitting and improved overall detection accuracy, yet 
lacked global interpretability despite its use of explainable AI 
(XAI) components. In a similar vein, the RHS-RBM model 
presented in [27] was successful in detecting DDoS attacks 
quickly and precisely but failed to account for network traffic 
on virtual machines; hence, it does not apply to the current 
cloud computing scenario. 

Even though these approaches have produced laudable 
outcomes in terms of detection precision and computational 
complexity, they have several issues. The majority of the 
existing schemes are not scalable to large data settings and 
are unable to handle large or continuous network flows 
effectively. Most methods exhibit low generalization 
performance when applied to unknown or heterogeneous 
data. The process of feature selection and optimization is 
common and often leads to suboptimal model performance. 
Also, not many models provide explainable information about 
their detection decisions, and most depend on offline training, 
which does not apply to real-time network security 
monitoring. Recent literature has also focused on hybrid deep 
learning networks that combine various neural elements to 
increase flexibility and resilience. The combination of CNNs 
and LSTMs, or GRU LSTMs, is very useful for representing 
global and temporal patterns in network traffic, thereby 
enhancing the identification of dynamic and burst-based 
DDoS patterns. Nonetheless, these models are 
computationally costly, and scaling to distributed big-data 
systems cannot be done without significant effort, though 
they are exact. Similarly, Bi-LSTM and attention-based 
models also improve sequential knowledge of packet flows, 
but they all require manual hyperparameter tuning and 
therefore cannot be applied to real-time systems that are 
dynamic. Optimization algorithms have also entered the 
realm of enhancing the accuracy and convergence properties 
of learning-based intrusion detection systems. Genetic 
Algorithms (GA), the Grey Wolf Optimization (GWO), the 
Harris Hawks Optimization (HHO), and the Ant Colony 
Optimization (ACO) are metaheuristic algorithms used to 
optimize hyperparameters, select the best features, and 
reduce classification errors. For example, GA-optimized CNN 
models and PSO-based DNN models have shown faster 
convergence and fewer alarms than manually adjusted 
models. Nevertheless, the majority of these algorithms are 
predetermined by initial parameter values and may become 
stuck in local optima and lose consistency on large-scale or 
non-homogeneous data. Furthermore, there has been an 
increasing body of research on the use of explainable artificial 
intelligence (XAI) in conjunction with deep learning to 
enhance transparency in intrusion detection decisions. Even 

though tools such as SHAP (Shapley Additive exPlanations) 
and LIME (Local Interpretable Model-agnostic Explanations) 
have been employed to understand deep network outputs, 
integrating them can increase computational cost, making 
them less useful in real-time. In addition, although several 
studies suggest distributed frameworks based on Spark or 
Hadoop for scalable processing, few have integrated these 
frameworks with adaptive, optimization-based models that 
support continuous online learning. The combination of these 
drawbacks underscores the need for a single, scalable system 
that integrates distributed big-data processing with 
intelligent optimization and deep feature learning. It must be 
capable of managing large, heterogeneous network traffic on 
a scale, automatically selecting the right features, dynamically 
tuning hyperparameters, working effectively in real-time 
settings, and being explainable and robust to adversarial 
conditions. 

3.  Designed the FVCROA_DSA technique for DDoS 

attack detection 

This article presents an FVCROA_DSA model for 
detecting DDoS attacks using the MapReduce framework. The 
input data is initially retrieved from the database and then 
undergoes data preprocessing to impute missing values using 
the mean substitution strategy. Then, the pre-processed data 
is fed into the MapReduce framework, which comprises a 
mapper phase and a reducer phase. The proposed framework 
was implemented using the Hadoop MapReduce architecture 
on a distributed 16-node cluster (Intel i9 processors, 16 GB 
RAM per node, Ubuntu 20.04). The implementation utilized 
the Python Pydoop interface for efficient parallel execution 
and scalability. The selection of suitable features using SVM-
RFE [35] is performed from the pre-processed data in the 
mapper phase. Here, the SVM hyperparameters are optimally 
adjusted by training the SVM with the VCROA method. The 
VCROA is developed by incorporating the velocity-contour-
based concept with ROA [36]. Later, the selected features are 
merged and fed into the reducer phase to accurately detect 
DDoS attacks. The DDoS attack is detected using the DSA [37] 
model, where the DSA's optimal weights are fine-tuned using 
the FVCROA model. Here, FVCROA is designed by 
incorporating FC [38] with VCROA. Further, Figure 1 shows 
the diagrammatic view of FVCROA_DSA to detect DDoS 
attacks. 

3.1 Data collection 
The input data is primarily derived from the BOT-IoT 

database [39] and the DDoS attack database [40] for DDoS 
attack detection. Here, the BOT-IoT database comprises about 
72 million records with real-time and simulated scenarios. 
The database consists of four attack categories, each with data 
types related to DoS and DDoS attacks. Similarly, the DDoS 
attack database comprises instances of more than 5 crore 
recorded from background traffic flows. The database 
considered for the detection task is represented by, 

𝑊 = [𝑊1, 𝑊2, 𝑊3, . . . , 𝑊𝐷, . . . , 𝑊𝑍]                            (1) 

wherein, the total data presented in the dataset is signified 
as𝑍, the input database used for detecting DDoS attacks is 
given by𝑊, and the 𝐷𝑡ℎ input data taken for the detection task 
is signified as 𝑊𝐷. 
The BOT-IoT and DDoS Attack datasets were divided into 70% 
training, 15% validation, and 15% testing subsets. Data were 
shuffled using stratified sampling to maintain class balance, 
and all experiments were performed with a fixed random seed 
(42) to ensure reproducibility. 
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3.2 Data pre-processing  

The aggregation, transforming, and cleaning of raw data 
by removing inaccurate or corrupted records from the input 
data is termed data pre-processing. The input data𝑊𝐷is fed to 
data pre-processing by utilizing missing data imputation. 
Missing data imputation is the process of retaining data by 
replacing missing values with substitute values based on 
available information in the database. Here, the missing data 
is imputed by applying the mean substitution method, where 
the missing data of a variable is replaced by computing the 
mean of the input data𝑊𝐷for each variable. Thus, the pre-
processed data 𝐷𝑃𝑟 𝑒is obtained by executing the mean 
substitution method and is further fed into the MapReduce 
framework for attack detection. Additionally, categorical 
variables were label-encoded, and all numerical attributes 
were normalized using min–max scaling to the range [0, 1] 
before model training. 

 

 
 
 

3.3 MapReduce framework 
The MapReduce framework is generally considered a 

programming framework that is used to process large 
datasets to detect DDoS attacks more precisely. The 
MapReduce framework is a simple, flexible, and reliable 
method that utilizes the mapper and reducer phases to 
execute the detection task. Here, the pre-processed data 
𝐷𝑃𝑟 𝑒is initially split into key-value pairs and passed to the 
mapper phase for feature selection; the selected features are 
then passed to the reducer phase for detecting DDoS attacks. 
The detection process executed in both phases of the 
MapReduce framework is delineated below, 
Mapper phase for feature selection: The mapper phase 
extracts relevant features from distributed data partitions in 
parallel, reducing computational load and improving 
processing efficiency. In general, the transformation of pre-
processed data 𝐷𝑃𝑟 𝑒 into a suitable form for processing the 
data is performed in the mapper phase to accurately detect 

Figure 1. Diagrammatic view of the FVCROA_DSA technique to detect DDoS attacks 
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DDoS attacks. Here, a subset of relevant features is selected 
from the pre-processed data 𝐷𝑃𝑟 𝑒 by isolating the non-
redundant and most consistent data via feature selection to 
reduce the number of input variables. The mapper phase 
consists of G = 8 mappers in the experimental setup, each 
performing independent feature selection on distributed data 
blocks, with selection of relevant features executed separately 
in each mapper using SVM-RFE.  
Feature selection using SVM-RFE: SVM-RFE removes one 
feature at a time during feature selection. In this study, the 
SVM-RFE process employs a linear kernel Support Vector 
Machine (SVM) to ensure stable weight-vector computation 
and consistent feature ranking. The regularization parameter 
𝐶 = 1.0and tolerance = 10−4 were used as baseline settings, 
while the kernel parameter 𝛾 = 0.01was dynamically 
adjusted using the Velocity Contour-based Remora 
Optimization Algorithm (VCROA) during model training. This 
automated tuning process helps achieve a balance between 
model generalization and feature sparsity. The elimination of 
features proceeds iteratively until the ranking coefficients 
converge below the stopping threshold. At each step, the 
feature variables are determined in SVM-RFE, and a ranking 
coefficient is used during training for the generation of a 
weight vector 𝑃 by SVM. Then, the removal of minimum 
ranking coefficient signature attributes is executed at each 
iteration, and the resultant signature attributes are organized 
in descending order. The selection of relevant features in 
SVM-RFE is demonstrated below: 
Initially, the training samples [𝐴𝑐 , 𝐵𝑐], 𝐵𝑐 ∈ [−1, +1] are 
entered by considering 𝑍𝑠𝑒𝑙𝑒𝑐𝑡as the output feature ordering 
set. Then, based on the condition𝑍𝑠𝑒𝑙𝑒𝑐𝑡 ≠ 0, the initialization 
of the original feature set𝐷𝑃𝑟 𝑒 = 1,2,3, . . . , 𝐻 is performed, 
and the procedure is continuously followed until 𝑍𝑠𝑒𝑙𝑒𝑐𝑡 ≠ 0. 
Following this, the training set and a candidate feature set are 
determined, and then, SVM training is performed to identify𝑃. 
After that, the ranking of the criteria score is executed, and is 
given by: 

𝐼𝑔 = 𝑃𝑔
2, 𝑔 = 1,2,3, . . . , |𝐷𝑃𝑟 𝑒|          (2) 

Later, 𝑎𝑟𝑔
𝑔

𝐼𝑔is used to determine the score features with the 

small ranking criteria, and the feature set is updated as 
𝑍𝑠𝑒𝑙𝑒𝑐𝑡 = 𝐽 ∪ 𝑍𝑠𝑒𝑙𝑒𝑐𝑡 . Here, 𝐽is the feature with the smallest 
weight. Finally, the removal of features in the pre-processed 

data 𝐷𝑃𝑟 𝑒is performed such that 𝐷𝑃𝑟 𝑒 =
𝐷𝑃𝑟 𝑒

𝐽
 . Thus, the 

output of the selected feature 𝑍𝑠𝑒𝑙𝑒𝑐𝑡is determined by utilizing 
SVM-RFE from the pre-processed data 𝐷𝑃𝑟 𝑒 . 
For SVM training, the Radial Basis Function (RBF) kernel was 
used with a regularization parameter C = 1.0, kernel 
coefficient γ = 0.01, and stopping tolerance 10⁻⁴. These 
parameters were optimized dynamically using the VCROA 
algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution encoding using VCROA: The solution encoding 
selects the optimal solution from the available features. The 
solutions identified using the VCROA method are effectively 
represented during feature selection in the solution encoding. 
Here, the solution is randomly initialized to select optimal 
features based on the features' indices. The solution encoding 
performed to effectively select features is given in Figure 2. 
Fitness function: Using the expression provided in equation 
(2), the fitness of VCROA is calculated based on the ranking 
criterion score of SVM-RFE during feature selection. The 
fitness function from a set of variables is selected for the 
identification of the optimal solution. 
Designed the VCROA model for training SVM: The 
hyperparameters of SVM are optimally tuned using the 
VCROA approach, where VCROA is developed by 
incorporating a velocity-based concept in ROA. A naturally-
inspired metaheuristic algorithmic technique called ROA is 
based on the parasitic behavior of remora by switching the 
hosts. The Remora is a marine fish commonly found in tropical 
waters with a cylindrical, backward, and flat heads that belong 
to the Echeneidae family. Generally, remora follow the host 
movement in cold water and evade enemy invasion by 
swimming over whales, sharks, hulls, and other animals. 
Remora feed on ectoparasites available over the surface of the 
host and mainly depend on invertebrates or fish as their food. 
The host feeding during the eat thoughtfully (exploitation) 
and free travel (exploration) phases is followed by Remora to 
escape other enemies. The Remora converges quickly in the 
search space and is more effective at reducing computational 
complexity at high execution speeds. The velocity-contour-
based concept is incorporated with ROA to handle high-
dimensional problems by maintaining good exploratory and 
underexploited conditions. The VCROA algorithm optimizes 
the SVM hyperparameters by balancing exploration and 
exploitation, thereby accelerating convergence while 
maintaining accuracy. The mathematical modeling of VCROA 
is expressed as: 
Phase 1: Population initialization 
Let us consider a 𝑋 search space with𝑎number of remora 
population, which is given by, 

𝑋𝑎 = (𝑋𝑎1, 𝑋𝑎2, 𝑋𝑎3, . . . , 𝑋𝑎𝑗)          (3) 

Here, the solution dimension 
thu remora is given by j , and 

the total of remoras is indicated as a . Moreover, the remora 

vector differs from each other in terms of the size of the 
variant. Thus, the best food target𝑋𝐵 is given by: 

𝑋𝐵 = (𝑋1
∗, 𝑋2

∗, 𝑋3
∗, . . . . , 𝑋𝑎

∗)           (4) 

 

 

 

 

 

 

  

Figure 2. Solution encoding executed to select optimal features using VCRO  
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Phase 2: Fitness estimation 
The fitness function used to determine the best solution is 
given in equation (2). 
Phase 3: Exploration (Free travel) phase 
In the exploration phase, Remora follows the experience 
attack and Sailfish optimizer (SFO) strategy to update its 
location, as described below. 
SFO procedure: The remora position is modified when the 
remora is attached to the swordfish, where the updating of 
remora location is performed by considering the SFO 
procedure and is expressed as: 

𝑋𝑎
𝑢+1 = 𝑋𝐵

𝑢 − (𝑅(0,1) ∗ (
𝑋𝐵

𝑢+𝑋𝑅
𝑢

2
) − 𝑋𝑅

𝑢)         (5) 

Here, the random number is given as𝑅, 𝑈resembles the 
maximum number of repetitions; the undisturbed place is 
represented as𝑋𝑅, and the current iteration is signified 𝑢. 
Moreover, the exploration of the search space is ensured by 
adding the random selection of remora. The remora selection 
criteria for diverse hosts are based on whether the prey is 
consumed, and the achieved objective function is superior to 
those of previous functions. Further, the experience attack 
strategy is followed by the remora to record the current 
fitness value.  
Experience attack: The tuyu takes small steps around the 
host repeatedly to determine the necessary changes to the 
host, which is similar to accumulating experience. Thus, the 
experience accumulated by the remora is expressed as, 

𝑋𝐴 = 𝑋𝑎
𝑢 + (𝑋𝑎

𝑢 − 𝑋𝑃) ∗ 𝑅𝑉          (6) 

where the tentative step and the earlier generation position of 
remora are symbolized as 𝑋𝐴. Further, the remora performs a 
“small global movement” while making an active step by using 
𝑅𝑉. 
Phase 4: Exploitation (Eat thoughtfully) phase 
The host feeding as well as Whale Optimization Algorithm 
(WOA) strategies are followed by the remora during the early 
thoughtfully phase, and the process performed is 
demonstrated as follows. 
WOA strategy: The WOA technique is used to determine the 
location of the remora associated with the whale, and it is 
supplied by: 

𝑋𝑎+1 = 𝐷 ∗ 𝑒ℎ ∗ 𝑐𝑜𝑠(2𝜋𝛿) + 𝑋𝑎          (7) 

𝛿 = 𝑅(0,1) ∗ (ℎ − 1) + 1           (8) 

ℎ = − (1 +
𝑢

𝑈𝑀𝑎𝑥
)           (9) 

𝐷 = |𝑋𝐵 − 𝑋𝑎|          (10) 

where the position of a remora on a whale is symbolized asℎ, 
the undistributed measure is symbolized as 𝛿 that sets to the 
range [−1,1] and deteriorates linearly to [−2, −1], the 
distance between the prey and the hunter is given as 𝐷, and 
the maximum iteration is denoted by 𝑈𝑀𝑎𝑥. 
Host feeding: The subdivision of the exploitation procedure 
is host feeding, where host feeding is executed to minimize the 
solution space to the host location space. The remora follows 
small steps to move around the host, and is mathematically 
expressed as, 

𝑋𝑎
𝑢 = 𝑋𝑎

𝑢 + 𝑁          (11) 

𝑁 = 𝑇 ∗ (𝑋𝑎
𝑢 − 𝜒 ∗ 𝑋𝐵)         (12) 

𝑇 = 2 ∗ 𝐶 ∗ 𝑅(0,1) − 𝐶         (13) 

𝐶 = 2 ∗ (1 −
𝑢

𝑈𝑚𝑎𝑥
())         (14) 

where the remora factor is symbolized as 𝑇that helps to 
minimize the position of remora, the tiny step of remora 
motion is represented as 𝑁 , and the remora factor is given as 
𝜒. 
Velocity-contour-based concept: The remora’s velocity 
towards the host is used to fully update the solution in the 
search space. Thus, the algorithm for the remora position is 
derived mathematically by considering the velocity of the 
remora and is expressed by: 

𝑋𝑎
𝑢+1 = 𝑋𝑎

𝑢 + 𝑌 ∗ 𝜒 ∗ 𝑋𝐵 + 𝑇        (15) 

where, 𝑌signifies the velocity of remora. 
Phase 5: Re-estimation of fitness 
Equation (2) is used to calculate the fitness function, and if any 
solutions are found to be better than the obtained solution, 
the discovered solution is substituted. This yields the optimal 
solution. 
Phase 6: Termination 
The pseudo-code for VCROA is presented in Table 1, and the 
best solution is obtained by following the algorithmic steps 
continuously.  
Table 1 illustrates the step-by-step process of VCROA used for 
SVM hyperparameter optimization. Thus, the selected feature 
𝑍𝑠𝑒𝑙𝑒𝑐𝑡is obtained using SVM-RFE, with the hyperparameters 
of SVM optimally trained using the VCROA algorithm in the 
mapper phase. The features selected in the mapper phase are 
further merged and then subjected to the reducer phase for 
DDoS attack detection. 
Reducer phase for attack detection using FVCROA_DSA: In 
the reducer phase, the outputs from all mappers are 
aggregated and used as input to the Deep Stacked 
Autoencoder (DSA) classifier for the final DDoS attack 
detection stage. The resultant outputs obtained by the total 
number of 𝐺mappers are processed further to a suitable form 
for detecting DDoS attacks. Here, the selected features 
𝑍𝑠𝑒𝑙𝑒𝑐𝑡  obtained by SVM-RFE in the mapper phase, by merging 
all the mappers and feeding them into DSA to detect DDoS 
attacks more accurately. Additionally, by training the ideal 
weights of DSA, the FVCROA algorithm is utilized to improve 
detection performance. Thus, the detection process carried 
out in the reducer phase using the DSA model is explicated 
below. 
Architecture of DSA: The most common type of Deep Neural 
Network (DNN) is the DSA model, which consists of multiple 
layers of autoencoders interconnected by adjacent-layer 
neurons. In the proposed model, the DSA architecture consists 
of an input layer followed by two hidden autoencoder layers 
and one output layer. The encoder employs ReLU activation 
with 84, 64, and 32 neurons in successive layers, while the 
output layer uses Softmax activation for binary classification. 
To prevent overfitting, dropout rates of 0.3 and 0.2 are 
applied to the first and second hidden layers, respectively. The 
network is trained using the Adam optimizer with a learning 
rate of 0.001, a batch size of 64, and 100 training epochs, while 
a weight decay of 0.0001 ensures better generalization.  In 
DSA, the autoencoders consist of two parts, an encoder and a 
decoder.  
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Table 1. Pseudo code of VCROA 

Pseudo code of VCROA 

Input: Initial position𝑋𝑎
𝑢, Distance𝐷, Best position𝑋𝐵

𝑢+1 
Output: Optimal solution𝑋𝑎

𝑢+1 
Initially set the location of the remora population and memory 
Set optimal fitness and determine optimal solution by utilizing 
the equation (2) 
while𝑢 < 𝑈𝑚𝑎𝑥do 
Compute the value of fitness function for each remora 
Check to see whether any search agent exceeds the search space, 
then disregard it 
Modifyℎ, 𝛿, 𝑉 
for each indexed remora of 𝑎do 
If the Selection factor 𝑄(𝑎) = 0then 
Modify the attached whales’ position by utilizing the equation (7) 
else 
if𝑄(𝑎) = 1then 
Modify the attached sailfish position by utilizing the equation (5) 
end if 
Execute experience attack by utilizing the equation (6) 
Identify the value of 𝑄(𝑎)and check the necessary host 
replacement 
Perform host feeding mode of remora by utilizing the equation 
(11) 
else 
Modify the remora position by considering the velocity contour-
based concept by utilizing the equation (15) 
end for 
end while 

 
Here, an input, hidden layer, and mapping function are 
available in the encoder layer, whereas the expression of the 
hidden layer output of DSA is given by: 

𝑍𝑔(𝑍𝑠𝑒𝑙𝑒𝑐𝑡) = 𝑓(𝛼𝑍𝑠𝑒𝑙𝑒𝑐𝑡 + 𝜌)        (16) 

where, 𝑍𝑔represents a reconstructed signal, 𝑓(•) signifies the 

activation function of the encoder, and the bias vector is 
represented as𝜌, and 𝛼 resembles an encoding weight matrix. 
Further, a hidden mapping function and an output layer are 
presented in the decoder layer of the DSA. Also, in each hidden 
layer, the dropout technique is executed, and the neural 
network with a mapping relationship is given by, 

𝑍𝑠𝑒𝑙𝑒𝑐𝑡

^
(𝜆) = 𝑦(𝛼∗𝜆 + 𝜌∗)         (17) 

where, 𝜆resembles hidden layer output, 𝑦 (. )resembles the 
activation function of the decoder, 𝜌∗resembles the bias 
vector, and the weight matrix of the decoder is represented 
as𝛼∗. In addition, the loss function of DSA is estimated by 
utilizing Mean Squared Error (MSE), which is expressed as: 

𝑀𝑆𝐸 =
1

2
‖𝑍𝑠𝑒𝑙𝑒𝑐𝑡 − 𝑍𝑠𝑒𝑙𝑒𝑐𝑡

^

‖
2

        (18) 

The model was trained for 100 epochs with an early-
stopping patience of 10 epochs to prevent overfitting. The 
DSA utilizes two operations during training to provide 
solutions to over-fitting issues that occur due to over-training 
of samples. The DSA utilizes dropout as the first operation and 
weight decay coefficients in the second operation to execute 
the attack task. The dropout function is utilized for neglecting 
the neurons available in the hidden layer, and the predicted 
value with the probability 𝑚𝑖to generate a sub-network. Later, 
the confirmation of the discarded matrix 𝑥 =
[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑟] using the Bernoulli distribution is 
performed. Hence, the resultant function is expressed as: 

𝜇(𝑐, 𝑚𝑖) = {
𝑚𝑖 , 𝑐 = 1

1 − 𝑚𝑖 , 𝑐 = 0
        (19) 

Here, 𝑐 is the possible output. Furthermore, in each hidden 
layer, a dropout operation is performed, and is expressed by:  

𝜆𝑠(𝑍𝑠𝑒𝑙𝑒𝑐𝑡) = 𝑥𝑠𝑓(∑ 𝛼𝑍𝑠𝑒𝑙𝑒𝑐𝑡 + 𝜌𝑟
𝑐=1 )       (20) 

where the number of elements is given by 𝑟and the discarded 
matrix is represented as𝑥𝑠 . Further, the solutions to over-
fitting issues are provided by a weight decay coefficient, and 
the corresponding overall loss function is given by, 

𝐾(𝛼, 𝜌) = 𝜀 +
𝜛

2
∑ ∑ ∑ (𝛼𝑛𝑜

(𝑚)
)𝑞+1

𝑜=1
𝑞
𝑛=1

𝑀−1
𝑚=1

2
       (21) 

Here, 𝑜and  𝑛 is the neuron presented in  𝑚𝑡ℎ and  (𝑚 + 1)𝑡ℎ 
layer, the total number of neurons are represented as 𝑞, 
𝜛resembles the weight decay coefficient, the total layers is 
given as𝑀, and the connection weight among the neurons is 

given by 𝛼𝑛𝑜
(𝑚)

. Also, the categorical cross-entropy function is 
given by 𝜀 and is given by: 

𝜀 = −
1

𝜓
∑ ∑ 𝑤𝑛𝑜

𝜓𝑐𝑐
𝑑=1

𝜓
𝑐=1 • 𝑙𝑜𝑔 (𝑤

^

𝑛𝑜)        (22) 

where, 𝑤and 𝑤
^

 resembles the actual and expected labels; the 
number of labels is given by 𝜓𝑐𝑐 . Usually, the reconstruction 
error of DSA is minimized by determining optimal 
parameters. Thus, the resultant output 𝑑𝑜𝑢𝑡𝑝𝑢𝑡  is obtained 

using the DSA model, and the architecture of DSA is shown in 
Figure 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Architecture of DSA 

Designed the FVCROA model for the training of DSA: The 
hyperparameters of the DSA model are optimally adjusted by 
training using the FVCROA method, where FVCROA is 
developed by combining FC with VCROA. FC helps to improve 
the detection performance of the algorithmic models, which 
also promotes accurate solutions by utilizing the Laplace 
transform for derivative and integral equations. Further, the 
inverse Laplace transform is executed to achieve suitable 
solutions. The integration of Fractional Calculus (FC) into the 
VCROA algorithm enhances its global search ability by 
introducing memory-dependent dynamics to the 
optimization process. This mechanism helps the algorithm 
retain useful information from previous iterations, thereby 
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improving convergence stability and reducing the likelihood 
of getting trapped in local minima during DSA training. Thus, 
the mathematical modeling of FVCROA is given in equation 
(15). FC [38] is incorporated with VCROA to attain suitable 
solutions in the search space. From FC, 

“𝑧𝑙[𝑋𝑎
𝑢+1] = 𝑋𝑎

𝑢 + 𝑌 ∗ 𝜒 ∗ 𝑋𝐵 + 𝑇”        (23) 

“𝑋𝑎
𝑢+1 − 𝑙𝑋𝑎

𝑢 −
1

2
𝑙𝑋𝑎

𝑢−1 −
1

6
(1 − 𝑙)𝑋𝑎

𝑢−2 −
1

24
𝑙(1 − 𝑙)(2 −

𝑙)𝑋𝑎
𝑢−3 = 𝑋𝑎

𝑢 + 𝑌 ∗ 𝜒 ∗ 𝑋𝐵 + 𝑇”                                                   (24) 

where, 𝑙resembles the order of the derivative. Hence, the final 
modified expression of FVCROA is expressed as, 

𝑋𝑎
𝑢+1 = 𝑋𝑎

𝑢(1 + 𝑙) + 𝑌 ∗ 𝜒 ∗ 𝑋𝐵 + 𝑇 +
1

2
𝑙𝑋𝑎

𝑢−1 +
1

6
(1 −

𝑙)𝑋𝑎
𝑢−2 +

1

24
𝑙(1 − 𝑙)(2 − 𝑙)𝑋𝑎

𝑢−3         (25) 

where,𝑋𝑎
𝑢+1indicates the remora position at(𝑢 + 1)𝑡ℎ 

iteration, the site of remora at(𝑢 + 2)𝑡ℎ iteration is 
represented as𝑋𝑎

𝑢+2, and 𝑋𝑎
𝑢+3 represents the Remora site at 

(𝑢 + 3)𝑡ℎ iteration. Moreover, the best solution is determined 
using the fitness function given in equation (18). The 
proposed FVCROA_DSA framework integrates distributed 
computing, intelligent feature selection, and deep learning 
optimization. The combined use of MapReduce, SVM-RFE, 
VCROA, and DSA enables efficient large-scale DDoS detection 
with improved scalability, faster convergence, and reduced 
overfitting compared with conventional centralized methods. 

4. Results and discussion  

To quantitatively analyze the supremacy of FVCROA_DSA 
introduced for detecting DDoS attacks, the results recorded 
from the experiment and the discussion that follows are 
demonstrated below. 

4.1 Experimental set-up 
The Python utility is used to carry out the FVCROA_DSA 

approach, which is used to detect DDoS attacks. All 
experiments were executed on a workstation equipped with 
an Intel i9 processor, 64 GB RAM, and an NVIDIA RTX 3080 
GPU running Ubuntu 20.04. The model was implemented in 
Python 3.10 using TensorFlow 2.13 and Scikit-learn. Each 
experiment was repeated 10 times with different random 
seeds (42–51) to ensure statistical robustness, and the 
reported results represent the mean ± standard deviation 
(SD) of these runs. 

4.2 Dataset description 
The BOT-IoT dataset and DDoS Attack dataset are the 

databases utilized in this research to evaluate the 
performance of FVCROA_DSA in identifying DDoS attacks. The 
databases are explicated as follows. 
BOT-IoT dataset: The BOT-IoT database utilized the Shark 
tool for the generation of raw network packets. The data in 
this database was produced by combining both normal and 
anomalous traffic. The database source files are available in 
multiple formats, such as CSV format, generated Argus files, 
and the original Packet capture (PCAB) files. Moreover, the 
subcategory and category of attacks are considered for the 
separation of data files, thus assisting the data labeling 
process.  
DDoS Attack dataset: The DDoS Attack database is available 
in both CSV and PCAB file formats. The database comprises 
network traffic data collected over two days, and attacks, such 
as UDP_Lag, WebDDoS, UDP, MSSQL, NetBIOS, NTP, LDAP, 

SYN, DNS, SSDP, TFTP, and SNMP, are executed to determine 
the background traffic flows. Further, the database possesses 
about 4 lakh instances while randomly extracting 84 features 
of network traffic using the CICflow meter. Before training, 
both datasets were standardized and preprocessed as 
described in Section 3. The BOT-IoT dataset contained 
approximately 72 million records, while the DDoS Attack 
dataset included 5 million labeled flow instances. From each 
dataset, 70% was used for training, 15% for validation, and 
15% for testing, ensuring class balance between normal and 
attack traffic. 

4.3 Performance metrics 
The effectiveness of FVCROA_DSA for detecting DDoS 

attacks is evaluated using evaluation metrics, which are 
explicated below.  
Precision: The proportion of positive values detected truly 
using FVCROA_DSA to the predicted positive values is 
precision, which is given as: 

 𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛, 𝑝 =
𝜈1

𝜈1+𝜈3
         (26) 

where false negatives and true positives are signified as 𝜈4, 
and 𝜈1, whereas the false positive is given by 𝜈3. 
Recall: The proportion of positive values predicted truly 
using FVCROA_DSA to the total available positive values is 
recall, which is given by, 

𝑅𝑒 𝑐 𝑎𝑙𝑙, 𝑟 =
𝜈1

𝜈1+𝜈4
         (27) 

F-measure: It is the harmonic mean computed between recall 
and precision and is formulated as, 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑝∗𝑟

𝑝+𝑟
         (28) 

4.4 Comparative techniques 
The prevailing DDoS attack detecting techniques, namely 

FS-WOA-DNN, Neural Network, GAN, RHS-RBM, and VCROA-
Deep Neuro-Fuzzy Network (DNFN), are compared with 
FVCROA_DSA to determine the performance of FVCROA_DSA 
in detecting DDoS attacks.  

4.5 Comparative evaluation 
The comparative results reported below represent the 

mean performance values obtained over 10 independent 
runs, with negligible variance (< 0.5%). This consistency 
confirms that the FVCROA_DSA model maintains stable 
detection performance across different random 
initializations. The superiority of FVCROA_DSA in identifying 
DDoS attacks is evaluated using both the BOT-IoT and DDoS 
Attack datasets. The evaluation performed is briefly explained 
as follows: 
For the BOT-IoT dataset: The alterations of K-fold and 
learning data are performed to identify the supremacy of 
FVCROA_DSA based on the BOT-IoT dataset, where the 
validations executed are given below.  
Analysis based on learning data: Figure 4 shows the 
experimental results obtained by FVCROA_DSA when using 
the BOT-IoT database for DDoS attack detection. Figure 4(a) 
shows the recall-based validation of the planned 
FVCROA_DSA and other current techniques. In this case, the 
FVCROA_DSA achieved a recall of 94.275% on 90% of the 
learning data, which is higher than that of other detection 
models currently in use. FS-WOA-DNN, RHS-RBM, GAN, 
Neural Network, and VCROA-DNFN were among the most 
popular models; they achieved recall values of 86.379%, 
84.75%, 80.597%, 78.546%, and 91.072%, respectively. Thus, 
compared to RHS-RBM, which is used to identify DDoS 
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attacks, FVCROA_DSA achieved a higher recall of 8.38%. 
Furthermore, the results from the experiment on the DDoS 
attack detection models, in terms of precision, are shown 
graphically in Figure 4(b). The precision observed by the 
DDoS attack detection techniques is 79.548% by FS-WOA-
DNN, 83.102% by Neural Network, 85.794% by GAN, 
89.734% by RHS-RBM, 91.285% by VCROA-DNFN, and 
93.985% by FVCROA_DSA for 90% learning data. 
Comparatively, a maximum precision of 16.36% is attained by 
FVCROA_DSA as compared with other existing FS-WOA-DNN 
detection models. Further, the statistical results obtained by 
different DDoS attack detection techniques when validated 
using F-measure are shown in Figure 4(c). The FVCROA_DSA 
technique developed in this research measured superior 
results with a maximum F-measure of 94.130% for learning 
data of 90%. Likewise, the F-measure obtained by existing 
DDoS attack detection schemes, such as GAN is 85.268%, FS-
WOA-DNN is 79.044%, RHS-RBM is 88.024%, Neural Network 
is 81.830%, and VCROA-DNFN is 91.179%. The outcomes 
revealed that the FVCROA_DSA model observed a maximum 
performance of 9.41% to GAN. Overall, these results confirm 
that the proposed FVCROA_DSA model consistently 
outperforms all baseline techniques on the BOT-IoT dataset, 
demonstrating strong generalization capability and stability 
across learning data variations. 
Analysis based on K-fold: Figure 5 displays the graphical 
representation of various outcomes obtained from the 
experiment by FVCROA_DSA, as well as other existing 
schemes, during the detection of DDoS attacks based on K-fold 
by considering the BOT-IoT dataset. Figure 5(a) illustrates the 
outcomes obtained by different DDoS attack detection models 
while validating using recall. It is observed that the 
FVCROA_DSA attained a maximum recall of 94.130%. In 
contrast, baseline DDoS attack detection techniques showed a 
recall of 85.279% for RHS-RBM, 78.595% for Neural Network, 
76.125% for FS-WOA-DNN, 83.457% for GAN, and 91.006% 
for VCROA-DNFN for a K-fold value of 8. According to the 
findings, the FVCROA_DSA model outperformed the current 
FS-WOA-DNN model by 19.05%. The validation of the 
designed FVCROA_DSA and other existing DDoS attack 
detection approaches by employing precision is given in 
Figure 5(b). The FVCROA_DSA attained a precision of 
92.904%, which is superior to the precision recorded by other 
prevailing models. The prevailing techniques, such as RHS-
RBM, GAN, Neural Network, FS-WOA-DNN, and VCROA-DNFN, 
recorded precision of 88.727%,84.012%, 82.075%, 78.596%, 
and 90.434% for a K-fold value of 8. Thus, as compared to the 
current GAN approach, the FVCROA_DSA achieved a better 
performance of 9.57%. The results obtained from the 
experiment by the DDoS attack detection schemes employing 
F-measure are revealed in Figure 5(c). Here, the DDoS attack 
detection techniques measured F-measure of 77.341% by FS-
WOA-DNN, 80.297% by Neural Network, 83.733% by GAN, 
86.969% by RHS-RBM, 90.434% by VCROA-DNFN, and 
92.904% by FVCROA_DSA for K-fold value 8 9. Here, the 
superior performance of 2.94% is recorded by FVCROA_DSA 
than the VCROA-DNFN approach.  
For the DDoS Attack dataset: The K-fold and learning data 
were altered to determine the superiority of the FVCROA_DSA 
technique in detecting DDoS attacks by considering the DDoS 
Attack dataset.  
Analysis based on learning data: The graphical 
representation of different outcomes obtained from the 
experiment by FVCROA_DSA while detecting DDoS attacks 
based on learning data by considering the DDoS Attack 
dataset is depicted in Figure 6.  

(a) 
 

(b) 

(c) 
Figure 4. Comparative evaluation of FVCROA_DSA and baseline 
methods on the BOT-IoT dataset for varying learning data: (a) Recall, 
(b) Precision, and (c) F-measure   

The results obtained from the experiment by schemes 
employing recall are graphically given in Figure 6(a). The 
recall recorded by different detection approaches is 80.276% 
by FS-WOA-DNN, 84.551% by Neural Network, 86.875% by 
GAN, 90.346% by RHS-RBM, 92.548% by VCROA-DNFN, and 
94.827% by FVCROA_DSA for 90% learning data. 
Comparatively, the maximum precision of 2.40% is attained 
by FVCROA_DSA as compared with the VCROA-DNFN 
approach. Figure 6(b) illustrates the results obtained from the 
experiment by different DDoS attack detection models while 
validating using precision. The FVCROA_DSA model measured 
a maximum precision of 93.857% for 90% learning data. 
Likewise, the precision measured by other DDoS attack 
detection schemes, like RHS-RBM, is 88.103%, GAN is 
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84.275%, Neural Network is 82.367%, FS-WOA-DNN is 
77.945%, and VCROA-DNFN is 90.245%.  

(a) 

(b) 

(c) 

Figure 5. Performance of FVCROA_DSA versus existing models on the 
BOT-IoT dataset under K-fold cross-validation (K=8): (a) Recall, (b) 
Precision, and (c) F-measure   

The results revealed that the FVCROA_DSA model 
achieved a high detection performance of 16.95%, compared 
with the existing FS-WOA-DNN model.  The validation of the 
designed FVCROA_DSA and other existing DDoS attack 
detection schemes employing F-measure is shown in Figure 
6(c). The FVCROA_DSA achieved an F-measure of 94.340%, 
which is higher than the 90% F-measure reported by other 
existing detection models trained on the learning data. The 
prevailing techniques, such as RHS-RBM, GAN, Neural 
Network, FS-WOA-DNN, and VCROA-DNFN, achieved F-
measures of 89.210%, 85.555%, 83.445%, 79.093%, and 
91.382%, respectively. Thus, the FVCROA_DSA obtained a 
superior performance of 9.31% as compared with the GAN. 
These findings indicate that the FVCROA_DSA model achieves 
consistent improvements over existing schemes when 
evaluated on the DDoS Attack dataset, confirming its 
robustness and effectiveness under varying learning data 
conditions. 

(a) 

(b) 
 

 
(c) 

Figure 6. Detection accuracy comparison on the DDoS Attack dataset 
using learning data variation: (a) Recall, (b) Precision, and (c) F-
measure   

The graphical representation of results recorded by 
FVCROA_DSA and the prevailing schemes used for 
comparison while detecting DDoS attacks based on the DDoS 
Attack dataset, using K-fold, is shown in Figure 7. The analysis 
of the FVCROA_DSA model, as well as other existing DDoS 
attack detection schemes using recall, is given in Figure 7(a). 
Here, the FVCROA_DSA attained a recall of 94.387%, which is 
the maximum as compared to the recall recorded by other 
existing detection models, such as RHS-RBM, GAN, Neural 
Network, FS-WOA-DNN, and VCROA-DNFN at 89.765%, 
84.012%, 81.072%, 78.549%, and 91.673% for a K-fold value 
of 8. Thus, the FVCROA_DSA obtained a superior performance 
of 10.99% in terms of recall as compared with the existing 
GAN technique. The results obtained from the experiment by 
the DDoS attack detection schemes by utilizing precision are 
exhibited in Figure 7(b). The precision recorded by the DDoS 
attack detection techniques is 75.186% by FS-WOA-DNN, 
78.454% by Neural Network, 81.072% by GAN, 83.645% by 
RHS-RBM, 89.745% by VCROA-DNFN, and 93.0136% by 
FVCROA_DSA for a K-fold 8.  
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(a) 

(b) 

(c) 

Figure 7. Comparative performance of FVCROA_DSA and existing 
models on the DDoS Attack dataset under 8-fold cross-validation: (a) 
Recall, (b) Precision, and (c) F-measure  

  

 

 

 

 

 

 

 

 

Here, the high performance of 3.52% is recorded by 
FVCROA_DSA as compared with the VCROA-DNFN approach. 
Also, Figure 7(c) shows the results recorded by various 
detection models while validating using F-measure. The 
FVCROA_DSA measured a maximum F-measure of 93.696% 
for a K-fold of 8. Likewise, the F-measure obtained by other 
DDoS attack detection schemes, FS-WOA-DNN is 76.830%, 
RHS-RBM is 86.597%, GAN is 82.516%, Neural Network is 
79.742%, and VCROA-DNFN is 90.699%. According to the 
findings, the FVCROA_DSA model outperformed the current 
FS-WOA-DNN by 18%. 

4.6 Comparative discussion 
In Table 2, the results obtained by the FVCROA_DSA 

model and other prevailing DDoS attack detection techniques 
by considering the BOT-IoT database and DDoS Attack 
database by varying K-fold and learning data are portrayed. 
The observations show that the FVCROA_DSA attained high 
experimental results with a recall of 94.827%, precision of 
93.857%, and F-measure of 94.340% for learning data of 90%. 
Likewise, the recall recorded by prevailing schemes, like GAN 
is 86.875%, Neural Network is 84.551%, FS-WOA-DNN is 
80.276%, RHS-RBM is 90.346%, and VCROA-DNFN is 
92.548%. Also, the existing approaches, such as RHS-RBM, 
GAN, Neural Network, FS-WOA-DNN, and VCROA-DNFN 
obtained precision of 88.103%,84.275%, 82.367%, 77.945%,  
and 90.245% and F-measure of 89.210%,85.555%, 83.445%, 
79.093%, and 91.382%. The consistent superiority of the 
proposed FVCROA_DSA across both datasets can be attributed 
to its hybrid optimization and deep feature-learning design. 
The SVM-RFE component efficiently eliminates redundant 
features, while the FVCROA optimizer fine-tunes the DSA 
parameters to achieve a balanced precision–recall trade-off 
and rapid convergence. Incorporating Fractional Calculus 
further stabilizes the optimization process, yielding smoother 
loss surfaces and improved generalization compared with 
traditional metaheuristic models. It is observed that the 
FVCROA DSA technique suggested is better than existing 
schemes used to make comparisons with the technique in the 
detection of DDoS attacks. In terms of detecting DDoS attacks 
based on the information packets found in the BOT-IoT and 
DDoS attack databases, the FVCROA_DSA is more dependable 
and highly generalizable. Also, the DSA model reduced the size 
of the data by removing the most significant information 
contained in the data packets. As well, at lower values of the 
computational complexity of problems, the FVCROA model 
that was developed to optimize the hyperparameters of DSA 
quickly converges to the optimal value of the results.  

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparative discussion 

Variations Metrics FS-WOA-DNN 
Neural 

Network 
GAN RHS-RBM VCROA-DNFN Proposed FVCROA_DSA 

For BOT-IoT database 

Learning data of 
90% 

Recall 78.546 80.597 84.75 86.379 91.072 94.275 
Precision 79.548 83.102 85.794 89.734 91.285 93.985 

F-measure 79.044 81.830 85.268 88.024 91.179 94.130 

K-fold value of 8 
Recall 76.125 78.595 83.457 85.279 91.006 94.037 

Precision 78.596 82.075 84.012 88.727 90.434 92.904 
F-measure 77.341 80.297 83.733 86.969 90.719 93.467 

For DDoS Attack dataset 

Learning data of 
90% 

Recall 80.276 84.551 86.875 90.346 92.548 94.827 
Precision 77.945 82.367 84.275 88.103 90.245 93.857 

F-measure 79.093 83.445 85.555 89.210 91.382 94.340 

K-fold value of 8 
Recall 78.549 81.072 84.012 89.765 91.673 94.387 

Precision 75.186 78.454 81.072 83.645 89.745 93.016 
F-measure 76.830 79.742 82.516 86.597 90.699 93.696 
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The conclusions of the FVCROA DSA on identifying DDoS 
attacks based on packet data were encouraging. Overall, the 
experimental results confirm that the suggested FVCROA DSA 
model is state-of-the-art in terms of accuracy and robustness 
for detecting DDoS attacks. The architecture of its MapReduce 
system enables easy deployment across large networks, and 
the hybrid optimization mechanism improves learning 
stability and detection accuracy. The reliability and efficiency 
of the model with respect to real-world intrusion detection 
can be demonstrated by the consistency of its results across 
both benchmark datasets. 

5. Conclusion  
Various security mechanisms have been used to prevent 

and detect cyberattacks across the internet. Among them, 
Distributed Denial of Service (DDoS) is one of the most 
common and devastating types of attack, as it enables 
attackers to flood targeted networks with unnecessary traffic. 
To overcome this issue, a new optimization-based deep 
learning model, FVCROA_DSA, was developed to effectively 
detect DDoS attacks in a MapReduce system using the mapper 
and reducer. The input data were first processed using the 
mean substitution technique. Then, features were selected 
using SVM-RFE in the mapper stage, with the SVM parameter 
optimized using the VCROA algorithm. The identified features 
were then run through the DSA model during the reducer 
stage, with hyperparameters optimized using the proposed 
FVCROA technique to achieve the best possible detection 
performance. Experimental analyses showed that the 
FVCROA framework with the DSA achieved higher detection 
accuracy, with a recall of 94.827, a precision of 93.857, and an 
F-measure of 94.340, compared to existing machine learning 
and deep learning models. The framework can be expanded 
to real-time and streaming networks in the future to increase 
the scalability and flexibility of the detection process. 
Moreover, multiclass classification strategies that incorporate 
large, labelled datasets will enable the system to detect and 
classify various forms of cyberattacks beyond DDoS, thereby 
enhancing its resilience and generalization in next-generation 
intrusion detection systems. 
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