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The fast-paced innovation and the growing need for user-centric products hold
traditional design approaches against the wall in the Industry 4.0 era. This
research establishes a unified Computer-Aided Innovation (CAI) framework
based on text mining, ontology-based knowledge management, and TRIZ-based
reasoning to support intelligent product design. The framework uses natural
language processing to extract user requirements, technical problems, and
potential contradictions from unstructured textual content sources such as
product reviews, patents, and technical information. These insights are then
structured in a TRIZ-compliant knowledge base to enable the rapid,
transparent, and traceable generation of concepts. A smart wearable health
device was used as the case study to evaluate the system's performance, and the
results showed that the ideation efficiency of all concepts was significantly
improved, with all concepts produced in less than 20 minutes, and the results
were balanced across novelty, feasibility, and usability metrics. Compared with
traditional methods such as brainstorming and Quality Function Deployment
(QFD), the proposed framework yielded richer insights, greater concept
diversity, and more evidence-based recommendations. Despite these
advantages, the approach appears sensitive to textual ambiguity, domain-
specific terminology, and the long-term scalability of the ontology repository.
Future research will focus on the following areas: leveraging multilingual data
sources, combining generative Al with digital twin simulations for time-critical
design exploration, and expanding the framework to other product domains.
Overall, the proposed CAIl framework is part of promoting systematic
innovation by incorporating Al-assisted reasoning and structured knowledge
representation in the early stages of product design.

1. Introduction

information spaces [1]. At the same time, structured design

Product innovation has become more difficult as
companies must cope with fast-changing user expectations
and with shorter development cycles and a greater need for
differentiation through advanced technologies. Recent
researches focus on emphasizing that Al-enhanced
approaches can be useful to assist early innovation activities
that identify resources, patterns, and opportunities in large
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methodologies such as TRIZ are still important to order
contradictions systematically and inventive problem solving
during the whole product development process [2]. These
developments lead to the understanding that the combination
of computational intelligence and systematic design
knowledge is important for supporting modern innovation
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workflows. Artificial intelligence is starting to alter the
ingrained innovation practices.

Abbreviations
CAI Computer-Aided Innovation
KM Knowledge Management

NLP Natural Language Processing

TRIZ Theory of Inventive Problem Solving
LDA Latent Dirichlet Allocation

NER Named Entity Recognition

QFD Quality Function Deployment

Al Artificial Intelligence
LLM Large Language Model
RDF Resource Description Framework

Forecast studies have been conducted to examine how Al
can be used to gradually automate various steps of the TRIZ-
based innovation process and to determine where it can have
the greatest impact in real projects [3]. In parallel, new design
approaches combine generative artificial intelligence models
with TRIZ tools to facilitate the development of evolutionary
concepts and early-stage design exploration [4]. These
studies demonstrate that Al is becoming increasingly capable
of augmenting human designers, especially in pinpointing the
design problem and producing ways to improve it. In parallel
with the development of innovation methodologies, text
mining and natural language processing have provided new
opportunities for extracting structured knowledge from large
unstructured corpora. The use of ontology-linked datasets
can demonstrate how technical entities can be systematically
identified and aligned with domain ontologies to support
downstream reasoning tasks [5]. Deep learning models have
also continued to increase the accuracy and robustness of text
classification and terminology extraction, particularly in
specialized domains [6]. Survey work also shows that NLP
and text mining are increasingly central to how Al methods
process and interpret unstructured information in large-scale
applications [7]. This is especially relevant for innovation
activities, as idea-mining techniques use machine-driven
analytics to extract opportunities and design insights from
patents, publications, and online content [8].

Hybrid approaches have become more common that
integrate machine learning and symbolic data structures such
as ontologies and knowledge graphs. Systematic reviews
demonstrate that many Al systems now employ both
inductive and deductive reasoning to improve the quality,
explainability, and structure of the knowledge they extract
[9]. In design research, Al is also used to interpret and analyse
creations in creative combinations that reveal underlying
relationships in  complex design artifacts [10].
Complementary research investigates the use of knowledge
extraction for generative knowledge and graph-based
reasoning in the context of knowledge discovery and
conceptual linking in scientific and engineering disciplines
[11]. Collectively, these advances indicate CAI systems that
combine data-driven extraction and knowledge-driven
interpretation. Text mining continues to spread into new
application areas, with recent work reviewing the changing
landscape of techniques across different scientific fields and
highlighting the growing sophistication of the language
models used for large-scale literature analysis [12]. Within
the framework of TRIZ research, systematic studies on
semantic TRIZ and related frameworks investigate how Al
technologies can enhance TRIZ's elements, identify current

February 2026| Volume 05 | Issue 01 | Pages 278-289

limitations, and chart the future of research [13]. Domain-
specific text mining investigations demonstrate the capacity
of large language models to automate information extraction
in highly technical disciplines [14]. It can be seen that
effective NLP strategies can work well with specific
expression sets for specific disciplines. Finally, survey work
on LLM-augmented knowledge graphs shows how large
language models can be combined with structured domain
knowledge to support tasks such as concept generation,
design reasoning, and process optimization [15].

Despite these developments, important gaps remain.
Existing Al — TRIZ and CAI — studies tend to focus on single
tasks, such as resource mining, forecasting, and generative
exploration, without offering a unified, reproducible end-to-
end framework that connects user feedback, domain
literature, ontological knowledge, TRIZ reasoning, and
concept generation. Additionally, consumer reviews and
experiential content are underutilized as structured inputs
for identifying design contradictions, even though they are a
good source of information about what users expect and their
pain points. While hybrid Al research shows great potential
for combining symbolic structures with machine learning, the
design innovation research domain still lacks detailed,
transparent, and shareable ontologies and contradiction-
mapping schemes for systematically linking text-derived
insights to TRIZ concepts.

To overcome these problems, this paper proposes an
integrated Computer-Aided Innovation (CAI) framework that
combines the phenomena of text mining, ontology-based
knowledge management, and TRIZ-driven reasoning. The
framework is based on extracting entities, sentiments, and
design-related topics from heterogeneous textual sources and
organizing them into an ontology based on TRIZ concepts.
Contradictions based on user needs and technical limitations
are mapped to the inventive principles of TRIZ for structured
concept generation. A case study of smart wearable health
devices is presented to illustrate the application of the
framework to systematic innovation in a realistic design
context.

1.1 Research objectives
To build an end-to-end Computer-Aided Innovation

(CAI) framework to integrate text mining, ontology-based

knowledge representation, and TRIZ reasoning for intelligent

product design.

e To create an ontology-centred contradiction identification
and mapping approach to increase the transparency,
traceability, and reusability of the design knowledge
extracted from heterogeneous textual sources.

o To testthe proposed framework by means of a comparative
case study, and measure improvements in ideation
performance (time to first idea, diversity of generated
concepts, novelty, and feasibility as rated by experts)
compared to traditional design methods.

e To place the proposed framework in the context of the
existing AI-TRIZ and hybrid Al research, identifying the
relevance of the proposed framework, as well as its
limitations and opportunities for future integration with
large language models, knowledge graphs, and structured
reasoning techniques.
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2. Literature review
2.1 Computer-aided innovation (CAI) and systematic

innovation

Contemporary innovation practices increasingly rely on
computational assistance to manage complexity in
engineering  workflows.  Ontology-driven  conceptual
modelling is part of systematic knowledge formalization and
helps CAI environments that demand structured reasoning
capabilities in design activities [16]. Hybrid approaches that
combine large language models (LLMs) and knowledge
graphs demonstrate the potential of combining symbolic and
data-driven approaches to jointly improve creativity,
reasoning, and problem-solving in product innovation [17].
Benchmark work on ontology-guided knowledge graph
generation further makes the case for machine-readable
knowledge representation structures to support automated
innovation tasks [18]. Surveys on automatic knowledge graph
construction focus on how structured domain knowledge
allows the scales of semantically consistent innovation
workflows [19]. Machine learning-biasing analyses of
knowledge graph construction underpin the need for the
convergence of Al and semantic frameworks to support CAI
processes [20]. Collectively, these works provide evidence
that CAI is on the path to Al-augmented, ontology-based,
knowledge-graph-driven systems that can structure,
interpret, and reuse design knowledge systematically.

2.2 Text mining for insight extraction in product

innovation

The emergence of text mining techniques has led to a
major improvement in the ability to extract high-value
insights from large volumes of unstructured data. Technology
roadmap research shows the combined use of TRIZ and text
mining for the morphological analysis and strategic planning
in product innovation [21]. Ontology learning methods from
text demonstrate how NLP can be applied to build domain-
specific conceptual structures that are required for design
and innovation processes [22]. Studies on TRIZ inventive
principles emphasize that the textual knowledge must be
transformed into systematic design actions through
structured interpretation [23]. Applications of computer-
aided design (CAD) in the innovation workflow demonstrate
how text-based insights can directly affect concept generation
and refinement activities [24]. Recent Al-driven ideation
tools, such as automatic TRIZ ideation systems, are further
examples of how text data can be converted into structured
design contradictions and possible inventive directions [25].
The development of multi-agent LLM systems for TRIZ-based
innovation confirms the growing role of advanced NLP for
automatic creativity support [26]. LLM-augmented problem-
solving frameworks demonstrate how the structured rules of
design can be extracted and operationalized from text [27].
Together, these studies outline a clear trend toward text-
driven, TRIZ-informed design support systems.

2.3 Knowledge management in product design
Knowledge management is an important basis of
innovation, particularly as product design becomes more
data-driven. Distributed and collaborative knowledge
management models are particularly useful as frameworks
for supporting complex engineering design tasks involving
multiple stakeholders [28]. Systematic literature reviews on
idea mining show that machine-driven analytics can support
structured idea generation, providing more objective and
scalable solutions than manual ideation [29]. Ontological
modelling in  collaborative  design  environments
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demonstrates how structured semantic representations can
help to improve knowledge reuse, consistency, and decision-
making [30]. These works, taken together, highlight the need
for explicit knowledge representation, structured retrieval,
and semantic reasoning for CAI and innovation-centric
decision-making processes.

2.4 TRIZ methodology and Al-driven innovation

approaches

Recent research shows a strong trend to combine Al and
TRIZ-based innovation methodologies. Systematic studies of
the evolution of TRIZ and its application in modern problem-
solving with the focus on its relevance in structured
innovation [23]. Automated ideation tools like AutoTRIZ
demonstrate how Al can implement the tenets of TRIZ and
serve as a guide for early-stage design [25]. Multi-agent LLM-
based TRIZ systems are a proof of concept of how distributed
Al agents can be used together to increase creativity and
produce quality concepts [26]. LLM-augmented TRIZ
methods also exhibit interesting applications in automated
reasoning, contradiction identification, and solution synthesis
[27]. Studies combining TRIZ logic with large-scale text
analysis of patent literature demonstrate the potential of
computational methods to enhance TRIZ's effectiveness for
real engineering applications [26]. Together, these findings
suggest that TRIZ is moving from a manually applied
methodology to a digitally augmented, Al-integrated
innovation methodology.

2.5 Idea mining and technology intelligence

Idea mining has become a strategic approach for
identifying new opportunities and detecting technological
change early. Technology intelligence research is a method
for evaluating new opportunities, forecasting trends, and
extracting future-oriented information from technical
sources [28]. Machine-driven analytics for idea generation.
This study shows how systematic text analysis can identify
new product opportunities and eliminate the need for
subjective, manual brainstorming [29]. Collaborative design
ontologies are another example of how structured knowledge
can be integrated with text-based derived knowledge to
facilitate more strategic, future-aware innovation activities
[30]. These research studies validate the growing importance
of automated, data-driven approaches for identifying
opportunities and making strategic decisions in product
innovation.

2.6 Comparative summary of existing work

Prior research, taken together, demonstrates substantial
progress in TRIZ-based innovation, text mining, ontology-
based knowledge integration, and Al-based ideation. Table 1
summarizes key contributions and methodological
advancements, highlighting the growing convergence of NLP,
knowledge engineering, and TRIZ reasoning in CAI systems.

3. Proposed framework
3.1 Architecture overview

The proposed framework was built as a three-tier
architecture to transform unstructured textual data into
structured innovation insights and TRIZ-driven design
recommendations. The first tier, the text mining layer, was
responsible for data ingestion, preprocessing, topic
modelling, entity extraction, and sentiment evaluation. The
second tier, the knowledge management layer, was an
ontology-based repository for storing the extracted design
features, functional attributes, contradictions, and TRIZ-
related knowledge in a structured, semantically consistent
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format. The third tier, the CAI dashboard, was an interactive
environment where designers could visualize extracted
insights, investigate the contradictions, and generate solution
strategies. These layers have been linked through a well-
defined data flow that started with raw text, transformed into
processed linguistic features, then into semantic knowledge
units, and finally into structured reasoning outputs for design
support. Using a modular architecture, the pipeline was
ensured to be interoperable, traceable, and extensible
throughout. This structure enabled steady progress from
textual evidence gathered from user reviews, patents, and
technical blogs to systematic reasoning tasks such as
contradiction identification, inventive principle selection, and
the provision of actionable design guidance.

Table 1. Selected key contributions in innovation research

Reference Core Contribution

[23] Detailed analysis of TRIZ inventive
principles and systematic reasoning.

[26] Integration of TRIZ logic with large-scale
text analysis.

[25] Introduction of AutoTRIZ for Al-assisted
idea generation.

[19] Comprehensive survey on automatic
knowledge graph construction.

[21] Joint application of morphology analysis,
TRIZ, and text mining for strategic planning.

[20] Systematic analysis of machine learning-
based KG construction methods.

[29] Review of machine-driven analytics for idea
generation.

[24] Analysis of CAD-supported innovation
workflows.

[28] Technology intelligence methods for
forecasting innovation opportunities.

[30] Ontological modelling for collaborative
design knowledge.

3.2 Functional modules

The text mining engine served as the analytical center of
the framework. It was based on processing textual data using
a suite of natural language processing operations, starting
with  pre-processing steps such as tokenization,
normalization, lemmatization, and domain-specific stop-
word removal. Topic modeling was applied to identify
recurring themes in product functions, performance issues,
and user expectations. Named entity recognition was used to
extract relevant features, components, materials, and
operational contexts, and sentiment analysis was used to
classify users' attitudes towards each extracted feature to
identify strengths, weaknesses, and pain points. The engine
also associated extracted entities with their sentiment
polarity, resulting in meaningful feature-sentiment
relationships that were later used for contradiction detection.
The result of these was structured design-related
information, including wuser requirements, technical
problems, performance descriptors, and candidate features
for improvement.

The knowledge repository stored all extracted
information in a structured ontology comprising well-defined
classes, relationships, and semantic constraints. The ontology
included captured product features, user requirements,
technical problems, sentiments, functional relationships,
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contradictions, and TRIZ concepts, and it enabled each
element to be represented consistently and interconnected.
All the text-mining outputs were transformed into knowledge
graph triples, which can be queried semantically and used for
rule-based reasoning. The ontology layer served as the
central reasoning engine, responsible for detecting
contradictions using predefined logic, establishing links
between design issues and TRIZ strategies, and retrieving
relevant past examples or technical analogies. By structuring
knowledge semantically, this module ensured transparency
and reusability in the innovation process and supported
systematic decision-making.

The CAI dashboard offered an easy-to-use interface that
allowed designers to work with the knowledge base and
apply TRIZ-guided innovation tools. It graphically displayed
topic distributions, sentiment trends, and emerging design
themes derived from textual data. The dashboard contained
what was called a contradiction viewer that presented
automatically found conflicts and their mapping to
corresponding TRIZ categories. It also provided some
creative suggestions for the principal recommendations
based on the type of contradiction and the contextual
information in the ontology. Additional features enabled
designers to browse design knowledge, explore relevant
ontology nodes, inspect previous solutions, and examine
technical analogies. The dashboard served as the final layer of
the system, enabling designers to efficiently interpret insights
and consider potential innovation directions.

3.3 Workflow

The system followed a structured workflow that began
with the collection of text data from user reviews, patent
abstracts, technical blog posts, and product descriptions. All
incoming text underwent preprocessing: cleaning,
lemmatisation, and domain-specific refinement of stop
words. Preprocessing, including topic modelling, named
entity recognition, and sentiment analysis, was used to
extract features from the raw data, yielding structured
representations of product features and user perceptions.
These extracted entities and relationships were then
populated into the ontology, where they were converted to
knowledge graph triples. Once stored in the knowledge base,
heuristic rules and mechanisms for semantic reasoning
identified potential contradictions, such as conflicts between
comfort and durability, or between making components
smaller and allowing batteries to have greater capacity. These
contradictions were then mapped to corresponding TRIZ
engineering parameters to identify applicable inventive
principles. The system produced contextualised design
suggestions that were consistent with these principles.
Finally, all results, including contradictions, recommended
principles, and concept suggestions, were presented on the
CAI dashboard for analysis and refinement. A high-level
picture of such a pipeline is given in Figure 1.

3.4 TRIZ integration

The TRIZ integration module combined the extracted
contradictions and converted them into structured,
operational design guidance. After a contradiction is
identified, the system correlates the contradictory elements
with the corresponding TRIZ engineering parameters and
queries the contradiction matrix to retrieve the relevant
inventive principles. It then generated context-specific
solution strategies that reflected the extracted user needs,
and the technical constraints present in the knowledge base.
These strategies comprised potential material alternatives,
structural redesigns, parameter changes, and functional
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reorganizations. By integrating TRIZ logic into the reasoner
and connecting it to the real information from the text, the
framework ensured that its recommendations were both
systematic and grounded in actual user experience. The
combination of this logic enabled traceable, reproducible
decision-making, allowing designers to explore structured
and creative pathways to solutions in a transparent
innovation-support environment.

4. Methodology
4.1 Data sources and selection criteria

The data set used for the study included consumer
reviews, patent abstracts, and technical blog posts related to
smart wearable health devices. Consumer reviews were
gathered from major e-commerce platforms and filtered to
ensure they were relevant to the specific product category. To
reflect the current user expectations, only English-language
reviews published within the last three years were included.

Patent abstracts were searched for with keyword

combinations including "wearable,” "health monitoring,"

"sensor device," "bio-signal" and "smart band." Technical

blogs and expert articles were taken from verified technology

news outlets and design-oriented websites. To ensure
consistency, three inclusion criteria were applied:

e The text must explicitly describe a feature, function, or
performance attribute of a wearable device;

e The content shall present sufficient evaluative or
descriptive detail so that design-relevant information can
be extracted from it;

e The text should be a minimum of 50 words to minimize
noise.

After filtering, 5,000 consumer reviews, 1,000 patent

abstracts, and 180 technical articles were kept for analysis.
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4.2 Preprocessing and NLP pipeline

All the textual data went through a generalised
preprocessing pipeline. Each document was normalized using
tokenization, lower case transformation, punctuation
cleaning, and removal of non-informative stop-words. A
domain-specific stop-word list was created to address such
frequent but meaningless terms related to wearable devices
("device" in general, "band", "watch", when used generically).
Lemmatization was used to morph variant word forms; for
biomedical and sensor-related terminology, customized rules
were added. Sentence segmentation guaranteed the accuracy
of extracting feature-sentiment pairs and enhanced topic
model coherence. Noise reduction techniques were used to
remove irrelevant pieces of information, such as promotional
phrases, duplicate content, and incomplete sentences. This
processing ensured that our downstream extraction models
ran on clean, consistent inputs in terms of structure.

4.3 Topic modeling design and parameters

Latent Dirichlet Allocation (LDA) was used to detect
recurring themes and use contexts among the textual dataset.
Several candidate topic numbers were tested, from 10 to 40
topics, and coherence scores were tested to find the best
configuration. The final model resulted in a c_v coherence
score of 0.53, which resulted in the best balance between
interpretability and thematic granularity. One configuration
that was chosen was:
e Number of topics: 20
o Dirichlet prior a: asymmetric, optimized by the model
e Dirichlet priorn (f8): 0.01
e Number of passes: 50
e [terations: 500
The optimized model generated clear, semantically
understandable topics that represented categories such as
comfort, durability of the straps, battery life, sensor accuracy,
skin irritation, waterproofing issues, and reliable
connectivity.

Data Sources

i Text Mining Knawledge Repository
(Rew e;—z.g:-tenti (NLP, LDA, NER) (Ontologies, TRIZ)
TRIZ Engine CAl Dashboard
(Contradiction Mapping, (Recommendations,
Principles) Visual Tools)
"

Design Insights
& Alternatives

Figure 1. CAI framework workflow
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These topics were later assigned to ontology classes and
helped to find contradictions.

4.4 Named entity recognition and sentiment analysis

A named entity recognition (NER) model was
implemented to extract structured entities, e.g, product
components, materials, functional actions, measurement
parameters, and usage scenarios. The model was trained on a
specialized annotated dataset on wearable-related
terminology to enhance the recognition of wearable-related
terminology. Performance validation was performed with an
80/20 train-test split, and entity-level accuracy, precision,
and recall were evaluated. Named Entity Recognition (NER)
was conducted by means of a fine-tuned (spaCy
en_core_web_trf) transformer model, which has been trained
on 1,200 manually annotated review sentences with regard to
components, materials, performance descriptors, and usage
contexts. The final model achieved a precision of 0.89, a recall
of 0.85, and an F1-score of 0.87, identifying a total of 4,612
unique entities of 28 defined entity types. Some of the more
common error patterns were misclassifications in which
activity-related terms such as "running mode" or "workout
session" were misclassified as components of the device, and
confusions between metaphorical descriptions, such as
"smooth performance,” and literal skin-related descriptions
of comfort. For sentiment analysis, the framework was set up
to use a pre-trained CardiffNLP RoBERTa-base sentiment
classifier (cardiffnlp/twitter-roberta-base-sentiment-latest),
which had been further adapted with a pre-curated dataset of
20,000 sentences from product reviews. The accuracy of the
adapted model was 0.91, and the macro-F1 was 0.88. Most of
the errors involving sentiment occurred in reviews
containing sarcasm, mixed sentiment within the same
sentence, or indirect expressions of dissatisfaction, such as "I
wish the strap didn't irritate my skin." The model gave each
extracted feature a sentiment score on a continuous scale
between -1 (strongly negative) and +1 (strongly positive).
Sentiment polarity was used to categorize features into
strengths, weaknesses, and pain points, which in turn
considered contradiction identification.

4.5 Ontology construction and knowledge graph

population

An ontology specific to wearable device design was
developed using a hierarchical schema with classes for
product features and functions, user needs, performance
attributes, technical problems, and TRIZ engineering
parameters. Object properties included such relationships as
"improves,” ‘"reduces,” "depends_on,” '“causes,” and
"contradicts." Extracted entities and relations were taken
from the text mining layer, transformed into RDF triples, and
added to the ontology. SPARQL queries were applied to
validate semantic consistency and make sure that each
element that was extracted mapped to its respective class.
Contradictions were represented as nodes in the knowledge
graph between conflicting properties or requirements.

4.6 Contradiction identification rules
Contradictions were detected by means of a hybrid rule-
based approach using linguistic cues, polarity patterns, and
ontology reasoning. Three types of contradiction were
defined:
e Feature-requirement conflicts: Example: “thin strap
improves comfort but reduces durability.”
e Performance trade-offs: Example: “smaller size lowers
battery capacity.”
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e Contextual conflicts: Example: "tight fit - increases
accuracy, causes irritation to skin.”

Each contradiction was translated into the nearest TRIZ

engineering parameters using a predefined mapping table.

Mapping results led to the retrieval of inventive principles

during the TRIZ reasoning stage.

A typical consumer review said the following: "The band
is comfortable when first worn, but after a few hours it will
irritate my skin, especially if [ am sweating." From this
sentence, the system extracted three important entities - band
comfort (positive sentiment), skin irritation (negative
sentiment), and sweating condition (contextual modifier).
These characteristics resulted in a clear conflict: the user
needs comfort over long periods, but the material irritates in
the presence of moisture. This was classed against the
contradiction between user comfort and material stability.
The extracted features were then mapped to TRIZ
engineering parameters: comfort to Parameter 33 (Ease of
Operation) and irritation to Parameter 10 (Stability of
Substance). Querying the contradiction matrix yielded
inventive principles such as Principles 30 (Flexible Shells), 31
(Porous Materials), and 40 (Composite Materials). These
principles were used to develop the idea of Skin-Friendly
Coating, which contained breathable, hypoallergenic
composite layers to minimize irritation while preserving
durability.

4.7 Experimental design
A controlled experiment was carried out to test the

effectiveness of the proposed framework. Participants were
grouped into two groups:
e Control Group: used traditional brainstorming and QFD-

based ideation methods.
¢ Experimental Group: used the proposed CAI framework.
Each group had 12 participants with engineering or product
design backgrounds, so that expertise was similar. Both
groups were given the same design brief and a time limit of 2
hours to come up with concepts. The CAI system
automatically recorded timestamps of each concept that was
accepted; time-to-first-concept was defined as the time
elapsed from the task's onset until the first concept was saved
in the system's dashboard. The experimental group used
topics,  contradictions, and inventive  principles
recommendations generated by the system through the
dashboard, whereas the control group used only manual
analysis of given textual materials.

4.8 Expert evaluation protocol

A panel of five experts in the domain independently
reviewed the generated concepts based on 3 dimensions:
e Novelty (how original is the idea in comparison to existing

products)

¢ Feasibility (realism and practicality of Engineering)
o Usability (improvement in expected user experience)
A 10-point scoring scale was used, and evaluators followed
written scoring guidelines to be consistent. The interrater
reliability was calculated with Fleiss' Kappa for categorical
agreement and Intraclass Correlation Coefficient (ICC) for the
continuous scoring consistency.

4.9 Statistical analysis

Statistical tests were used to compare the two groups'
performance on the tests. The normality of the score
distributions was tested with the Shapiro--Wilk test. If
normally distributed, independent-samples t-tests were
used; otherwise, the Wilcoxon rank-sum test was used. For
the ideation time and the concept quality scores, standard
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deviations and confidence intervals were computed. The
magnitude of the difference between groups was calculated
for effect sizes. This methodology helped to deliver a rigorous,
reproducible methodology to assess the effectiveness and
efficiency of the proposed CAI system.

4.10 Ethical and data compliance statement

All textual datasets used in this study were obtained
and processed in accordance with legal, ethical, and platform-
specific guidelines. Consumer reviews were gathered from
publicly available datasets or from platforms that explicitly
permitted research access under their Terms of Service;
nothing was automatically scraped from restricted web
interfaces, and no personal identifying information (PII) was
collected, stored, or analyzed at any stage. Patent abstracts
were obtained from patent open-access databases that
support text mining for scholarly research. All experimental
procedures involving human participants were in accordance
with standard ethical research practices: voluntary
participation was obtained, informed consent was obtained
before data collection, and no sensitive personal data were
recorded. All data were anonymized and analyzed in
aggregate, ensuring full confidentiality and privacy
protection. The study followed the principles of responsible
research, transparent reporting, and ethical data handling
throughout the methodology.

5. Results
5.1 Case study implementation

The proposed framework was tested through a case
study on smart wearable health devices. Textual data
gathered from consumer reviews, patent abstracts, and
technical blogs were fed into the text mining engine, yielding
entities, topics, sentiments, and contradictions, which were
incorporated into the knowledge repository built on the
ontology. This structured information influenced the TRIZ
reasoning module that produced a series of candidate
inventive solutions. The CAI dashboard offered these
solutions to participants in the experimental group in the
controlled design study. The system was able to extract
design-relevant information and generate candidate concepts
to address issues identified in the textual data, such as
comfort, durability, sensor accuracy, user interface
adaptability, and material safety. This confirmed that the
framework could successfully translate real-world textual
evidence into structured innovation support.

5.2 Text mining output and knowledge extraction

The text mining module provided coherent and
semantically interpretable insights. Topic modelling
identified key design issues related to wearable devices,
including battery life, comfort of wear, sensor reliability, skin
irritation, user interface responsiveness, and device
connectivity. Sentiment analysis revealed which features
users appreciated most and which they needed to improve.
Named entity recognition has been used to extract frequent
component references, materials, and functional attributes.
The pipeline was able to identify a large number of feature-
sentiment pairs, which serve as direct input to the
contradiction mapping. These extracted insights filled the
ontology and served as the basis for contradiction and idea
generation in the TRIZ module.

5.3 Ontology reasoning and contradiction mapping

The ontology-based reasoning engine successfully
organized the extracted entities and relationships into
structured knowledge graphs. Using predefined semantic
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rules, the system identified a series of contradictions, e.g.,
comfort vs. durability, compactness vs. battery capacity, fit
accuracy vs. skin irritation, and feature-richness vs. interface
complexity. Each contradiction was mapped to its
corresponding TRIZ parameter pair, enabling the system to
retrieve inventive principles for a particular context. Based on
these mappings, the system generated six final concept
proposals, each focused on a specific set of user needs and
technical constraints. These concepts were shared with the
experimental design group for further development and
expert evaluation. Figure 2 shows how six inventive
principles of TRIZ helped to the final concepts. Principles like
"Flexible Shells" and "Composite Material" had the highest
impact indicating a close match to contradictions found
during the text-based analysis.
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Figure 2. TRIZ principles and their conceptual impact

5.4 Generated concepts and expert evaluation

Experts rated six system-generated concepts on novelty,
feasibility, and usability on a 10-point scale. The evaluation
scores are summarized in Table 2. The quadrant plotin Figure
3 emphasizes the consideration of feasibility and usability for
the proposed concepts, with "Stretchable Strap" and "Skin-
Friendly Coating” falling in the upper-right quadrant,
indicating good performance on both criteria.

The six concepts generated addressed specific
contradictions identified from the user needs and technical
constraints. The Modular Sensor Core proposed a detachable
sensing unit that allows quick component replacement and
multi-function use, and solves the contradiction between
sensor precision and device compactness through the use of
TRIZ Principles 1 (Modularity) and 2 (Segmentation). The
Stretchable Strap used a combination of elastomeric
materials to improve comfort during movement while
maintaining structural stability, addressing the contradiction
between flexibility and mechanical strength through
Principles 15 (Dynamics) and 30 (Flexible Shells). The
Motion-Adaptive Ul introduced an interface that adapts its
layout to the intensity of user movement, mitigating the
visibility limitations imposed by the small screen size,
following Principles 17 (Another Dimension) and 23
(Feedback). The Thermal Energy Charging concept uses a
micro-thermoelectric system that harnesses body heat to
prolong battery life without adding weight to the device,
based on the application of Principles 22 (Energy Recycling)
and 37 (Thermal Expansion). The Dual App Integration
design provided a two-layer software architecture that
balances ease of use for beginners with analytics for
experienced users, made possible by Principles 6
(Universality) and 7 (Nested Doll). Finally, the Skin-Friendly
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Coating employed hypoallergenic, breathable composite
materials to minimize skin irritation while maintaining
durability, resolving the contradiction between comfort and
robustness through Principles 40 (Composite Materials) and
31 (Porous Materials).

5.5 Quantitative comparison between CAI and

traditional methods

Inter-rater reliability for the expert evaluations was
determined using Fleiss' Kappa and the Intra-class
correlation Coefficient (ICC) to assess agreement across
categorical judgments and interval-scale  scoring,
respectively. There was considerable agreement between the
experts, Fleiss' k = 0.74, and high scoring consistency, ICC(3,k)
= (0.81. Variation across key evaluation metrics was reported
as standard deviations: ideation time for the CAI system was
18.0 minutes with a standard deviation of 3.4 minutes, while
the traditional ideation group was 31.0 minutes with a
standard deviation of 6.2 minutes. Concept quality also
showed moderate variability, with novelty ratings of 8.2 (0.6),
feasibility ratings of 7.9 (0.5), and usability ratings of 8.5 (0.4).
The corresponding standard deviations for individual
concept ratings are provided in Table 3 to provide some
further granularity about variability in expert scoring. A
performance comparison between the CAI framework and
traditional brainstorming/QFD-based design was conducted
with 12 participants per group. Quantitative results are given
in Table 3.

Table 2. Design evaluation scores
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The CAI system led to higher average viable concept
counts, faster ideation, and better novelty and feasibility
scores. Participants using the CAI dashboard came up with
ideas nearly 2 times faster than those using traditional
methods, thereby confirming the framework's efficiency
benefits. Figure 4 shows the time required to formulate each
of the six concepts using the CAI system. All concepts were
generated in less than 20 minutes with an average generation
time of 18 minutes.

5.6 Statistical analysis and reliability

Reliability of agreement of expert evaluations was
calculated (inter-rater reliability). Fleiss' k showed
considerable agreement between evaluators on categorical
judgments, while the Intraclass Correlation Coefficient (ICC)
was used to confirm good consistency in numerical scoring
between panel members. Correlation analysis was performed
to examine the relationships among evaluation metrics (Table
4).

Table 3. Comparison of CAI vs. traditional methods

Evaluation CAI Framework Traditional
Metric (Simulated) Methods

(Estimated)
Viable design 6.1 3.4

ideas generated

Time to first 18 31

concept (minutes)

Concept Novelty | Feasibility | Usability
Novelty score (out | 8.2 6.1
Modular Sensor Core 9.1 7.8 8.5 of 10)
Stretchable Strap 8.6 8.5 9.0 Feasibility score 79 6
Motion-Adaptive Ul 8.3 8.2 8.6
- (out of 10)
Thermal Energy Charging 7.9 7.5 7.8
User satisfaction 4.3 3.2
Dual App Int: ti 8.0 7.9 8.2
U4’ ~pp megration (5-point Likert)
Skin-Friendly Coating 7.7 8.4 8.9
1
9.0 1
1
1
|
1
8.8 i
1
|
a | Concept
: Modular Sensor Core
4_:}‘ : %  Stretchable Strap
T 8.4 | % Motion-Adaptive Ul
E i Thermal Energy Charging
- ! Dual App Integration
a7l i Skin-Friendly Coating
1
1
|
1
8.0r :
1
1
i
1
7.8 i
1 1
1.6 7.8 8.0 8.2 8.4
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Figure 3. Design concept mapping: usability vs. feasibility
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Figure 4. Ideation time across concepts

Table 4. Correlation between evaluation metrics

Metric Pair Correlation (r)

Novelty & Feasibility 0.64
Novelty & Usability 0.59
Feasibility & Usability 0.72

These correlations indicate that the concepts rated
highly for usability tended to be rated as feasible, and that
novelty correlated moderately with both feasibility and
usability. Independent-samples t-tests (or Wilcoxon tests in
case of non-normality) confirmed statistically significant
differences between the CAI and traditional groups on the
novelty, feasibility, and time-to-first-concept metrics. Effect
size calculations also showed that the CAI framework led to a
meaningful improvement in ideation performance. The
heatmap in Figure 5 shows the strength of relationships
among the evaluation metrics, with feasibility and usability
showing the strongest correlation, indicating that highly
feasible ideas were also perceived as highly usable.

6. Discussion

The proposed CAIl framework demonstrated clear
benefits over traditional ideation and decision-support
approaches by combining text mining, ontology-based
reasoning, and TRIZ-based contradiction analysis within a
unified innovation pipeline. One of the most significant was
the increase in ideation efficiency. As shown in Figure 4, the
system produced all six design concepts in less than 20
minutes, with an average ideation time of 18 minutes. This
efficiency is much higher than that of typical brainstorming
workshops or QFD sessions, which typically require several
hours of manual deliberation, subjective prioritization, and
iterative refinement. Beyond efficiency, the system
demonstrated strong performance in the quality of the design
concepts it generates, with high novelty, feasibility, and
usability. Table 2 presents an overview of these results,
whereas Figure 3 presents a feasibility-usability quadrant
visualization. The concepts "Stretchable Strap" and "Skin-
Friendly Coating" fall in the upper-right quadrant of Figure 3,
indicating good, balanced performance across both
evaluation dimensions. This outcome reflects the system's
semantic extraction efficiency and the structured TRIZ-based
reasoning involved in the concept synthesis. The framework
also improved the traceability and interpretability of the
design process.
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Figure 5. Correlation heatmap between evaluation metrics

Unlike the traditional QFD approaches in which the user
requirements are fixed early on, and subjective weighting is
inevitable, this CAI system continuously extracts the real-
world user needs in an unstructured textual source such as a
review, patent document, and blog. This dynamic extraction
is enabling designers to more objectively and at scale detect
latent requirements, recurring pain points and changing
contextual expectations. The approach is in line with the
overall movement towards text-driven product intelligence
and grounded design recommendations. A major strength of
the framework is the ontology-based knowledge repository,
which organizes design knowledge into structured entities to
represent features, relationships, contradictions, and TRIZ
parameters. The visual effect of TRIZ inventive principles on
concept performance is illustrated in Figure 2, which shows
that some principles, such as Flexible Shells, Composite
Material, and Dynamization, have the highest influence scores
across the six concepts that were evaluated. This mapping
shows that the contradiction identification module captured
meaningful conflicts and matched them with suitable
inventive strategies. Further analytical insights emerged from
the relationships among the evaluation metrics. Figure 5
shows the correlations between the novel, feasible, and
usable.

The highest correlation was found between feasibility
and usability, on the one hand, indicating that design ideas
perceived as technically feasible were also perceived as easy
to implement or integrate. Novelty correlated moderately
with usability and less so with feasibility, suggesting that
coming up with highly creative concepts may still result in
some trade-offs in terms of technical feasibility - an expected
pattern in early-stage innovation. Despite these strengths,
there are still a number of challenges. User-generated textual
data is likely to be ambiguous, not only because of domain-
specific terminology but also because sentiment is not always
consistent, making NER, topic modelling, and sentiment
analysis less accurate. Ontology scalability is also an issue as
the knowledge repository grows; computational efficiency
must be balanced with expressive depth, and thus ontology
evolution should be carefully planned. These limitations are
important factors for the future development of CAI systems.
From an applied perspective, the framework offers significant
benefits for a range of roles in product development.
Designers benefit from a faster, more effective route to
creative solutions. Product managers benefit from insights
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based on real user evidence, rather than subjective
interpretations of users. Innovation leaders can use the
system to institutionalize creativity, making idea generation
more systematic, repeatable, and knowledge-driven. Overall,
the study shows that combining text mining, TRIZ-based
reasoning, and ontology-based knowledge structures within
a single CAI framework can greatly improve the speed,
quality, and relevance of design ideation. While further work
is required, especially for the development of semantic
extraction, scaling the ontology, and validating the framework
across more product categories, the results provide a clear
case for the role of hybrid AI-TRIZ approaches in supporting
systematic innovation.

7. Limitations

While the proposed CAI framework shows great
potential to boost early-stage product innovation at a time
when this is most needed, there are some limitations to be
aware of. These limitations concern the quality of textual data,
the effectiveness of natural language processing techniques,
the complexity of ontology management, and the limitations
of the evaluation in the experiment. One of the main
limitations comes from the nature of user-generated text.
Consumer reviews and online discussions are likely to
contain informal language, abbreviations, sarcasm, and
inconsistent terminology. Such ambiguity can lead to
inaccuracies in feature extraction, sentiment classification,
and topic identification. Although preprocessing and domain-
specific refinement work were applied, the system can be at
fault for the possibility of being misled by less pronounced
expressions or context-dependent meanings. This is
especially important in areas such as wearable health devices,
where terms can be used interchangeably across clinical,
lifestyle, and general consumer contexts. A second limitation
lies in the performance of NLP models used for entity
recognition, sentiment detection, and topic modelling. Even
domain-adaptation models may produce errors when
handling highly technical descriptions or rare terms. Topic
modelling, for example, can sometimes produce topics that
overlap semantically, leading to redundant or vague
representations. Similarly, finding component names
confuses NER models, leading them to treat functional
descriptions or the naming of new technology terms as
components. The framework also suffers from ontology
scalability and maintenance problems. As more entities,
relationships, and contradictions are introduced, the ontology
may become complex and not as easily queried efficiently. It
might be necessary to manually curate the ontology to ensure
conceptual accuracy and maintain a manageable structure.
Without careful governance, there would be inconsistencies
or orphaned nodes that would cause poor reasoning
performance or contradictions in interpretation. Additionally,
as the system is expanded to new product categories, the
ontology will need domain-specific extensions, which may
add labor and complexity. Another limitation is in the TRIZ-
based reasoning part. Although TRIZ offers the structured
inventive principles, the way of mapping the contradictions to
the parameters of TRIZ is partly based on heuristic rules and
expert-informed assumptions. Some of the contradictions
may be difficult to fit into predefined parameter pairs, and
highly novel design situations may require combinations or
adaptations that are not accommodated in the regular
mapping table. As a result, the solutions created can be too
generic at times or require designer intervention to be
meaningful. The experimental evaluation also has
shortcomings. Although the controlled study involved two
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balanced groups of people, the number of people was small. A
larger participant pool would be stronger in terms of
statistical power and better for generalizing the findings.
Furthermore, the participants came from engineering and
design backgrounds; testing the system with interdisciplinary
teams, professionals from various industries, or
inexperienced users may produce different results. The
evaluation period was restricted to a single design session,
which did not account for long-term learning effects or the
integration of the CAl system into a long product development
cycle. A further limitation is that of the domain specificity of
the current implementation. The framework was evaluated
on smart wearable health devices in an area with well-defined
components and rich user feedback. Its effectiveness in highly
complex or less user-centric institutions — such as industrial
machinery, aerospace systems, or business process
innovation — still needs to be studied. Different industries
might demand specialized ontologies, specific parameters of
the TRIZ method, or entirely different textual data sources.
Lastly, the system's performance depends on the availability
and quality of the data. Domains with little user feedback,
little patent activity, or very proprietary knowledge, for
example, may not provide sufficient textual data for
meaningful text mining. Additionally, more complex
multimodal inputs, such as images or sensor data, may be
necessary within the framework in the future to support a
more comprehensive understanding of design problems.
Overall, while the limitations are essential constraints, they
also indicate possible future improvements, such as improved
domain adaptation for NLP models, automated ontology
evolution, hybrid TRIZ-machine learning mapping, and
broader validation experiments. Dealing with these
challenges will increase the robustness and generalizability of
the CAI framework in the real-world of design environments.

8. Conclusion

This research proposed a unified Computer-Aided
Innovation (CAI) framework, combining text mining,
ontology-based knowledge management, and TRIZ-driven
reasoning that can be used to support systematic and data-
guided product ideation. By leveraging natural language
processing to extract user needs and technical issues from
massive unstructured data sources, the framework enables a
transparent, repeatable process from raw textual data to
structured design insights. A further application of TRIZ
principles in the reasoning engine is for grounded, traceable
solution generation. The framework was applied to the
domain of smart wearable health devices; the evaluation
results showed significant improvements in both efficiency
and concept quality. All six concepts were generated in less
than 20 minutes (Figure 4), which is significantly less time
than is typically required for early-stage ideation. The
generated concepts also showed strong performance in
novelty, feasibility, and wusability, with two concepts
(Stretchable Strap and Skin-Friendly Coating) showing the
highest balance across criteria (Figure 3, Table 2). The TRIZ
influence visualization (Figure 2) and correlation analysis
(Figure 5) revealed further insights into the role of inventive
principles in shaping concept outcomes and the
interrelationships among evaluation metrics. Despite the
promising results, a number of limitations need to be
recognised. The quality of extracted insights remains bound
to the clarity and consistency of user-generated text, and
domain-specific language may pose a challenge for existing
NLP techniques. Ontology scalability also raises long-term
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maintenance issues as the knowledge base grows in size and
complexity. These limitations, therefore, reflect opportunities
for refinement through better domain adaptation, automatic
ontology  evolution, and improved contradiction
interpretation. In future work, the applicability of the
framework to different product categories and design
situations will be expanded. Incorporating multilingual data
sources would increase global relevance, while integrating
generative Al models, multimodal data inputs, or digital twin
simulations could enable richer, interactive design
exploration. Testing the framework on other industries -
including industrial equipment, consumer appliances, and
assistive technologies - will further validate the robustness
and generalizability of the framework. Overall, this study
advances the development of systematic innovation by
demonstrating that the outputs of data-driven intelligence,
semantic knowledge representation, and TRIZ-based
reasoning can be integrated into a coherent CAI system. The
results show that the potential of such hybrid approaches for
early-stage design is strong, as it could transform the current
design process from a time-consuming, often uninformed,
and essentially guesswork process into a more informed,
faster, and more user-centred process.
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