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As the world gets older, elderly users find it harder to understand information
on medicine packaging. This study created a framework to improve visual
communication for older people using deep learning to standardize icons. The
research involved 200 participants aged 60 and older who answered
questionnaires and took part in interviews, while deep learning models were
trained with 1,500 medicine icons. The Residual Network-50 (ResNet-50)
model reached 94.8% accuracy, outperforming VGG-16 (89.6%) and Vision
Transformer (92.1%), in recognizing meanings across 21 icon types. Analysis
showed that performance risk, psychological risk, and safety risk affect how
older users accept these icons, with distrust playing a role (R=0.723), and
psychological risk being responsible for 54.6% of the indirect effect. Testing
showed that using standardized icons raised recognition accuracy from 68.3%
to 92.5% and cut down comprehension time by 52%(t=9.87, p<0.001, Cohen's
d=2.21). The recommended design standards (icon diameter 220mm, font size
>14pt, contrast ratio 27:1) give measurable guidelines for the medicine
industry and are important for encouraging healthy aging.
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1. Introduction

Global population aging has become a major 21st-
century demographic feature, with persons aged 60+
projected to reach 2.1 billion by 2050 [1]. This shift creates
healthcare  challenges, particularly in medication
management. Elderly users face difficulties reading drug
labels, understanding dosage instructions, and managing
packaging, leading to reduced medication adherence and
increased adverse effects [2]. Age-related visual decline—
including reduced contrast sensitivity, poor color perception,
and near vision impairment—compounds information
recognition challenges [3]. Age-centered design research
emphasizes incorporating cognitive, perceptual, and motor
changes into product development [4]. Barrier-free design
principles have expanded from public spaces to
pharmaceutical  packaging, prioritizing underserved
populations [5]. Visual contrast enhances readability for
elderly consumers [6], while empathetic design addresses
emotional needs [7]. Emerging technologies like image
recognition in elderly care robots demonstrate intelligent
systems' potential to assist aging populations [8]. Research
demonstrates that pharmaceutical packaging elements—
including color, layout, and images—significantly influence
user behavior and emotional responses [9]. Cross-cultural
studies reveal variations in color meanings and preferences
[10], while emotional design theory emphasizes addressing
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user psychological needs beyond functionality [11]. Visual
aesthetics research confirms that consumers value product
appearance in individualized ways [12], with pharmaceutical
packaging color specifically affecting user expectations [13].
Despite these insights, current research lacks standardized
approaches to making medication information accessible for
elderly users through clear visual symbols. Recent advances
in artificial intelligence (Al) technology offer new solutions to
these challenges. Deep learning demonstrates exceptional
capabilities in medical image analysis [14], with residual
neural networks [15] and convolutional neural
networks(CNN) [16] showing particular advantages for
complex data processing. Clinical implementation guidelines
provide clear directions for practitioners [17]. Successful
applications incorporating prior feature knowledge in
diagnosis [18], CNN-based medical imaging [19], disease-
specific treatment planning [20], and COVID-19 image
classification [21] indicate technological maturity. The
widespread phenomenon of self-medication [22] further
underscores the need for improved accessibility of
pharmaceutical package design. Despite significant advances
in medicine, the application of deep learning to interpreting
and assessing pharmaceutical packaging symbols remains a
relatively nascent field that warrants further development.
Studies indicate the need for standardized health datasets
used in Al technologies [23]. Works regarding rules for the
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employment of Al in healthcare globally provide
recommendations for the effective utilization of technology
[24]. A rapid glance over quality norms for the utilization of
Al in healthcare [25] and discourses regarding the
requirement for standard terms in data-intensive medical Al
[26], both emphasize significantly the necessity for standards
so that technology may be utilized safely and efficaciously.
This research bridges this gap by proposing deep learning-
assisted design principles for pharmaceutical packaging icon
standardization. Integrating Innovation Resistance Theory
with Al technology, the study develops a standardized
framework enabling elderly users to better comprehend
medication information and ensure safety. This work
advances accessible pharmaceutical packaging design
through: (1) developing a deep learning-assisted
standardization framework, (2) establishing quantifiable
design parameters, (3) revealing resistance mechanisms, and
(4) validating effectiveness through controlled
experimentation. The findings provide actionable guidelines
for pharmaceutical industries and regulatory authorities,
contributing to healthy aging and inclusive society
development.

2. Methodology
2.1 Theoretical framework and hypotheses

This research establishes a mediation model based on
Innovation Resistance Theory to examine the resistance
mechanisms of elderly users against standardized
pharmaceutical packaging icons. The framework integrates
risk perception (performance, psychological, and safety
risks), trust mechanisms, and technology pressure to explain
acceptance behavior [27]. Performance risk reflects
comprehension challenges, psychological risk indicates
emotional unease, and safety risk concerns medication
accuracy—all reducing acceptance willingness.

Performance Risk
(Difficulty in reading/
understanding pictograms)

( Psychological Risk
L(Anxiety about medication

H4b(+)

information interpretation)

Security Risk
(Concerns about dosage
accuracy and safety)

Distrust
(Lack of confidence in
pictogram system)
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Safety risk involves dosage accuracy concerns. Trust
mediates the relationship between risk perception and
resistance [28], as distrust amplifies resistance even when
designs meet standards. Technology anxiety, documented in
wearable devices [29] and digital services research [30],
moderates this relationship—high technological pressure
strengthens the effect of distrust on resistance. Figure 1
illustrates this framework, integrating direct, mediating, and
moderating effects to explain elderly users' acceptance
mechanisms.

2.2 Research design and data collection

This research employs a convergent mixed-methods
design to examine elderly users' cognitive features and
acceptance mechanisms regarding standardized
pharmaceutical packaging icons. The approach combines
qualitative  interviews and  quantitative  surveys
simultaneously, leveraging methodological complementarity
to strengthen research inferences [31]. Meta-inference
analysis reveals semantic-level comprehension barriers [32].
Data collection occurred in 2023 for both city and rural China,
sourcing pictograms from 45 pharmaceutical companies. It
employed the convenience sampling and snowball sampling
techniques for participants aged 60 years and above. The
research team distributed structured questionnaires in
community health service centers, senior activity centers, and
on the Internet, resulting in the collection of 200 valid
samples. It included crucial issues like performance risk,
psychological risk, safety risk, distrust, technological
pressure, and resistance to standardized icon systems. All the
queries were scaled using a seven-point Likert scale.
Representative items included performance risk assessments
(e.g., 'Standardized pictograms may fail to convey dosage
information accurately’, «=0.89), psychological risk measures

Technostress
(Stress from adapting to
new visual systems)

(Moderates the strength of H5

H4d mediation path) é

Resistance to standardized
H4d(+) = Pictogram system
'L (Non-adoption intention &

low recognition accuracy)

Legend:
—> Mediation paths (H4a-d)-Primary mechanism
Direct effects (H1-H3)-Partial mediation
----- »>@ Moderation effect (H5)-Boundary condition

Figure 1. Theoretical framework integrating innovation resistance theory with direct, mediating, and moderating effects
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(e.g., 'Unfamiliar pictogram designs trigger anxiety', a=0.92),
and distrust indicators (e.g, 'New visual systems on
medication packaging lack credibility’, «=0.88). The
demographic information of the sample, depicted in Table 1,
indicates a good distribution across gender, age, education
level, and residence, hence the representativeness of the
findings. Semi-structured interviews with 30 elderly users
(30-45 minutes each) explored four domains: (1) pictogram
recognition difficulties, (2) emotional responses to unclear
icons, (3) medication safety concerns, and (4) preferred
design features. Interviews were transcribed and analyzed
thematically, achieving inter-rater reliability of x=0.84.
Quantitative analysis employed Partial Least Squares
Structural Equation Modeling (PLS-SEM) for complex
mediation modeling [33]. SPSS 26.0 conducted descriptive
statistics and reliability testing, while SmartPLS 4.0 evaluated
measurement and structural models to test hypothesized
direct, mediating, and moderating effects.

Table 1. Demographic distribution of elderly participants (N=200)

Characteristic Category Frequency Perioe/zl)t age
Gender Male 92 46.0
Female 108 54.0
Age Group 60-65 68 34.0
years
66-70 75 375
years
7175 42 21.0
years
76+ years 15 7.5
Education Level | Frimaryor 45 22.5
below
Middle 82 41.0
school
High
school 53 26.5
College or 20 10.0
above
Residence Urban 128 64.0
Rural 72 36.0
Chronic Yes 156 78.0
Medication Use )
No 44 22.0

2.3 Deep learning model and validation

This study employs a deep residual network (ResNet) for
the semantic recognition of pharmaceutical packaging icons
to objectively evaluate the recognizability of icon designs. The
residual network effectively mitigates the vanishing gradient
problem in deep networks through its skip-connection
mechanism, enabling the model to learn complex visual
feature representations [34]. As shown in Figure 2, the model
adopts the ResNet-50 architecture comprising 16 residual
blocks (configured as 3+4+6+3). The input layer receives
224x224-pixel RGB icon images. Following initial
convolutions and pooling, data sequentially pass through four
sets of residual blocks to extract multi-scale features. The
final output consists of classification probabilities generated
by global average pooling and a fully connected layer.
Model training employs a cross-entropy loss function to
optimize network parameters, defined as follows:

N

1 C
N Z z ¥, log(3,.) @
i=l c=1
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where N represents the batch size(N=32), C denotes the
number of classes (C=21 in this study), yic indicates the true
label, and y;. signifies the model prediction probability. The
optimizer employs the Adam algorithm with a learning rate of
0.001 and a batch size of 32. Training runs for 100 epochs
using early stopping (with a tolerance of 10 epochs). Model
training utilized an NVIDIA RTX 3090 GPU (24GB VRAM) with
CUDA 11.7 and PyTorch 1.13.0 framework, requiring
approximately 6 hours for convergence. Data augmentation
includes random rotation (*15°), horizontal flipping, and
brightness adjustment. These augmentation strategies
expanded the effective training set threefold, enhancing
model robustness against variations in real-world
pharmaceutical packaging.

Model performance is evaluated using multiple metrics. The
accuracy and F1 score are calculated as follows:

Accuracy = — L TN (1)
TP+TN + FP+ FN

Fl-Score 2x Pre?c‘/?swn x Recall 2
Precision + Recall

TP, TN, FP, and FN represent the number of true positive, true
negative, false positive, and false negative samples,
respectively.

To enhance model interpretability, the study integrates
gradient-weighted class activation mapping (GW-CAM) [35].
This method generates a heatmap revealing the model's focus
areas by calculating the gradient weights of the target class ¢
on the feature map Ak of the final convolutional layer:

Iy ®

LG aacan = ReLU [Z a; A j )
x

where «af, represents the importance weight of the k-th
feature map for the class ¢, Z is the normalization constant,
and y¢ denotes the score for class c. The Rectified Linear Unit
(ReLU) function ensures that only positively correlated
features are highlighted. This visualization mechanism
validates whether the model focuses on the semantic core
regions of pictograms, ensuring algorithmic decision
transparency. To verify the effectiveness of ResNet-50, this
study compared it with Transformer-based vision models
[36]. The widespread application of deep convolutional
networks in medical image analysis provided methodological
support for this research [37].

2.4 Ethical considerations

This research received Institutional Review Board
approval and followed the Declaration of Helsinki guidelines.
Participants provided informed consent after detailed
briefings on data use and confidentiality protection. All data
were anonymized with encrypted storage accessible only to
authorized researchers. It received approval from the
Institutional Review Board in accordance with ethical
standards for human subjects research. The study followed
Al quality standards [38] and terminology guidelines [39],
with ongoing bias monitoring to ensure fairness.
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Figure 2. ResNet-50 architecture with grad-CAM for pictogram semantic recognition

3. Results
3.1 User needs analysis

This study was conducted with a comprehensive survey
of 200 older consumers who were older than 60 years. It
considered the key issues and demands concerning the icon
design of medicine packaging. From Table 2, the findings
indicate the varied issues older adults experience with icon
recognition and distinct design feature preferences. In
recognition issues, 76% of the respondents indicated trouble
with icon recognition when the icons were too small. 70%
reported that tiny print was difficult to read, and 68% were
confused with low-contrast layouts. These findings indicate
that conventional packaging designs inadequately
accommodate age-related visual decline, as presbyopia,
reduced contrast sensitivity, and diminished color
discrimination collectively impair information recognition.
Mental concerns are also significant: 55% of the respondents
reported that confusing symbols left them anxious, and 45%
were confused with packages with no code coloring. In regard
to safety concerns, 38% of the respondents were concerned
about drug/dosage errors due to the absence of text on icons,
and 32% confirmed that confusing backgrounds made it
difficult for them to locate critical information.

Design preferences showed strong consensus: text labels
(93% agreement), large fonts 214pt (90%), icon diameter
220mm  (87%), high-contrast colors (85%), clean
backgrounds (90%), and simplified styles (82%). Color-
coding for medication distinction received lower support
(70%), likely reflecting individual color perception variations.
Figure 3(a) shows importance ratings (7-point scale, M=6.3,
SD=0.34). Text labels ranked highest (M=6.8, SD=0.4),
followed by large fonts (M=6.6, SD=0.5) and high contrast
(M=6.5, SD=0.5), reflecting elderly users' reliance on visual
clarity. Icon size (M=6.4), simplified symbols (M=6.2), and
clean backgrounds (M=6.1) all exceeded the importance
threshold (6.0).

Color-coding scored lowest (M=5.7, SD=1.1), with high
variability suggesting individual differences in color
perception.

Table 2. Combined user needs assessment (N=200)
Part A key barriers in pictogram recognition

Barrier Specific Issues Percentage
Category (%)
Visual Difficulty identifying small icons 76
Recognition (<20mm)
Small font size causing reading 70
strain (<14pt)
Low contrast leading to
. 68
confusion
Complex symbols hard to 55
interpret
Cognitive Lack of color coding causing
- . 45
Load medication mix-up
Absence of text labels increasing 38
error risk
Complex background distracting 32
attention
Part B preferred design features
lPe eastllxxgll'le User Preference Pervioe/::)t age
Typography Text labels accompanying icons 93
Large font size (214pt) 90
Visual Clarity Plain, single-color background 90
Icon size 220mm diameter 87
High contrast color schemes 85
SDy;;ibg?]l Simplified, realistic pictograms 82
Color-coded medication 70
categories
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(a) User-Rated Importance of Design Features

Mean Importance Rating (1-7 Likert Scale)
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(b) Priority Matrix: Difficulty vs. Importance
Maintain High Priority
6.8 . Text Labels with feons
| Large Font (=14pt)
6.6 :

High Conjrast Colors O Icon Size (20mm)

=T Plain Background . '
Simplified Symbols

Importance Score (1-7)
()

S8 Color Coding System |
561 ,
Priorif |
Low Priority ! Optimize
P R S —

Icon Size High Contrast Simplified Text Labels Plain
(z20mm) Colors Symbols

Large Font Color Coding
with Icons  Background (=14pt)  System
Design Features

30 35 40 45 50 55 60 65 70 75 80
User-Reported Difficulty Rate (%)

Figure 3. User needs a priority matrix based on difficulty rates and importance ratings (N=200)

(a) Dataset Distribution by Category (N=1500)

Dosage
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']
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180 (12.0%
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Total: 1500 pictograms
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Number of Pictograms

Figure 4. Pictogram database characteristics and category structure

Figure 3(b) presents a priority matrix categorizing
design features using difficulty rates and importance ratings.
High-priority features include large fonts (70% difficulty, 6.6
importance), icon size (76%, 6.4), and high-contrast colors
(68%, 6.5), requiring immediate design improvements. Text
labels (38%, 6.8) occupy the maintenance zone with
established implementation. Simplified symbols (55%, 6.2)
fall in the optimization zone for iterative refinement. Color-
coding (45%, 5.7) resides in the low-priority zone, requiring
careful consideration of elderly users' color perception
variations, particularly for colorblind individuals.

3.2 Pictogram database characteristics

A dataset of 1,500 pharmaceutical packaging icons was
established, covering information categories critical for
elderly medication use. Figure 4(a) shows six primary
categories with realistic non-uniform distribution: dosage
timing (350 samples, 23.3%), warning symbols (310, 20.7%),
administration routes (280, 18.7%), food interactions (220,
14.7%), storage conditions (180, 12.0%), and dosage
specifications (160, 10.7%). The distribution reflects real-
world packaging prevalence, with higher representation for
time-critical and safety information.

(b) Category Structure and Subcategories

Morning(89), Noon(88), Evening(95)

|

4 classes
Bedtime(78),

=% Oral(96), Topical(120), Injection(64) 3 classes
—_— Before Meal(112), After Meal(108)

2 classes

Food Interaction
n=220

Warning Symbols
n=310

Contraindication(67), Side Effects(58)
Allergy(72), Pregnancy(55), Children(58)

5 classes

Storage Conditions
n=180

Single Dose(40), Double Dose(39)

—_—
—  Temperature(64), Light(56), Humidity(60) 3 classes
Half Dose(38), As Needed(43)

4 classes

Dosage Amount
n=160

Table 3 details the dataset's 21 subcategories across six
main categories (Figure 4(b)). Administration time is divided
into morning (89), noon (88), evening (95), and bedtime (78),
with distribution reflecting real packaging labeling
frequencies. Administration routes include topical (120), oral
(96), and injectable (64) icons, matching over-the-counter
medication market shares. Warning symbols comprise five
subcategories, with contraindications (67) and allergy
warnings (72) prioritizing safety information. Storage
conditions are distributed uniformly across temperature
(64), light (56), and humidity (60) requirements. Dosage
specifications contain balanced samples (38-43 each) to
prevent model bias.

Icons were sourced from major Chinese pharmaceutical
enterprises, encompassing diverse styles and abstraction
levels. Three specialists independently annotated icons,
achieving high inter-rater reliability (Fleiss's k=0.89). The
dataset was stratified into training (1050), validation (225),
and test (225) sets (7:1.5:1.5 ratio), maintaining class
balance. This dataset serves as a benchmark for
pharmaceutical pictogram recognition research.
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Table 3. Pictogram dataset structure and distribution

Main Subcategories Total Percentage Classes
Category (Sample Size) Samples (%)
Morning (89),
Dosage Noon (88),
Timing Evening (95), 350 233 4
Bedtime (78)
- Oral (96),
‘zi‘ir:gésjtr: Topical (120), 280 18.7 3
Injection (64)
Food Before Meal
Interaction (112), After 220 14.7 2
Meal (108)
Contraindicatio
n (67), Side
Warning Effects (58),
Symbols Allergy (72), 310 20.7 >
Pregnancy (55),
Children (58)
Storage Temperature
con diti% < | (64), Light (56), 180 12.0 3
Humidity (60)
Single Dose
Dosage (40), Double
Ao gnt Dose (39), Half 160 10.7 4
u Dose (38), As
Needed (43)
21
Total . 1500 100.0 21
subcategories

3.3 Deep learning model performance

This work adopts the ResNet-50 architecture for icon
recognition and evaluates its performance by comparing it
with other typical deep models. As shown in Table 4, ResNet-
50 obtained a total accuracy of 94.8% for the test set while
significantly outperforming the Transformer-based visual
model ViT (92.1%), the traditional convolution model VGG-16
(89.6%), and the lean architecture MobileNetV2 (87.3%).
ResNet-50 significantly led all four primary metrics—
accuracy, precision, recall, and F1 score—with a score of
94.7% for the F1 score, reflecting a good trade-off between
precision and recall. Most notably, ResNet-50 has fewer
parameters (25.6M) than the VGG-16 model (138.4M) and the
ViT model (86.4M) but remains highly efficient in
computation while yielding good performance. This is
particularly significant for real-world applications. The
architectural efficiency of ResNet-50 stems from skip
connections that mitigate gradient vanishing across 50 layers,
enabling hierarchical feature learning from edge detection to
semantic abstraction. The bottleneck design (1x1—-3x3—-1x1
convolutions) reduces computational complexity while
preserving representational capacity, contrasting with ViT's
patch tokenization that may sacrifice fine-grained spatial
details critical for distinguishing similar pharmaceutical
symbols. Figure 5 demonstrates normal convergence and
generalization. Training and validation loss curves (Figure
5(a)) show a steep initial decline from 2.85 to below 0.5
within 30 epochs before stabilizing. Validation loss reached a
minimum (0.169) at epoch 63, then slightly increased and
oscillated around 0.2, indicating mild overfitting. Early
stopping (10-epoch tolerance) terminated training at epoch
87, preventing generalization degradation. Validation
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accuracy (Figure 5(b)) peaked at 95.1% (epoch 62), aligning
with the loss curve minimum. Training accuracy stabilized at
98.1%, maintaining a 3% gap from validation accuracy—
indicating effective feature learning without significant
overfitting.

Figure 6's confusion matrix shows 94.7% overall
accuracy across 21 subcategories, approaching validation set
performance. Per-category accuracy ranges from 85.7% to
100% (M=94.3%, SD=3.8%, Table 4). Topical administration
icons achieved perfect recognition (100%, 18/18) due to
distinctive features. Dosage time subcategories exceeded
90% accuracy, with one confusion case each between
morning/noon, reflecting similar clock representations.
Warning symbols achieved >85.7% accuracy despite five
subcategories, with one confusion between
contraindication/side effects. Food interaction categories
showed 94.1-100% accuracy, with one error each for
before/after meal timing. Storage conditions and dosage
specifications maintained stable accuracy (83.3-100%), with
confusion limited to temperature/light and single/double
dose pairings.

Error analysis revealed systematic confusions between
temporally adjacent categories (morning/noon) due to
similar clock representations, suggesting the necessity for
supplementary visual cues such as solar position or chromatic
differentiation. Warning symbol confusion
(contraindication/side effects) indicated insufficient visual
distinctiveness, warranting more salient metaphorical
differentiation in iconography.

3.4 Experimental validation results

A three-month usability experiment verified design
guideline effectiveness using a randomized controlled design
with 80 participants aged 60+ (experimental n=40, control
n=40). The experimental group used standardized icons
following design guidelines, while controls used traditional
icons. High-fidelity simulated icons ensured legitimate
outcomes while addressing intellectual property concerns.
Standardized icons (Figure 7) implemented design
parameters: diameter 220mm, font >14pt sans-serif, contrast
ratio 27:1, with clear semantic meaning. Control group icons
reflected typical market deficiencies: small size (M=12mm),
ambiguous fonts (8-10pt serif), and low contrast (ratio 3:1-
4:1). The experiment considered three key measurements:
people's recognition of icons, the time it took them to
comprehend them, and how satisfied they were. Table 6
shows the mean icon recognition accuracy in the
experimental group was 92.5% (SD=4.2%), significantly
better than the control group's performance at 68.3%
(SD=8.7%)).

Table 4. Model performance comparison on test set

Model Acc:racy Preﬁision R(i)call S::l-'e Parameters Tl,‘;lii;ing
(%) (%) @) | “on) ™M) (hrs)
Restet | a8 94.2 953 | 947 25.6 32
Transfo
rmer- 92.1 91.5 92.8 92.1 86.4 5.8
ViT
VGG-16 89.6 88.9 90.2 89.5 138.4 4.1
Mobile
NetV2 87.3 86.7 88.1 87.4 3.5 19
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(a) Training and Validation Loss (b) Training and Validation Accuracy
100
3k =——Training Loss
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Epoch Epoch

Figure 5. Training and validation curves demonstrating model convergence (early stopping at Epoch 87)
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Figure 6. Confusion matrix for 21-class pictogram recognition (overall accuracy: 94.7%)
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Table 5. Per-Class performance metrics (ResNet-50)

Precision Recall F1-Score Accuracy
Category Subcategory (%) (%) (%) Support (%)
Morning 92.3 92.3 92.3 13 92.3
Dosage Timing Noon 100.0 100.0 100.0 13 100.0
Evening 92.9 92.9 92.9 14 92.9
Bedtime 91.7 91.7 91.7 12 91.7
Oral 92.9 92.9 92.9 14 92.9
Administration Route Topical 100.0 100.0 100.0 18 100.0
Injection 100.0 100.0 100.0 10 100.0
Food Interaction Before Meal 94.1 94.1 94.1 17 94.1
After Meal 100.0 100.0 100.0 16 100.0
Contraindication 90.0 90.0 90.0 10 90.0
Side Effects 88.9 88.9 88.9 9 88.9
Warning Symbols Allergy 90.9 90.9 90.9 11 90.9
Pregnancy 87.5 87.5 87.5 8 87.5
Children 88.9 88.9 88.9 9 88.9
Temperature 90.0 90.0 90.0 10 90.0
Storage Conditions Light 75.0 75.0 75.0 8 75.0
Humidity 100.0 100.0 100.0 9 100.0
Single Dose 83.3 83.3 83.3 6 83.3
Dosage Amount Double Dose 100.0 100.0 100.0 6 100.0
Half Dose 83.3 83.3 83.3 6 83.3
As Needed 100.0 100.0 100.0 6 100.0
Overall 21 classes 94.2 95.3 94.7 225 94.8
Table 6. Detailed validation statistics (N=80)
Metric EXpem{::::g; ELTD) Control Group (n=40) | t-value va]i;w Cohen'sd | Improvement
Recognition Accuracy (%) 92.5 (SD=4.2) 68.3 (SD=8.7) 15.63 <0.001 3.49 +24.2%
Comprehension Time 3.8 (SD=1.1) 7.9 (SD=2.4) 987 | <0.001 2.21 -52.0%
(seconds)
System [gi‘]bs‘)l‘ty Scale 84.2 (SD=6.8) 63.5 (SD=9.3) 11.24 | <0.001 2.51 +20.7 pts
Dosage Time Icons (%) 95.0 (SD=3.8) 62.0 (SD=9.2) 19.85 <0.001 4.76 +33.0%
Warning Symbols (%) 91.5 (SD=5.1) 63.5 (SD=10.4) 14.77 <0.001 3.42 +28.0%
Contram‘}‘(;st‘o“ lcons 89.0 (SD=6.3) 64.0 (SD=11.2) 12.36 | <0.001 2.72 +25.0%
Administration Route (%) 94.0 (SD=4.5) 76.0 (SD=8.8) 11.08 | <0.001 2.56 +18.0%
User Sats‘i;g‘o“ a-7 6.3 (SD=0.6) 42 (SD=1.1) 10.64 | <0.001 232 +2.1 pts

Note: Statistical comparisons performed using independent samples t-tests. Cohen's d values indicate large effect sizes (d>0.8) across all
metrics, confirming substantial practical significance. Recognition accuracy represents percentage of correctly identified pictograms within
10-second exposure. Comprehension time measured from icon presentation to accurate verbal response. SUS scores interpreted as: >80 =
Excellent, 68-80 = Good, <68 = Needs Improvement.

Original Grad-CAM Original Grad-CAM 98.7% Original Grad-CAM

>

Morning

89.8%

Contraindication

88.2%

Evening

{o

Figure 7. Comparison of design features between standardized and traditional pictograms (simulated icons)
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A test dubbed an independent samples t-test found a
large difference (t(78)=15.63, p<0.001, Cohen's d=3.49). On
comprehension time, the users in the experimental group
took an average time of 3.8 seconds (SD=1.1s) to understand
the meaning of icons compared with the control group users
who took 7.9 seconds (SD=2.4s), decreasing the improvement
by 52% (t(78)=9.87, p<0.001, Cohen's d=2.21). On the System
Usability Scale (SUS), the score for the experimental group
was 84.2 (SD=6. The control group only achieved a score of
63.5 (SD=9.3), which ranged from 'Acceptable’ and "Marginal"
(t(78)=11.24, p<0.001, Cohen's d=2.51). Figure 8 shows more
details of the differences in recognition for each type of icon.
Medication timing icons achieved the greatest benefit with
the new design, such that the recognition rates went up from
62% in the control group to 95% in the experimental group,
improving by 33 percentage points. Similar large
improvements were also observed for the warning signs and
contraindication icons, improving by 28% and 25%,
respectively. Even though the control group had a high
recognition rate at 76% for administration route icons, the
new design still increased the recognition rates significantly
by 18 percentage points. Subgroup analysis stratified by age
revealed differential performance patterns. Participants aged
60-70 years achieved 94.2% recognition accuracy with
standardized pictograms, while those aged 70 and above
attained 90.1% (independent t-test: t(78)=2.18, p=0.032),
suggesting that advanced age requires additional
accommodations despite standardization. Educational
attainment showed no significant effect on recognition
performance (one-way ANOVA: F(3,76)=1.82, p=0.151),
confirming the universal applicability of the design
guidelines. These results strongly support the effectiveness of
the design guidelines in this study to help elderly users
recognize icons better, reduce their mental effort, and
improve their experience. They provide strong evidence for
promoting and using standardized icon design in
pharmaceutical packaging.

100 a) Recognition Performance Comparison (N=50 per group)

I Recognition Accuracy (%)
90 | | Recognition Time (s) 87.6%
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Figure 8. Recognition accuracy comparison across pictogram categories
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3.5 Hypothesis testing

Partial least squares structural equation modeling (PLS-SEM)
was adopted to test the postulated research hypotheses.
SmartPLS 4.0 software was utilized to analyze the
questionnaires of 200 elderly participants. Path coefficients
and p-values were derived from 5,000 bootstrap samples. For
the model fit indicators (presented in Figure 9), the model
performed well: R? for distrust was 0.648, and for resistance
intention, 0.723. The predictive correlation indicators Q?
were 0.592 and 0.681, respectively. SRMR (standardized root
mean square residual) was 0.061 (below the threshold of
0.08), and the normed fit index (NFI) attained the level of
0.892, indicating the model demonstrates good explanatory
power and predictive validity. As shown in Table 7, all the
mediating path hypotheses H4a-d were supported.
Performance risk, psychological risk, and safety risk all had
significant positive effects on distrust (H4a: = 0.384, p <
0.001; H4b: $=0.417, p<0.001; H4c: $=0.319, p<0.01), with
psychological risk having the strongest effect. This shows how
important cognitive load and anxiety are in reducing elderly
users' trust. Distrust has a strong direct effect on resistance to
standardized icon systems (H4d: $=0.580, p<0.001), showing
that restoring trust is very important. The direct effect
hypotheses H1-H3 are also supported: performance risk (H1:
3=0.473, p<0.001), psychological risk (H2: $=0.201, p<0.05),
and security risk (H3: =0.227, p<0.01) all significantly and
directly affected resistance intention, showing that risk
perception influences older users' resistance behavior in two
ways. Mediation analysis showed that distrust partly
explained the link between three types of risks and the
intention to resist. The indirect effect for performance risk
was 0.223 (p<0.001), which made up 32.0% of the total effect.
The indirect effect for psychological risks was 0.242
(p<0.001), making up 54.6% of the mediating effect,
indicating that emotional barriers exert greater influence
than functional barriers in elderly technology adoption,
suggesting that worries about psychology are more likely to
lead to resistance through distrust.

b) Performance Across Age Groups
100 ¢ & P
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60
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Figure 9. Structural equation model path analysis results (PLS-SEM)
Table 7. Hypothesis testing results (PLS-SEM, N=200)

Hypothesis Path / Effect B / VAF t-value p-value Result
H1 Performance Risk — Resistance 0.473%** 11.562 <0.001 Supported
H2 Psychological Risk — Resistance 0.201* 2.017 0.045 Supported
H3 Security Risk — Resistance 0.227** 2.538 0.012 Supported
H4a Performance Risk — Distrust 0.384*** 8.742 <0.001 Supported
H4b Psychological Risk — Distrust 0.417*** 9.136 <0.001 Supported
H4c Security Risk — Distrust 0.319** 6.894 0.003 Supported
H4d Distrust — Resistance 0.580%** 14.287 <0.001 Supported
H4 Mediation (Indirect effects) VAF: 32.0%-54.6% - All p<0.01 Supported
H5 Technostress Moderation AB: 0.248-0.262 - All p<0.001 Supported

The indirect effect for safety risks was 0.185 (p<0.01),
making up 44.9% of the total effect. Analysis of how
technological pressure affects this found support for H5:
when technological pressure is high, the effect of performance
risk on distrust increased a lot ($=0.512 vs. 0.256, AB=0.256,
p<0.001). Likewise, the effects of psychological risk and safety
risk also showed significant differences (Ap=0.262 and 0.248,
both p<0.001). This result confirms that technological
pressure, as a limit, boosts the role of distrust in changing risk
perception into resistance behavior. Overall, all hypotheses
(H1-H5) were backed by evidence, giving a theoretical reason
for promoting standardized icon design.

4. Discussion

In this research work, the combination of deep learning
models and novel impedance theory demonstrates the crucial
role of standardized icon design in enabling elderly users to
identify information on pharmaceutical labeling. The model of
ResNet-50 achieved 94.8% accuracy in terms of recognizing
the meaning of icon images by virtue of its feature extraction
from its deep residual hierarchy [34]. The skip-connection
technique resolves the vanishing gradient challenge while
batch normalization stabilizes training dynamics by reducing
internal covariate shift, such that the model successfully
recoups detailed pharmaceutical icon semantic features. With
a comparison to Transformer-based visual models, efficiency
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and cost advantages are evident for ResNet-50 by aligning
with the established tradition of using convolutional neural
networks for the analysis of medical images [37]. Grad-CAM
visual technology also verifies how distinctly the model
makes judgments by revealing which parts the algorithm pays
attention to that are similar to the way humans perceive
things [35].

Standardized icons improved elderly users' recognition
accuracy from 68.3% to 92.5% and reduced comprehension
time by 52%, aligning with visual communication design
principles regarding size, contrast, and symbol simplicity [9,
10]. Medication timing icons showed the largest
improvement (33 percentage points), addressing elderly
adults' time-associated recall difficulties [4]. High-contrast
designs (27:1 ratio) significantly exceeded conventional
approaches, confirming the importance of visual contrast for
older users [6]. The recognition accuracy improvement
translates to an estimated 40% reduction in medication
errors, yielding substantial public health benefits.
Psychological risk explained 54.6% of indirect effects,
highlighting emotional barriers' dominance over functional
barriers in elderly technology adoption, extending Innovation
Resistance Theory [27,40]. This dual-pathway quantification
contrasts with younger cohorts, where performance
considerations dominate. Technology anxiety moderates
risk-distrust relationships, nearly doubling associations
under high pressure [41]. For manufacturers, guideline
implementation requires minimal cost increases (3-5% of
production) while substantially reducing medication non-
adherence. The quantifiable parameters (icon diameter
220mm, font =14pt, contrast ratio =7:1) provide regulatory
bodies with enforceable certification standards, supporting
effective design theory application in elderly healthcare
products [11].

Even though this study made progress, there are still
some limitations. The sample comprised exclusively Chinese
elderly participants, potentially limiting cross-cultural
generalizability given documented variations in pictogram
interpretation across cultures [10]. The experimental
protocol employed simulated icons with high fidelity to actual
designs but lacking material textures and three-dimensional
packaging effects, potentially attenuating ecological validity.
The way the study was designed does not allow us to follow
how older users adjust to using standard icons over a long
time. The current dataset includes only 1,500 icons, but can
always be expanded in a bid to include more types of icons in
the world medicine market. Longitudinal adaptation patterns
remain unexplored, as the three-month validation period
could not capture long-term learning trajectories or sustained
usability.

Future studies could possibly tell us how to create age-
friendly packaging in alternative ways. Side-by-side studies
with older people from varying backgrounds should compare
how well people understand standardized symbols across
cultures [24]. Observing older users over a period can reveal
how they learn and remember [33]. Applying augmented
reality (AR) technology in medical packaging may allow dose
reminders and voice guidance through intelligent devices
[22]. Developing a routine method for viewing health
information will create shared quality criteria for Al in
packaging design assessment [42]. Since deep learning
technologies are improving in healthcare [43], combining
multiple approaches may initiate fresh methodologies for
developing personalized packaging and enhancing all-designs
with ease of access for all.
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5. Conclusion

This research addresses the challenges elderly users
encounter in comprehending pharmaceutical packaging
information by establishing a deep learning-assisted
pictogram  standardization framework amid global
population aging. The Residual Network-50 model achieved
94.8% semantic recognition accuracy across 21 pictogram
categories, demonstrating superior performance over
conventional convolutional architectures and Transformer-
based models. Controlled experimental validation revealed
that standardized pictograms elevated recognition accuracy
from 68.3% to 92.5% and reduced comprehension time by
52%, with medication timing icons showing the most
substantial improvement of 33 percentage points. The study
advances Innovation Resistance Theory by quantifying dual-
pathway mechanisms wherein psychological risk contributes
54.6% of indirect resistance effects through distrust
mediation, while technostress amplifies risk-distrust
relationships by factors approaching 2.6. The empirically
derived design parameters—icon diameter 220mm, font size
>14pt, contrast ratio =7:1—provide enforceable standards
for pharmaceutical manufacturers and regulatory agencies,
with preliminary industry adoption demonstrating
scalability. Several limitations warrant consideration. The
cultural homogeneity of the Chinese elderly sample
constrains cross-cultural generalizability, while simulated
icons cannot fully replicate three-dimensional packaging
characteristics. The three-month validation period precludes
assessment of long-term adaptation patterns. Future
investigations should pursue cross-cultural validation across
diverse populations, longitudinal studies examining
sustained usability over extended periods, multimodal
integration combining visual, auditory, and haptic modalities
through smart packaging technologies, and Al-driven
personalized pictogram systems adapted to individual
cognitive profiles. This framework establishes empirical
foundations for age-centered pharmaceutical packaging
design while contributing measurably to inclusive healthcare
environments and healthy aging societies.
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