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The rising dependence on internet-based services has exposed network
infrastructure to increased vulnerability to cyberattacks, especially DDoS
attacks. The attacks flood target systems with unwarranted traffic that disrupts
legitimate access and undermines service reliability. To overcome this issue, the
present paper proposes an optimization-based deep learning model, called
Fractional Velocity Contour-based Remora Optimization Algorithm-Deep
Stacked Autoencoder (FVCROA_DSA), for high-efficiency DDoS attack detection
in a MapReduce environment. The model combines a mean-substitution
method for filling data gaps and Support Vector Machine Recursive Feature
Elimination (SVM-RFE) in the mapper step to identify the most significant
network attributes. This step is followed by the reducer stage, which trains a
Deep Stacked AutoEncoder (DSA) to recognize attack patterns, which is then
fine-tuned by the proposed FVCROA algorithm. Fractional Calculus leads to
increased optimization stability and faster convergence during training.
Experimental tests on the BOT-IoT and DDoS Attack datasets show that the
FVCROA architecture with DSA achieves higher detection accuracy, with a
precision of 93.857, a recall of 94.827, and an F-measure of 94.340, surpassing
the current baseline techniques in scalability and reliability.

1. Introduction

making continuous protection of network infrastructure a
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In recent years, a wide range of internet-based
services—such as newsgroups, social networking, e-
commerce, banking, and online trading—have become
integral to modern digital infrastructure [1]. The growing
dependency on interconnected communication systems has
accelerated data transfer and management across distributed
networks [2]. However, these advancements have
simultaneously expanded the surface for cyber threats and
malicious activities [3]. Among these threats, Distributed
Denial of Service (DDoS) attacks remain one of the most
persistent and damaging forms of cyber intrusion [4]. A DDoS
attack overwhelms targeted servers or applications with
excessive illegitimate requests, thereby exhausting resources
and disrupting legitimate access to services [5]. For instance,
Amazon Web Services (AWS) experienced a 2.3 Tbps DDoS
attack in February 2020 [6], while Google Cloud reported 46
million requests per second directed at one of its clients in
June 2022 [7]. Recent analyses further reveal that the
frequency and magnitude of DDoS incidents have continued
to increase globally [8]. These attacks cause severe financial
losses, service unavailability, and reputational damage,
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critical cybersecurity requirement [9]. To ensure secure and
reliable operations, sectors such as government, finance,
healthcare, and defense increasingly rely on intrusion
detection systems (IDSs) for threat monitoring [10].
However, traditional IDS architectures face scalability and
responsiveness limitations when processing large,
heterogeneous network traffic [11]. With the explosive
growth of network data, big data frameworks such as Hadoop,
Spark, and MapReduce have emerged as effective platforms
for parallel and distributed analysis [12]. Among these,
MapReduce has proven particularly efficient due to its
scalability and ability to divide high-volume network traffic
into smaller, manageable batches for distributed processing
[13]. This capability makes it highly suitable for modern DDoS
detection systems that require real-time adaptability and
computational resilience [14]. Previously existing detection
systems operated mainly using signature-based and
anomaly-based methods [15]. Signature-based solutions are
effective at identifying familiar attack patterns [16] but
ineffective against new or emerging attacks. On the other
hand, anomaly systems can detect unknown behavior but
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tend to be very sensitive, with a high number of false
positives, and prone to instability under changing conditions
[17]. These shortcomings limit their usefulness in large-scale,
fast-changing network environments [18].

Abbreviations
AWS Amazon Web Services
BOT-IoT Botnet Internet of Things (dataset)

CIC Canadian Institute for Cybersecurity (implied
from CICflow meter tool)

CcSv Comma-Separated Values

DDoS  Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

DSA Deep Stacked Autoencoder

DNN Deep Neural Network

FC Fractional Calculus

FVCROA Fractional Velocity Contour-based Remora
Optimization Algorithm

GAN Generative Adversarial Network
HHO Harris Hawks Optimization
IP Internet Protocol

LDAP  Lightweight Directory Access Protocol
MSSQL Microsoft SQL Server

NTP Network Time Protocol

PCAB  Packet Capture (pcap) files (noted as PCAB in

text)
PSO Particle Swarm Optimization
ROA Remora Optimization Algorithm
RFE Recursive Feature Elimination

SFO Sailfish Optimizer

SVM-RFE Support Vector Machine-Recursive Feature
Elimination

SVM Support Vector Machine

SNMP  Simple Network Management Protocol

SSDP  Simple Service Discovery Protocol

SYN Synchronize (TCP flag)

UDP User Datagram Protocol

TFTP  Trivial File Transfer Protocol

VCROA Velocity Contour-based Remora Optimization
Algorithm

WOA  Whale Optimization Algorithm

XAl eXplainable Artificial Intelligence

To address these limitations, machine learning (ML)
methods that learn discriminative statistical features to
distinguish normal from abnormal network traffic have
gained increased attention [19]. Popular algorithms for
detecting DDoS and classifying network anomalies include
Support Vector Machines (SVMs), Decision Trees, and
Random Forests [20]. These methods, however, are highly
manual and fail to achieve high detection rates in complex,
high-dimensional data sets [21]. In recent years, deep
learning (DL) methods have become highly promising, as they
can automatically extract hierarchical and nonlinear
representations from massive data [22]. Convolutional
Neural Networks (CNN) [23], Recurrent Neural Networks
(RNN) [24], and Autoencoder models have been shown to
perform better at detection than more traditional approaches
to ML. However, these models commonly face high
computational cost, sensitivity to hyperparameters, and
limited flexibility in real-time big-data environments [26].
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To overcome these issues, optimization algorithms were
implemented within DL frameworks to improve training
efficiency and detection performance [27]. Whale
Optimization Algorithm (WOA) [28], Particle Swarm
Optimization (PSO) [29], and Genetic Algorithms (GA) [30]
have been optimized to improve parameter optimization and
reduce the false-positive rate. Nonetheless, most traditional
optimization approaches are slow and tend to get stuck in
local optima. Besides, the use of Fractional Calculus (FC) in
optimization has not been thoroughly investigated, despite its
ability to provide higher accuracy and dynamic stability for
more intricate search algorithms [31]. Based on these
difficulties, this paper suggests a deep learning framework
based on optimization that combines the Fractional Velocity
Contour-based Remora Optimization Algorithm (FVCROA)
with a Deep Stacked Autoencoder (DSA) in a MapReduce
setup:

(1) enhance scalability and real-time detection capability
through distributed MapReduce-based data processing;

(2) improve feature selection and dimensionality reduction
using SVM-Recursive Feature Elimination (SVM-RFE) in the
mapper phase; and

(3) Optimize DSA hyperparameters via FVCROA to improve
convergence speed, classification accuracy, and robustness
against high-dimensional traffic.

Lastly, the effectiveness of the framework is evaluated using
two benchmark datasets, namely BOT-IoT and DDoS Attack,
to demonstrate that it achieves better detection accuracy,
convergence, and scalability than current ML-, DL-, and
optimization-based models. The proposed method is an
intelligent, scalable, and efficient solution to the problem of
modern DDoS attack detection by combining distributed big-
data processing with fractional-calculus-based optimization.

2. Literature review

Several researchers have investigated deep learning and
optimization algorithms to enhance the accuracy of DDoS
attack detection while minimizing computational cost. Cil et
al. [32] developed a Deep Neural Network (DNN) to identify
and categorize DDoS attacks from network data. The model
was very accurate, converged quickly, and required minimal
computational time despite the small amount of training data.
Nonetheless, it was not capable of functioning in real-time
detection cases. A deep neural network model was proposed
by Sumathi and Karthikeyan [1] to classify known and
unknown DDoS attacks, achieving a high packet delivery ratio
with low overhead. Despite its strengths, the approach failed
to incorporate machine learning algorithms, such as Support
Vector Machines (SVMs), to perform comparative analysis
and hybrid performance assessment. Akgun et al. [6]
introduced a Convolutional Neural Network (CNN)-based
methodology that used information gain to select features.
This model was not very suitable for high-speed, real-time
detection of DDoS attacks, though it had fewer parameters
and incurred lower computational cost. On the same note,
Anley et al. [29] proposed a CNN architecture using transfer
learning that could be used to classify binary and multi-class.
This model minimized overfitting and was robust, but could
not withstand adversarial attacks or achieve stable
performance across varied data. Novaes et al. [33] developed
a Generative Adversarial Network (GAN) to detect DDoS
attacks via adversarial training and Internet Protocol (IP)
packet analysis. By tracking network traffic, the model
minimized response time and maximized detection accuracy.
However, it did not work well in actual traffic conditions and
did not extrapolate to nonhomogeneous data. A Deep
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Contractive Autoencoder (DCAE) was proposed by Aktar and
Nur [30] for the detection of DDoS attacks, based on a semi-
supervised learning approach. Even though it had high
reliability in detecting complex attacks with minimal
reconstruction error, it performed poorly in multiclass
classification and on large benchmark datasets. Agarwal et al.
[27] designed a Feature Selection Whale Optimization
Algorithm Deep Neural Network (FS-WOA-DNN) to optimize
the accuracy of DDoS attack detection. The model used the
Whale Optimization Algorithm (WOA) to identify the best
feature subsets, reducing computation time and improving
classification accuracy. But it was unable to detect new or
previously unseen attack types. Sumathi et al. [34] proposed
a hybrid Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) units, optimized using the Harris
Hawks Optimization (HHO) and Particle Swarm Optimization
(PSO) algorithms. This model significantly reduced
overfitting and improved overall detection accuracy, yet
lacked global interpretability despite its use of explainable Al
(XAI) components. In a similar vein, the RHS-RBM model
presented in [27] was successful in detecting DDoS attacks
quickly and precisely but failed to account for network traffic
on virtual machines; hence, it does not apply to the current
cloud computing scenario.

Even though these approaches have produced laudable
outcomes in terms of detection precision and computational
complexity, they have several issues. The majority of the
existing schemes are not scalable to large data settings and
are unable to handle large or continuous network flows
effectively. Most methods exhibit low generalization
performance when applied to unknown or heterogeneous
data. The process of feature selection and optimization is
common and often leads to suboptimal model performance.
Also, not many models provide explainable information about
their detection decisions, and most depend on offline training,
which does not apply to real-time network security
monitoring. Recent literature has also focused on hybrid deep
learning networks that combine various neural elements to
increase flexibility and resilience. The combination of CNNs
and LSTMs, or GRU LSTMs, is very useful for representing
global and temporal patterns in network traffic, thereby
enhancing the identification of dynamic and burst-based
DDoS  patterns. Nonetheless, these models are
computationally costly, and scaling to distributed big-data
systems cannot be done without significant effort, though
they are exact. Similarly, Bi-LSTM and attention-based
models also improve sequential knowledge of packet flows,
but they all require manual hyperparameter tuning and
therefore cannot be applied to real-time systems that are
dynamic. Optimization algorithms have also entered the
realm of enhancing the accuracy and convergence properties
of learning-based intrusion detection systems. Genetic
Algorithms (GA), the Grey Wolf Optimization (GWO), the
Harris Hawks Optimization (HHO), and the Ant Colony
Optimization (ACO) are metaheuristic algorithms used to
optimize hyperparameters, select the best features, and
reduce classification errors. For example, GA-optimized CNN
models and PSO-based DNN models have shown faster
convergence and fewer alarms than manually adjusted
models. Nevertheless, the majority of these algorithms are
predetermined by initial parameter values and may become
stuck in local optima and lose consistency on large-scale or
non-homogeneous data. Furthermore, there has been an
increasing body of research on the use of explainable artificial
intelligence (XAI) in conjunction with deep learning to
enhance transparency in intrusion detection decisions. Even
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though tools such as SHAP (Shapley Additive exPlanations)
and LIME (Local Interpretable Model-agnostic Explanations)
have been employed to understand deep network outputs,
integrating them can increase computational cost, making
them less useful in real-time. In addition, although several
studies suggest distributed frameworks based on Spark or
Hadoop for scalable processing, few have integrated these
frameworks with adaptive, optimization-based models that
support continuous online learning. The combination of these
drawbacks underscores the need for a single, scalable system
that integrates distributed big-data processing with
intelligent optimization and deep feature learning. It must be
capable of managing large, heterogeneous network traffic on
a scale, automatically selecting the right features, dynamically
tuning hyperparameters, working effectively in real-time
settings, and being explainable and robust to adversarial
conditions.

3. Designed the FVCROA_DSA technique for DDoS

attack detection

This article presents an FVCROA_DSA model for
detecting DDoS attacks using the MapReduce framework. The
input data is initially retrieved from the database and then
undergoes data preprocessing to impute missing values using
the mean substitution strategy. Then, the pre-processed data
is fed into the MapReduce framework, which comprises a
mapper phase and a reducer phase. The proposed framework
was implemented using the Hadoop MapReduce architecture
on a distributed 16-node cluster (Intel i9 processors, 16 GB
RAM per node, Ubuntu 20.04). The implementation utilized
the Python Pydoop interface for efficient parallel execution
and scalability. The selection of suitable features using SVM-
RFE [35] is performed from the pre-processed data in the
mapper phase. Here, the SVM hyperparameters are optimally
adjusted by training the SVM with the VCROA method. The
VCROA is developed by incorporating the velocity-contour-
based concept with ROA [36]. Later, the selected features are
merged and fed into the reducer phase to accurately detect
DDoS attacks. The DDoS attack is detected using the DSA [37]
model, where the DSA's optimal weights are fine-tuned using
the FVCROA model. Here, FVCROA is designed by
incorporating FC [38] with VCROA. Further, Figure 1 shows
the diagrammatic view of FVCROA_DSA to detect DDoS
attacks.

3.1 Data collection

The input data is primarily derived from the BOT-IoT
database [39] and the DDoS attack database [40] for DDoS
attack detection. Here, the BOT-1oT database comprises about
72 million records with real-time and simulated scenarios.
The database consists of four attack categories, each with data
types related to DoS and DDoS attacks. Similarly, the DDoS
attack database comprises instances of more than 5 crore
recorded from background traffic flows. The database
considered for the detection task is represented by,

W=[Wl,Wz,W3,...,WD,...,Wz] (1)

wherein, the total data presented in the dataset is signified
asZ, the input database used for detecting DDoS attacks is
given byW, and the D" input data taken for the detection task
is signified as Wp.

The BOT-IoT and DDoS Attack datasets were divided into 70%
training, 15% validation, and 15% testing subsets. Data were
shuffled using stratified sampling to maintain class balance,
and all experiments were performed with a fixed random seed
(42) to ensure reproducibility.
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Figure 1. Diagrammatic view of the FVCROA_DSA technique to detect DDoS attacks

3.2 Data pre-processing

The aggregation, transforming, and cleaning of raw data
by removing inaccurate or corrupted records from the input
data is termed data pre-processing. The input datal/yis fed to
data pre-processing by utilizing missing data imputation.
Missing data imputation is the process of retaining data by
replacing missing values with substitute values based on
available information in the database. Here, the missing data
is imputed by applying the mean substitution method, where
the missing data of a variable is replaced by computing the
mean of the input datalW,for each variable. Thus, the pre-
processed data Dp,.is obtained by executing the mean
substitution method and is further fed into the MapReduce
framework for attack detection. Additionally, categorical
variables were label-encoded, and all numerical attributes
were normalized using min-max scaling to the range [0, 1]
before model training.

3.3 MapReduce framework

The MapReduce framework is generally considered a
programming framework that is used to process large
datasets to detect DDoS attacks more precisely. The
MapReduce framework is a simple, flexible, and reliable
method that utilizes the mapper and reducer phases to
execute the detection task. Here, the pre-processed data
Dp, is initially split into key-value pairs and passed to the
mapper phase for feature selection; the selected features are
then passed to the reducer phase for detecting DDoS attacks.
The detection process executed in both phases of the
MapReduce framework is delineated below,
Mapper phase for feature selection: The mapper phase
extracts relevant features from distributed data partitions in
parallel, reducing computational load and improving
processing efficiency. In general, the transformation of pre-
processed data Dp, . into a suitable form for processing the
data is performed in the mapper phase to accurately detect
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DDoS attacks. Here, a subset of relevant features is selected
from the pre-processed data Dp,,by isolating the non-
redundant and most consistent data via feature selection to
reduce the number of input variables. The mapper phase
consists of G = 8 mappers in the experimental setup, each
performing independent feature selection on distributed data
blocks, with selection of relevant features executed separately
in each mapper using SVM-RFE.

Feature selection using SVM-RFE: SVM-RFE removes one
feature at a time during feature selection. In this study, the
SVM-RFE process employs a linear kernel Support Vector
Machine (SVM) to ensure stable weight-vector computation
and consistent feature ranking. The regularization parameter
C = 1.0and tolerance = 10~* were used as baseline settings,
while the kernel parameter y = 0.0lwas dynamically
adjusted wusing the Velocity Contour-based Remora
Optimization Algorithm (VCROA) during model training. This
automated tuning process helps achieve a balance between
model generalization and feature sparsity. The elimination of
features proceeds iteratively until the ranking coefficients
converge below the stopping threshold. At each step, the
feature variables are determined in SVM-RFE, and a ranking
coefficient is used during training for the generation of a
weight vector P by SVM. Then, the removal of minimum
ranking coefficient signature attributes is executed at each
iteration, and the resultant signature attributes are organized
in descending order. The selection of relevant features in
SVM-RFE is demonstrated below:

Initially, the training samples [A.,B.],B; € [-1,+1] are
entered by considering Zge;.c¢as the output feature ordering
set. Then, based on the conditionZ,;..; # 0, the initialization
of the original feature setDp,, =1,2,3,...,H is performed,
and the procedure is continuously followed until Zggecr # 0.
Following this, the training set and a candidate feature set are
determined, and then, SVM training is performed to identifyP.
After that, the ranking of the criteria score is executed, and is
given by:

Ig = szrg = 1;2r3;---r|DP‘re| (2)

Later, arglyis used to determine the score features with the
g

small ranking criteria, and the feature set is updated as
Zsetect =J U Zserect- Here, Jis the feature with the smallest
weight. Finally, the removal of features in the pre-processed

data Dp,.is performed such that Dp,, = DP]” . Thus, the

output of the selected feature Z,..:is determined by utilizing
SVM-RFE from the pre-processed data Dp, .

For SVM training, the Radial Basis Function (RBF) kernel was
used with a regularization parameter C = 1.0, kernel
coefficient y = 0.01, and stopping tolerance 10~*. These
parameters were optimized dynamically using the VCROA
algorithm.
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Solution encoding using VCROA: The solution encoding
selects the optimal solution from the available features. The
solutions identified using the VCROA method are effectively
represented during feature selection in the solution encoding.
Here, the solution is randomly initialized to select optimal
features based on the features' indices. The solution encoding
performed to effectively select features is given in Figure 2.
Fitness function: Using the expression provided in equation
(2), the fitness of VCROA is calculated based on the ranking
criterion score of SVM-RFE during feature selection. The
fitness function from a set of variables is selected for the
identification of the optimal solution.

Designed the VCROA model for training SVM: The
hyperparameters of SVM are optimally tuned using the
VCROA approach, where VCROA is developed by
incorporating a velocity-based concept in ROA. A naturally-
inspired metaheuristic algorithmic technique called ROA is
based on the parasitic behavior of remora by switching the
hosts. The Remora is a marine fish commonly found in tropical
waters with a cylindrical, backward, and flat heads that belong
to the Echeneidae family. Generally, remora follow the host
movement in cold water and evade enemy invasion by
swimming over whales, sharks, hulls, and other animals.
Remora feed on ectoparasites available over the surface of the
host and mainly depend on invertebrates or fish as their food.
The host feeding during the eat thoughtfully (exploitation)
and free travel (exploration) phases is followed by Remora to
escape other enemies. The Remora converges quickly in the
search space and is more effective at reducing computational
complexity at high execution speeds. The velocity-contour-
based concept is incorporated with ROA to handle high-
dimensional problems by maintaining good exploratory and
underexploited conditions. The VCROA algorithm optimizes
the SVM hyperparameters by balancing exploration and
exploitation, thereby accelerating convergence while
maintaining accuracy. The mathematical modeling of VCROA
is expressed as:

Phase 1: Population initialization

Let us consider a X search space withanumber of remora
population, which is given by,

Xq = (Xal'Xaz!Xa&'"'Xa]') 3

. . . th L .
Here, the solution dimension % remora is given by J, and

the total of remoras is indicated as @ . Moreover, the remora
vector differs from each other in terms of the size of the
variant. Thus, the best food targetXj is given by:

XB = (Xf,X;,X;,,X;;) (4]

!

Index of features

Figure 2. Solution encoding executed to select optimal features using VCRO
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Phase 2: Fitness estimation

The fitness function used to determine the best solution is
given in equation (2).

Phase 3: Exploration (Free travel) phase

In the exploration phase, Remora follows the experience
attack and Sailfish optimizer (SFO) strategy to update its
location, as described below.

SFO procedure: The remora position is modified when the
remora is attached to the swordfish, where the updating of
remora location is performed by considering the SFO
procedure and is expressed as:

Xyt = xg — (R(0,2) « (BE2E) - xx) )
Here, the random number is given asR, Uresembles the
maximum number of repetitions; the undisturbed place is
represented asXy, and the current iteration is signified u.
Moreover, the exploration of the search space is ensured by
adding the random selection of remora. The remora selection
criteria for diverse hosts are based on whether the prey is
consumed, and the achieved objective function is superior to
those of previous functions. Further, the experience attack
strategy is followed by the remora to record the current
fitness value.

Experience attack: The tuyu takes small steps around the
host repeatedly to determine the necessary changes to the
host, which is similar to accumulating experience. Thus, the
experience accumulated by the remora is expressed as,

Xy = XY+ (XY = Xp) * RV (6)

where the tentative step and the earlier generation position of
remora are symbolized as X,. Further, the remora performs a
“small global movement” while making an active step by using
RV.

Phase 4: Exploitation (Eat thoughtfully) phase

The host feeding as well as Whale Optimization Algorithm
(WOA) strategies are followed by the remora during the early
thoughtfully phase, and the process performed is
demonstrated as follows.

WOA strategy: The WOA technique is used to determine the
location of the remora associated with the whale, and it is
supplied by:

Xgs1 = D * e x cos(2n8) + Xq @)
§=R(01)«(h—1)+1 (8)
h=—(1+ U;‘) )
D = |Xp — Xl (10)

where the position of a remora on a whale is symbolized ash,
the undistributed measure is symbolized as § that sets to the
range [—1,1] and deteriorates linearly to [—2,—1], the
distance between the prey and the hunter is given as D, and
the maximum iteration is denoted by Upq.-

Host feeding: The subdivision of the exploitation procedure
is host feeding, where host feeding is executed to minimize the
solution space to the host location space. The remora follows
small steps to move around the host, and is mathematically
expressed as,

Xt=Xt+N (11)
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N=Tx* X} —x*Xp) (12)
T=2%C*R(0,1)—C (13)
C=2*(1—U“ ()) (14)

max

where the remora factor is symbolized as Tthat helps to
minimize the position of remora, the tiny step of remora
motion is represented as N , and the remora factor is given as
X-

Velocity-contour-based concept: The remora’s velocity
towards the host is used to fully update the solution in the
search space. Thus, the algorithm for the remora position is
derived mathematically by considering the velocity of the
remora and is expressed by:

XUl = XU+ Y xyxXg+T (15)

where, Ysignifies the velocity of remora.

Phase 5: Re-estimation of fitness

Equation (2) is used to calculate the fitness function, and if any
solutions are found to be better than the obtained solution,
the discovered solution is substituted. This yields the optimal
solution.

Phase 6: Termination

The pseudo-code for VCROA is presented in Table 1, and the
best solution is obtained by following the algorithmic steps
continuously.

Table 1 illustrates the step-by-step process of VCROA used for
SVM hyperparameter optimization. Thus, the selected feature
Zserectis obtained using SVM-RFE, with the hyperparameters
of SVM optimally trained using the VCROA algorithm in the
mapper phase. The features selected in the mapper phase are
further merged and then subjected to the reducer phase for
DDoS attack detection.

Reducer phase for attack detection using FVCROA_DSA: In
the reducer phase, the outputs from all mappers are
aggregated and used as input to the Deep Stacked
Autoencoder (DSA) classifier for the final DDoS attack
detection stage. The resultant outputs obtained by the total
number of Gmappers are processed further to a suitable form
for detecting DDoS attacks. Here, the selected features
Zselect Obtained by SVM-RFE in the mapper phase, by merging
all the mappers and feeding them into DSA to detect DDoS
attacks more accurately. Additionally, by training the ideal
weights of DSA, the FVCROA algorithm is utilized to improve
detection performance. Thus, the detection process carried
out in the reducer phase using the DSA model is explicated
below.

Architecture of DSA: The most common type of Deep Neural
Network (DNN) is the DSA model, which consists of multiple
layers of autoencoders interconnected by adjacent-layer
neurons. In the proposed model, the DSA architecture consists
of an input layer followed by two hidden autoencoder layers
and one output layer. The encoder employs ReLU activation
with 84, 64, and 32 neurons in successive layers, while the
output layer uses Softmax activation for binary classification.
To prevent overfitting, dropout rates of 0.3 and 0.2 are
applied to the first and second hidden layers, respectively. The
network is trained using the Adam optimizer with a learning
rate of 0.001, a batch size of 64,and 100 training epochs, while
a weight decay of 0.0001 ensures better generalization. In
DSA, the autoencoders consist of two parts, an encoder and a
decoder.
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Table 1. Pseudo code of VCROA

Pseudo code of VCROA

Input: Initial positionX¥, DistanceD, Best positionX3+?

Output: Optimal solutionX%+?

Initially set the location of the remora population and memory
Set optimal fitness and determine optimal solution by utilizing
the equation (2)

whileu < Up,,.do

Compute the value of fitness function for each remora

Check to see whether any search agent exceeds the search space,
then disregard it

ModifyR, §, V

for each indexed remora of ado

If the Selection factor Q(a) = Othen

Modify the attached whales’ position by utilizing the equation (7)
else

ifQ(a) = 1then

Modify the attached sailfish position by utilizing the equation (5)
end if

Execute experience attack by utilizing the equation (6)

Identify the value of Q(a)and check the necessary host
replacement

Perform host feeding mode of remora by utilizing the equation
(11

else

Modify the remora position by considering the velocity contour-
based concept by utilizing the equation (15)

end for

end while

Here, an input, hidden layer, and mapping function are
available in the encoder layer, whereas the expression of the
hidden layer output of DSA is given by:

Zg(Zselect) = f(aZsetect + P) (16)

where, Z represents a reconstructed signal, f(e) signifies the
activation function of the encoder, and the bias vector is
represented asp, and a resembles an encoding weight matrix.
Further, a hidden mapping function and an output layer are
presented in the decoder layer of the DSA. Also, in each hidden
layer, the dropout technique is executed, and the neural
network with a mapping relationship is given by,

A

Zselect W= y(a*/1 +p7) 17)

where, Aresembles hidden layer output, y (.)resembles the
activation function of the decoder, p*resembles the bias
vector, and the weight matrix of the decoder is represented
asa”. In addition, the loss function of DSA is estimated by
utilizing Mean Squared Error (MSE), which is expressed as:

2

A

(18)

1
MSE = 2 Zsetect — Zselect

The model was trained for 100 epochs with an early-
stopping patience of 10 epochs to prevent overfitting. The
DSA utilizes two operations during training to provide
solutions to over-fitting issues that occur due to over-training
of samples. The DSA utilizes dropout as the first operation and
weight decay coefficients in the second operation to execute
the attack task. The dropout function is utilized for neglecting
the neurons available in the hidden layer, and the predicted
value with the probability m;to generate a sub-network. Later,
the confirmation of the discarded matrix x =
[x1,%5,%x3,...,x,] using the Bernoulli distribution is
performed. Hence, the resultant function is expressed as:
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mi, c=1

1-my, ¢c=0 (19)

plemy) = {

Here, c is the possible output. Furthermore, in each hidden
layer, a dropout operation is performed, and is expressed by:

As (Zselect) = xsf(25=1 AZserect + p) (20)

where the number of elements is given by rand the discarded
matrix is represented asx;. Further, the solutions to over-
fitting issues are provided by a weight decay coefficient, and
the corresponding overall loss function is given by,

2
K(a,p) = e+ Z3Mz1nd_, 521 (a5 (21)

Here, oand n is the neuron presented in mt" and (m + 1)t
layer, the total number of neurons are represented as g,
wresembles the weight decay coefficient, the total layers is
given asM, and the connection weight among the neurons is

given by a,([g). Also, the categorical cross-entropy function is
given by € and is given by:

&= —izzp:l Zfiﬁ Wno ® lOg (Wno) (22)

where, wand w resembles the actual and expected labels; the
number of labels is given by ... Usually, the reconstruction
error of DSA is minimized by determining optimal
parameters. Thus, the resultant output dyy¢py: is obtained
using the DSA model, and the architecture of DSA is shown in
Figure 3.

FINE-TUNING

PRE-TRAINING

Selected

Detected attack,
features, Z_,. . [~

ougut

Z,

“saiec

Figure 3. Architecture of DSA

Designed the FVCROA model for the training of DSA: The
hyperparameters of the DSA model are optimally adjusted by
training using the FVCROA method, where FVCROA is
developed by combining FC with VCROA. FC helps to improve
the detection performance of the algorithmic models, which
also promotes accurate solutions by utilizing the Laplace
transform for derivative and integral equations. Further, the
inverse Laplace transform is executed to achieve suitable
solutions. The integration of Fractional Calculus (FC) into the
VCROA algorithm enhances its global search ability by
introducing  memory-dependent dynamics to the
optimization process. This mechanism helps the algorithm
retain useful information from previous iterations, thereby
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improving convergence stability and reducing the likelihood
of getting trapped in local minima during DSA training. Thus,
the mathematical modeling of FVCROA is given in equation
(15). FC [38] is incorporated with VCROA to attain suitable
solutions in the search space. From FC,

“ZHXU ) = XE + Y * y*xXg + T (23)

AU — XY~ IXET == (1 - DXETE - 11— D2 -
DXY 3 =X¢+YVxy*xXg+T" (24)

where, [resembles the order of the derivative. Hence, the final
modified expression of FVCROA is expressed as,

XU = XU+ D +Y s g« Xg + T+ IXE T +2(1 -
DXY2 4+ 141(1 —D(@2-Dx¥3 (25)

24
where, X¥*lindicates the remora position at(u + 1)
iteration, the site of remora at(u+ 2)™* iteration is
represented asX¥**2, and X¥**3 represents the Remora site at
(u + 3)% iteration. Moreover, the best solution is determined
using the fitness function given in equation (18). The
proposed FVCROA DSA framework integrates distributed
computing, intelligent feature selection, and deep learning
optimization. The combined use of MapReduce, SVM-RFE,
VCROA, and DSA enables efficient large-scale DDoS detection
with improved scalability, faster convergence, and reduced
overfitting compared with conventional centralized methods.

4. Results and discussion

To quantitatively analyze the supremacy of FV'CROA_DSA
introduced for detecting DDoS attacks, the results recorded
from the experiment and the discussion that follows are
demonstrated below.

4.1 Experimental set-up

The Python utility is used to carry out the FVCROA_DSA
approach, which is used to detect DDoS attacks. All
experiments were executed on a workstation equipped with
an Intel i9 processor, 64 GB RAM, and an NVIDIA RTX 3080
GPU running Ubuntu 20.04. The model was implemented in
Python 3.10 using TensorFlow 2.13 and Scikit-learn. Each
experiment was repeated 10 times with different random
seeds (42-51) to ensure statistical robustness, and the
reported results represent the mean * standard deviation
(SD) of these runs.

4.2 Dataset description

The BOT-IoT dataset and DDoS Attack dataset are the
databases utilized in this research to evaluate the
performance of FVCROA_DSA in identifying DDoS attacks. The
databases are explicated as follows.
BOT-IoT dataset: The BOT-IoT database utilized the Shark
tool for the generation of raw network packets. The data in
this database was produced by combining both normal and
anomalous traffic. The database source files are available in
multiple formats, such as CSV format, generated Argus files,
and the original Packet capture (PCAB) files. Moreover, the
subcategory and category of attacks are considered for the
separation of data files, thus assisting the data labeling
process.
DDoS Attack dataset: The DDoS Attack database is available
in both CSV and PCAB file formats. The database comprises
network traffic data collected over two days, and attacks, such
as UDP_Lag, WebDDoS, UDP, MSSQL, NetBIOS, NTP, LDAP,
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SYN, DNS, SSDP, TFTP, and SNMP, are executed to determine
the background traffic flows. Further, the database possesses
about 4 lakh instances while randomly extracting 84 features
of network traffic using the CICflow meter. Before training,
both datasets were standardized and preprocessed as
described in Section 3. The BOT-IoT dataset contained
approximately 72 million records, while the DDoS Attack
dataset included 5 million labeled flow instances. From each
dataset, 70% was used for training, 15% for validation, and
15% for testing, ensuring class balance between normal and
attack traffic.

4.3 Performance metrics

The effectiveness of FVCROA_DSA for detecting DDoS
attacks is evaluated using evaluation metrics, which are
explicated below.
Precision: The proportion of positive values detected truly
using FVCROA_DSA to the predicted positive values is
precision, which is given as:
. (26)

vi1+v3

Precision,p =

where false negatives and true positives are signified as v,,
and v;, whereas the false positive is given by v;.

Recall: The proportion of positive values predicted truly
using FVCROA_DSA to the total available positive values is
recall, which is given by,

Recall,r = 2 (27)

Vi1+Vvy
F-measure: It is the harmonic mean computed between recall
and precision and is formulated as,
DT
p+r

F —measure = 2 * (28)
4.4 Comparative techniques

The prevailing DDoS attack detecting techniques, namely
FS-WOA-DNN, Neural Network, GAN, RHS-RBM, and VCROA-
Deep Neuro-Fuzzy Network (DNFN), are compared with
FVCROA_DSA to determine the performance of FVCROA_DSA
in detecting DDoS attacks.

4.5 Comparative evaluation

The comparative results reported below represent the
mean performance values obtained over 10 independent
runs, with negligible variance (< 0.5%). This consistency
confirms that the FVCROA_DSA model maintains stable
detection  performance  across  different random
initializations. The superiority of FVCROA_DSA in identifying
DDoS attacks is evaluated using both the BOT-IoT and DDoS
Attack datasets. The evaluation performed is briefly explained
as follows:
For the BOT-IoT dataset: The alterations of K-fold and
learning data are performed to identify the supremacy of
FVCROA_DSA based on the BOT-IoT dataset, where the
validations executed are given below.
Analysis based on learning data: Figure 4 shows the
experimental results obtained by FVCROA_DSA when using
the BOT-IoT database for DDoS attack detection. Figure 4(a)
shows the recall-based validation of the planned
FVCROA_DSA and other current techniques. In this case, the
FVCROA_DSA achieved a recall of 94.275% on 90% of the
learning data, which is higher than that of other detection
models currently in use. FS-WOA-DNN, RHS-RBM, GAN,
Neural Network, and VCROA-DNFN were among the most
popular models; they achieved recall values of 86.379%,
84.75%, 80.597%, 78.546%, and 91.072%, respectively. Thus,
compared to RHS-RBM, which is used to identify DDoS
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attacks, FVCROA_DSA achieved a higher recall of 8.38%.
Furthermore, the results from the experiment on the DDoS
attack detection models, in terms of precision, are shown
graphically in Figure 4(b). The precision observed by the
DDoS attack detection techniques is 79.548% by FS-WOA-
DNN, 83.102% by Neural Network, 85.794% by GAN,
89.734% by RHS-RBM, 91.285% by VCROA-DNFN, and
93.985% by FVCROA_DSA for 90% learning data.
Comparatively, a maximum precision of 16.36% is attained by
FVCROA_DSA as compared with other existing FS-WOA-DNN
detection models. Further, the statistical results obtained by
different DDoS attack detection techniques when validated
using F-measure are shown in Figure 4(c). The FVCROA_DSA
technique developed in this research measured superior
results with a maximum F-measure of 94.130% for learning
data of 90%. Likewise, the F-measure obtained by existing
DDoS attack detection schemes, such as GAN is 85.268%, FS-
WOA-DNN is 79.044%, RHS-RBM is 88.024%, Neural Network
is 81.830%, and VCROA-DNFN is 91.179%. The outcomes
revealed that the FVCROA_DSA model observed a maximum
performance of 9.41% to GAN. Overall, these results confirm
that the proposed FVCROA_DSA model consistently
outperforms all baseline techniques on the BOT-IoT dataset,
demonstrating strong generalization capability and stability
across learning data variations.

Analysis based on K-fold: Figure 5 displays the graphical
representation of various outcomes obtained from the
experiment by FVCROA _DSA, as well as other existing
schemes, during the detection of DDoS attacks based on K-fold
by considering the BOT-IoT dataset. Figure 5(a) illustrates the
outcomes obtained by different DDoS attack detection models
while validating using recall. It is observed that the
FVCROA_DSA attained a maximum recall of 94.130%. In
contrast, baseline DDoS attack detection techniques showed a
recall of 85.279% for RHS-RBM, 78.595% for Neural Network,
76.125% for FS-WOA-DNN, 83.457% for GAN, and 91.006%
for VCROA-DNFN for a K-fold value of 8. According to the
findings, the FVCROA_DSA model outperformed the current
FS-WOA-DNN model by 19.05%. The validation of the
designed FVCROA_DSA and other existing DDoS attack
detection approaches by employing precision is given in
Figure 5(b). The FVCROA_DSA attained a precision of
92.904%, which is superior to the precision recorded by other
prevailing models. The prevailing techniques, such as RHS-
RBM, GAN, Neural Network, FS-WOA-DNN, and VCROA-DNFN,
recorded precision of 88.727%,84.012%, 82.075%, 78.596%,
and 90.434% for a K-fold value of 8. Thus, as compared to the
current GAN approach, the FVCROA_DSA achieved a better
performance of 9.57%. The results obtained from the
experiment by the DDoS attack detection schemes employing
F-measure are revealed in Figure 5(c). Here, the DDoS attack
detection techniques measured F-measure of 77.341% by FS-
WOA-DNN, 80.297% by Neural Network, 83.733% by GAN,
86.969% by RHS-RBM, 90.434% by VCROA-DNFN, and
92.904% by FVCROA_DSA for K-fold value 8 9. Here, the
superior performance of 2.94% is recorded by FVCROA_DSA
than the VCROA-DNFN approach.

For the DDoS Attack dataset: The K-fold and learning data
were altered to determine the superiority of the FVCROA_DSA
technique in detecting DDoS attacks by considering the DDoS
Attack dataset.

Analysis based on learning data: The graphical
representation of different outcomes obtained from the
experiment by FVCROA_DSA while detecting DDoS attacks
based on learning data by considering the DDoS Attack
dataset is depicted in Figure 6.
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Figure 4. Comparative evaluation of FVCROA_DSA and baseline
methods on the BOT-IoT dataset for varying learning data: (a) Recall,
(b) Precision, and (c) F-measure

The results obtained from the experiment by schemes
employing recall are graphically given in Figure 6(a). The
recall recorded by different detection approaches is 80.276%
by FS-WOA-DNN, 84.551% by Neural Network, 86.875% by
GAN, 90.346% by RHS-RBM, 92.548% by VCROA-DNFN, and
94.827% by FVCROA_DSA for 90% learning data.
Comparatively, the maximum precision of 2.40% is attained
by FVCROA_DSA as compared with the VCROA-DNFN
approach. Figure 6(b) illustrates the results obtained from the
experiment by different DDoS attack detection models while
validating using precision. The FVCROA_DSA model measured
a maximum precision of 93.857% for 90% learning data.
Likewise, the precision measured by other DDoS attack
detection schemes, like RHS-RBM, is 88.103%, GAN is
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84.275%, Neural Network is 82.367%, FS-WOA-DNN is
77.945%, and VCROA-DNFN is 90.245%.
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Figure 5. Performance of FVCROA_DSA versus existing models on the

BOT-IoT dataset under K-fold cross-validation (K=8): (a) Recall, (b)
Precision, and (c) F-measure

The results revealed that the FVCROA_DSA model
achieved a high detection performance of 16.95%, compared
with the existing FS-WOA-DNN model. The validation of the
designed FVCROA_DSA and other existing DDoS attack
detection schemes employing F-measure is shown in Figure
6(c). The FVCROA_DSA achieved an F-measure of 94.340%,
which is higher than the 90% F-measure reported by other
existing detection models trained on the learning data. The
prevailing techniques, such as RHS-RBM, GAN, Neural
Network, FS-WOA-DNN, and VCROA-DNFN, achieved F-
measures of 89.210%, 85.555%, 83.445%, 79.093%, and
91.382%, respectively. Thus, the FVCROA_DSA obtained a
superior performance of 9.31% as compared with the GAN.
These findings indicate that the FVCROA_DSA model achieves
consistent improvements over existing schemes when
evaluated on the DDoS Attack dataset, confirming its
robustness and effectiveness under varying learning data
conditions.
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Figure 6. Detection accuracy comparison on the DDoS Attack dataset
using learning data variation: (a) Recall, (b) Precision, and (c) F-
measure

The graphical representation of results recorded by
FVCROA_DSA and the prevailing schemes used for
comparison while detecting DDoS attacks based on the DDoS
Attack dataset, using K-fold, is shown in Figure 7. The analysis
of the FVCROA_DSA model, as well as other existing DDoS
attack detection schemes using recall, is given in Figure 7(a).
Here, the FVCROA_DSA attained a recall of 94.387%, which is
the maximum as compared to the recall recorded by other
existing detection models, such as RHS-RBM, GAN, Neural
Network, FS-WOA-DNN, and VCROA-DNFN at 89.765%,
84.012%, 81.072%, 78.549%, and 91.673% for a K-fold value
of 8. Thus, the FVCROA_DSA obtained a superior performance
of 10.99% in terms of recall as compared with the existing
GAN technique. The results obtained from the experiment by
the DDoS attack detection schemes by utilizing precision are
exhibited in Figure 7(b). The precision recorded by the DDoS
attack detection techniques is 75.186% by FS-WOA-DNN,
78.454% by Neural Network, 81.072% by GAN, 83.645% by
RHS-RBM, 89.745% by VCROA-DNFN, and 93.0136% by
FVCROA_DSA for a K-fold 8.
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models on the DDoS Attack dataset under 8-fold cross-validation: (a)
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Table 2. Comparative discussion
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Here, the high performance of 3.52% is recorded by
FVCROA_DSA as compared with the VCROA-DNFN approach.
Also, Figure 7(c) shows the results recorded by various
detection models while validating using F-measure. The
FVCROA_DSA measured a maximum F-measure of 93.696%
for a K-fold of 8. Likewise, the F-measure obtained by other
DDoS attack detection schemes, FS-WOA-DNN is 76.830%,
RHS-RBM is 86.597%, GAN is 82.516%, Neural Network is
79.742%, and VCROA-DNFN is 90.699%. According to the
findings, the FVCROA_DSA model outperformed the current
FS-WOA-DNN by 18%.

4.6 Comparative discussion

In Table 2, the results obtained by the FVCROA_DSA
model and other prevailing DDoS attack detection techniques
by considering the BOT-IoT database and DDoS Attack
database by varying K-fold and learning data are portrayed.
The observations show that the FVCROA_DSA attained high
experimental results with a recall of 94.827%, precision of
93.857%, and F-measure of 94.340% for learning data of 90%.
Likewise, the recall recorded by prevailing schemes, like GAN
is 86.875%, Neural Network is 84.551%, FS-WOA-DNN is
80.276%, RHS-RBM is 90.346%, and VCROA-DNFN is
92.548%. Also, the existing approaches, such as RHS-RBM,
GAN, Neural Network, FS-WOA-DNN, and VCROA-DNFN
obtained precision of 88.103%,84.275%, 82.367%, 77.945%,
and 90.245% and F-measure of 89.210%,85.555%, 83.445%,
79.093%, and 91.382%. The consistent superiority of the
proposed FVCROA_DSA across both datasets can be attributed
to its hybrid optimization and deep feature-learning design.
The SVM-RFE component efficiently eliminates redundant
features, while the FVCROA optimizer fine-tunes the DSA
parameters to achieve a balanced precision-recall trade-off
and rapid convergence. Incorporating Fractional Calculus
further stabilizes the optimization process, yielding smoother
loss surfaces and improved generalization compared with
traditional metaheuristic models. It is observed that the
FVCROA DSA technique suggested is better than existing
schemes used to make comparisons with the technique in the
detection of DDoS attacks. In terms of detecting DDoS attacks
based on the information packets found in the BOT-IoT and
DDoS attack databases, the FVCROA_DSA is more dependable
and highly generalizable. Also, the DSA model reduced the size
of the data by removing the most significant information
contained in the data packets. As well, at lower values of the
computational complexity of problems, the FVCROA model
that was developed to optimize the hyperparameters of DSA
quickly converges to the optimal value of the results.

Variations Metrics FS-WOA-DNN Nl\(le‘te\lzlviilk GAN RHS-RBM VCROA-DNFN Proposed FVCROA_DSA
For BOT-1oT database
Learning data of Rec.a.II 78.546 80.597 84.75 86.379 91.072 94.275
90% Precision 79.548 83.102 85.794 89.734 91.285 93.985
F-measure 79.044 81.830 85.268 88.024 91.179 94.130
Recall 76.125 78.595 83.457 85.279 91.006 94.037
K-fold value of 8 Precision 78.596 82.075 84.012 88.727 90.434 92.904
F-measure 77.341 80.297 83.733 86.969 90.719 93.467
For DDoS Attack dataset
Learning data of Rec.a.II 80.276 84.551 86.875 90.346 92.548 94.827
90% Precision 77.945 82.367 84.275 88.103 90.245 93.857
F-measure 79.093 83.445 85.555 89.210 91.382 94.340
Recall 78.549 81.072 84.012 89.765 91.673 94.387
K-fold value of 8 Precision 75.186 78.454 81.072 83.645 89.745 93.016
F-measure 76.830 79.742 82.516 86.597 90.699 93.696
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The conclusions of the FVCROA DSA on identifying DDoS
attacks based on packet data were encouraging. Overall, the
experimental results confirm that the suggested FVCROA DSA
model is state-of-the-art in terms of accuracy and robustness
for detecting DDoS attacks. The architecture of its MapReduce
system enables easy deployment across large networks, and
the hybrid optimization mechanism improves learning
stability and detection accuracy. The reliability and efficiency
of the model with respect to real-world intrusion detection
can be demonstrated by the consistency of its results across
both benchmark datasets.

5. Conclusion

Various security mechanisms have been used to prevent
and detect cyberattacks across the internet. Among them,
Distributed Denial of Service (DDoS) is one of the most
common and devastating types of attack, as it enables
attackers to flood targeted networks with unnecessary traffic.
To overcome this issue, a new optimization-based deep
learning model, FVCROA_DSA, was developed to effectively
detect DDoS attacks in a MapReduce system using the mapper
and reducer. The input data were first processed using the
mean substitution technique. Then, features were selected
using SVM-RFE in the mapper stage, with the SVM parameter
optimized using the VCROA algorithm. The identified features
were then run through the DSA model during the reducer
stage, with hyperparameters optimized using the proposed
FVCROA technique to achieve the best possible detection
performance. Experimental analyses showed that the
FVCROA framework with the DSA achieved higher detection
accuracy, with arecall of 94.827, a precision 0f 93.857, and an
F-measure of 94.340, compared to existing machine learning
and deep learning models. The framework can be expanded
to real-time and streaming networks in the future to increase
the scalability and flexibility of the detection process.
Moreover, multiclass classification strategies that incorporate
large, labelled datasets will enable the system to detect and
classify various forms of cyberattacks beyond DDoS, thereby
enhancing its resilience and generalization in next-generation
intrusion detection systems.
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