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This paper presents robust energy-demand and renewable power forecasts for
the microgrid using deep learning-based forecasting and a metaheuristic-based
optimization model. A Long Short-Term Memory (LSTM) is used to model the
temporal nonlinear dynamics of the energy datasets. A new Improved Dynamic
Arithmetic Optimization Algorithm (IDAOA) is developed to fine-tune LSTM
parameters, incorporating inertial weights, a mutation factor, and the triangle
mutation operator to balance exploration and exploitation. The model's
performance is verified on various datasets, including wind turbines (WT),
photovoltaic (PV) systems, load demands, and day-ahead electricity pricing.
This work shows that the IDAOA-LSTM model outperforms other strategies.
Practically, the Root Mean Squared Error (RMSE) was 0.021 in the forecast of
WT power and 0.031 in the case of PV power. The model performs well in
predictions, with high coefficient of determination (R?) values (R* > 0.98)
throughout all tasks. These findings strengthen the applicability of the
proposed method to enhance energy-saving measures while preserving the
stable operation of those microgrid (MG) systems.

1. Introduction

unresolved in the literature, particularly in hyperparameter
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Examples of renewable energy generation systems that
have recently gained popularity are Wind turbines (WT) and
photovoltaic (PV) systems [1]. This integration into microgrid
(MG) systems has the potential to reduce dependence on
fossil fuels and their associated greenhouse gas emissions,
resulting in a more secure electricity supply and a cleaner
environment. However, renewable energy sources exhibit
irregular, non-continuous power generation, as well as load
demand patterns, which must be addressed to schedule and
maintain grid stability [2,3]. Forecasting renewable energy in
addition to load demand is essential for MG operations, cost
control, and energy storage scheduling [4]. Conventional
approaches for predicting MG uncertainty may be ineffective
at capturing the temporal characteristics and nonlinearities
inherent in renewable energy supplies, as MGs become more
complex when multiple energy sources are added [5].
Therefore, more complex models that adequately capture the
stochastic nature of renewable energy generation are
urgently needed [6,7]. Because of its ability to extract
hierarchical features independently and model nonlinear
relationships, deep learning approaches have emerged as a
viable alternative for processing complex processes [8].
Despite their potential, many fundamental challenges remain
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selection and tuning, which are critical to achieving optimal
model performance. As a result, ongoing research
investigates effective strategies for hyperparameter
modification that enhance the robustness, precision, and
generalization capabilities of deep learning models [9].
Although deep neural networks, particularly LSTMs, have
demonstrated promising results in sequence prediction, their
effectiveness depends heavily on the selection of key
hyperparameters, such as the number of hidden layers [10].
Most optimization algorithms suffer from premature
convergence or limited search capabilities in the global search
space, which significantly affects the fine-tuning of complex
models [11]. To do this, this study developed a technique that
combines LSTM networks with an Improved Dynamic
Arithmetic Optimization Algorithm (IDAOA) to select
hyperparameters efficiently. The primary goal is to develop a
reliable, accurate, and efficient forecasting model for
photovoltaic power, wind energy, and load demand in
microgrid systems. This means that the proposed
methodology in this paper not only seeks to enhance the
model accuracy but also to provide real-time energy
management in dynamic systems.


mailto:ali.almousawi@uokufa.edu.iq
https://doi.org/10.55670/fpll.futech.5.1.26
https://fupubco.com/futech

AQ. Almousawi et al. /Future Technology

Abbreviations

LSTM Long Short-Term Memory

IDAOA Improved Dynamic Arithmetic Optimization Algorithm
PV Photovoltaic

WT Wind Turbines

RMSE Root Mean Squared Error

MG Microgrid

ANN Artificial-Neural Network

ABMO Adaptive Barnacle-Mating Optimizer
SVR Support Vector Regression

GAM Global Attention Mechanism

The rest of the paper is structured as follows: Section 2
reviews related works on forecasting and optimization
methods for renewable energy. Section 3 describes the
proposed technique, data preprocessing, the LSTM model
structure, and IDAOA optimization. Section 4 discusses the
outcomes and performance evaluations, as well as the
superiority of the proposed approach. The work is
summarized in Section 5, which focuses on major results and
suggests potential directions for future research.

2. Related works

Many researchers throughout the world have
investigated various strategies and techniques linked to this
work. Zarma et al. [12] proposed energy demand forecasting
models for hybrid MG energy management, using five
algorithms: linear regression, random forest, artificial neural
network, extreme gradient boosting, and support vector
regression. The study sought to investigate many parameters,
including irradiance, temperature, time of day, humidity, and
season. These elements specify the performance of
generators, grid systems, and photovoltaics. Cavus et al. [13]
presented a new energy management technique known as
deep-fuzzy logic control, which integrates LSTM-based
conceptual modelling with adaptive fuzzy logic to improve the
outcome in a microgrid system connected to the grid.
Mahmoudabadi et al. [14] introduced a detailed energy
management strategy for scheduling distributed generation
systems in both normal and abnormal modes within
microgrids connected to a distribution network. This strategy
utilized an extreme learning machine model to predict solar
and wind power outputs.

The authors in [15] analyzed a networked microgrid
system that includes biomass, PV panels, a wind turbine, a
battery system, and pumped-hydro storage. The paper
presents a hierarchical deep learning energy management
method that is implemented under normal conditions, high
demand, variation in renewable generation, and the worst
weather conditions. Authors in [16] developed microgrids
that can operate in parallel with the grid-connected mode and
the island mode, utilizing synchronizing controllers for
voltage, phase, and frequency stability based on a deep
learning control scheme. Mahjoub et al. [17] employ LSTM as
a prediction strategy in the microgrid energy management,
which comprises a PV system, a permanent magnet generator,
a wind turbine, and a battery system, to track energy
generation and power flow. The authors in [18] suggest short-
term load prediction in a hybrid system using two
approaches: an Artificial Neural Network (ANN) and an
Adaptive Barnacle-Mating Optimizer (ABMO) by selecting
and adjusting the key features of parameters to increase the
efficiency of prediction, while the job of [19] is to predict
output energy from wind turbines and PV in a microgrid,
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where the authors apply Support Vector Regression (SVR) to
increase the accuracy and efficiency of power prediction. The
proposed method is compared with a linear regression model
to minimize error variance, using historical data on weather,
energy use, and a dynamic grid environment. The authors in
[20] proposed to predict three main factors in a microgrid:
next-day energy prices, energy demand, and generation
capacity, using intelligent forecasting based on deep learning.
An LSTM network is proposed in conjunction with a global
attention mechanism (GAM) and genetic algorithm-adaptive
weight particle swarm optimization (GA-AWPSO) to
maximize prediction accuracy. Alabi et al. [21] put forward a
deep learning-based optimization approach for the day-ahead
scheduling of ZCMES-VPPs. Unlike base model approaches,
the proposed model incorporates CCS to address emissions
and EV flexibility, and features a CEM to ensure system
reliability. It should be clearly mentioned that the objectives
of the paper are as follows:

¢ An efficient deep learning and metaheuristic optimization-
based framework is introduced that leverages advanced
exploratory capabilities to identify and configure the LSTM
neural network parameters optimally to maximize the
energy prediction performance and management systems
in MGs.

¢ An enhanced dynamic Arithmetic Optimization Algorithm
(IDAOA) is proposed, which incorporates a dynamic inertia
weight update mechanism along with an adaptive mutation
coefficient. This strategy adeptly balances the exploration
and exploitation stages, thus reducing the possibility of
prematurely converging on local minima.

e A dynamic exploration technique is presented, which
combines a dynamic mutation coefficient with a triangle
mutation approach. This strategy encourages population
variety and improves the capability to search globally by
restricting the algorithm from updating candidate
solutions only dependent on the proximity of the best local
solution at the moment.

3. Methodology

This work aims to create an accurate energy forecast
system for effective microgrid energy management. It uses a
deep learning framework based on Long Short-Term Memory
(LSTM) networks. LSTM is a suitable solution for time-series
research since it effectively addresses the disadvantages of
classic RNNs by preserving long-term temporal relationships
[22,23]. As aresult, LSTMs have achieved excellent predictive
accuracy across both sequential and nonlinear datasets. The
performance of an LSTM network is highly influenced by its
configuration parameters, which are usually selected at
random. The size of the hidden layer is an important factor to
consider when designing an LSTM. This parameter is
optimally set in this work to increase LSTM performance
using the proposed Improved Dynamic Arithmetic
Optimization Algorithm (IDAOA). Figure 1 shows the
suggested methodology.

Our proposed model comprises a sequential process into

four principal stages to elicit maximum synergy between its
components:
A. Data Preprocessing: This phase gathers pure time-series
information on microgrid energy supply and demand. The
data is then normalized, allowing the model to learn without
scale bias between variables. The last step is to transform the
whole normalized data into the input-output sequences
expected for training the LSTM network.
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Figure 1. The suggested framework’s flowchart

B. Building a Baseline LSTM Model: At this point we have
defined and built the baseline architecture of the LSTM
neural network. Such decisions entail the design of the
underlying LSTM network topology and architecture, the
output and input layer sizes via time-series data pre-
processing, baseline hyperparameter values prior to
optimization, and the choice of activation function. The base
topology of this network determines the search space in the
IDAOA algorithm.

C. Hyperparameter optimization with IDAOA: during this
step, the IDAOA begins searching for the best
hyperparameters of the LSTM model. For each cycle in
IDAOA, the LSTM model is trained on the training data using
a set of hyperparameters. The prediction error(e.g. This
process is repeated until the parameters that would give the
lowest possible error are obtained.

D. Final modeling and forecasting: Once the optimal
hyperparameters are identified and IDAOA converges, the
final LSTM model with these optimal parameters is fitted on
the entire training dataset. Finally, we run the test dataset
through the trained model, which yields the final predictions.
These estimated values later guide performance evaluation
and integration into the microgrid energy management
system.

3.1 Data preprocessing
In this work, data preprocessing is separated into three
main steps: data cleaning, normalization, and partitioning.

e Data cleaning

Data cleaning is primarily done to remove irregularities
from the dataset, such as duplicates, missing items, and
invalid entries. Missing values are imputed using the average
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of the preceding and succeeding values, as expressed in
Equation (1):

x; = Xi—1‘;'xi+1 D
Where xi, x¢-1), and x(+1) represent the missing value, the
value one hour before, and the value one hour after,
respectively.

In our dataset, the missing data rate was very low, and most
missing points occurred as single points or within very short
time intervals (e.g., 1 or 2 time steps). Under such conditions,
where the gap between observed points is minimal, the
difference between the output of simple linear interpolation
and more complex techniques such as spline interpolation or
KNN imputation is negligible in terms of their impact on the
final model accuracy. In other words, nonlinear effects over
such short time intervals are of lesser importance. In this case,
linear interpolation gives a sufficient and consistent local
estimate while improving the code's simplicity and efficiency.

e Data normalization

Variables with lower values may have a
disproportionately low impact on the prediction model
because the numerical ranges of distinct attributes differ. This
is solved by translating all feature values to the [0, 1] range, a
common technique to improve training convergence and
model performance. To ensure reproducibility and
consistency, min-max normalization was applied to each
feature separately (per-feature scaling). The normalized
value was determined for each characteristic x;, as follows:

norm _ __ Xj—min(x))

% - max(xj)—min (xj) (2)
The max (x;) and min(xj) represent the maximum and
minimum values of the j-th feature calculated across the
training set. This per-feature min-max scaling avoids features
with higher numerical ranges from dominating the learning
process, while simultaneously ensuring that all input
variables contribute appropriately to model optimization.

e Data segmentation

The dataset is divided into two sets: training and testing.
The current methodology employs 70% of the data for
training and 30% for testing. The testing subset is used to
evaluate the performance of the proposed model, while the
training subset is used to optimize the suggested LSTM's
learning process and identify the appropriate size of its
hidden layer. To prevent information leakage and ensure
methodological accuracy in time-series prediction, the data's
chronological sequence was strictly maintained during
segmentation. There was no random shuffling used. The
dataset was divided into time intervals, with the first 70% of
observations (earliest timestamps) assigned to the training
set and the remaining 30% reserved for testing.

3.2 LSTM network

This study uses an LSTM network to estimate energy use
because it can efficiently handle temporal dependencies and
sudden variations in the data. Due to its ability to preserve
long-term dependencies and alleviate the vanishing gradient
problem, the LSTM network demonstrates excellent
performance across a range of sequence-based tasks.
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Figure 2 illustrates the scheme of the LSTM recurrent
neural network [24]. The cell is the most important part of the
structure of the LSTM. Every cell is equipped with a recurrent
unit preserving the input and output side information
sequences. An LSTM cell consists of four main parts: the input
gate, the output gate, the forget gate, and the cell state. The
gates use the sigmoid function to generate activation values
ranging from zero to one, indicating how much information is
lost, updated, or transmitted to the next state. However, the
underlying trainable weights associated with these gates are
real-valued parameters that lack such limitations. These
weights are learned during training to optimize the network’s
performance. The input gate is responsible for incorporating
new information into the cell state; it selectively admits
relevant sections of the new input. The output gate
determines the output of the LSTM cell based on the updated
cell state, controlling which portions of the state are revealed
as output. Additionally, the cell state serves to maintain long-
term dependencies and is not modified directly; rather, it is
regulated by the operations of the forget, input, and output
gates.

hl Output
Gt X ':' I G
Cell state X tanh Next cell state
I t }
(e} O tanh O — X
1 t t t
+ ) + +
heq L h
Hidden state 7 Next hidden state
X; | Input
Inputs: Outp Nonlinearities:  Vector operations:
. e Scaling of
X,  Current input (] New updated O  Sigmoid layer X i“fnrm%\(ion
memory o
Memory from - o Adding
o) 1t LSTM unit (I Comentoutput tanh Tanh layer information
Output of last Bias
hey LSTM unit b i

Figure 2. Structure of the LSTM recurrent neural network

3.3 LSTM neural network optimization using IDAOA

The size of its hidden layer heavily affects an LSTM
network's learnability, and larger hidden layers can capture
overly complex patterns, leading to overfitting. To improve
the model’s accuracy, IDAOA is recommended to solve this
problem. It is particularly well adapted to this task, as its
unique structure enables highly efficient sampling of the high-
dimensional space and increases the likelihood of finding a
near-optimal solution. The key IDAOA steps for optimizing
the hidden layer size are summarized here:

e  Step 1: Parameter initialization

This step comprises initializing the IDAOA's control
parameters (a and ). The parameter a, set to 5, determines
the level of exploitation precision in each iteration. With an
initial value of 0.5, the parameter p balances exploration and
exploitation equally.

e Step 2: Generation of initial candidate solutions
Every IDAOA possible solution X indicates a potential
LSTM network configuration. These solutions are iteratively
improved after being randomly initialized within the
problem's search space. Each solution X encodes a possible
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hidden layer size, and the algorithm progressively updates
them to move toward the optimal configuration. The initial
candidate solutions are produced using Eq. (3) with a size of
N*n (where N represents the population size and n is the
dimension), and during the iterative process, the optimum
solution setin each iteration is retained as the current optimal
or near-optimal value:

[ X1,1 e X X1,n-1 xl,n—l'l
| X241 e X Xon |
X=| .0 N . (3)
XN-11 e XN-1,j XN-1,n
[ Xy, o o Xnj  XNp-1 Xnn |

e Step 3: Fitness function evaluation

A core aspect of any optimization algorithm is the
formulation of an appropriate fitness function (or objective
function). In this study, the RMSE is used to evaluate the
quality of each candidate solution. For each candidate hidden
layer size proposed by the IDAOA, an LSTM model is trained
and evaluated on the energy prediction task. The fitness score
is then determined using the corresponding RMSE:

1
RMSE =\/NZ§V=1(Xabs.i — Xmodet.i)? 4)

Where N denotes the total count of observations, Xmodel.i is
the forecasted value from the LSTM model, and Xobs.i is the
actual value.

e Step 4: Determining the best solution

Based on the fitness values (calculated in the previous
step), the best solution is selected at each iteration. This
solution represents the most promising configuration of the
hidden layer size at the current stage of the optimization
process.

e Step 5: Updating the math optimizer accelerated
function (MOA)

Before the Arithmetic Optimization Algorithm (AOA)
begins its main process, it must decide whether to enter the
exploration or exploitation phase. The MOA function is
computed using the following equation:

(%)

MOA(Creer) = Min + Cpeer (M212)

Miter

Definition: MOA(Clter) is the MOA function value at iteration
t computed by (4). Clter represents the current iteration. Min
and Max are the smallest and largest values of the
acceleration function.

e Step 6: Updating the math optimizer probability
(MOP)

The MOP function determines the probability of entering

either the exploration or exploitation phase and is defined as:

MOP(Cpeer + 1) = 1 — e 6)

o
Mlter

Where MOP(Clter ) is the current iteration, @ is a control
parameter (set in Step 1), and Mlter is the maximum count
of iterations.
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e Step 7: Updating the positions of the candidate
solutions
For each candidate solution in the population X, three
random values r1,r2,r3€[0,1] are initialized. If r1>MOA, the
exploration phase is triggered; otherwise, the exploitation
phase is executed.

e Step 8: Exploration phase

If r2<0.5, the division operator (D) is applied to update
the position; otherwise, the multiplication operator (M) is
used. The position update equations in this phase are defined
as:

xi.j(CIter +1) =
best(x;) + (MOP + €) x ((UB;) — LB;) X u X LB;), r, < 0.5
best(x;) + (MOP) X ((UB]-) —LB;) X u X LB;), otherwise
@)

Where xi.j (Clter+1) is the new position of the j-th dimension
of solution I, best (xi) is the best-known solution so far, UBj
and LBj are the upper and lower bounds of dimension j, € is a
small positive number to prevent division by zero.

e  Step 9: Exploitation phase

If r3 is less than 0.5, the subtraction operation (S) is
applied to update the position; otherwise, the addition
operation (A) is used. The update rules for this phase are:

xi.j(CIteT +1) =
{ best(x;) + (MOP) x ((UB;) —LB;) X u X LB;), 5 < 0.5
best(x;) + (MOP) x (UB;) — LB;) X u X LB;), otherwise
®

e Step 10: Updating the dynamic inertia weights
The Arithmetic Optimization Algorithm (AOA) often
suffers from local optima and slow convergence, mainly
because it relies on the global best solution to update
candidate positions. To address this limitation, IDAOA is
employed to incorporate dynamic inertia weights, thereby
accelerating AOA convergence. The rate at which the
solutions are updated throughout each optimization step is
directly controlled by the inertia weight. Greater exploration
is enabled in the early stages of the optimization process by
using larger inertia weights, which cause high-potential
solutions within the search space to evolve more slowly. On
the other hand, solutions might move more finely within a
smaller area as the inertia weights are decreased later. To put
it another way, exploration is facilitated by bigger inertia
weights, whereas exploitation is supported by smaller
weights. To enhance IDAOA's search effectiveness and
accelerate convergence, this work proposes a dynamic inertia
weight mechanism that reduces nonlinearity with increasing
iterations. The dynamic inertia weight computation is shown
in Eq. (9):
L
Wbegin)(%)

Wend

w(t) = c X Whegin ( )

In this equation, wbegin and wend are the maximum and
minimum weights, and c is a randomly generated coefficient
that dynamically varies around 1. Here, t refers to the current
iteration, and T denotes the maximum number of iterations.
By integrating the dynamic inertia weights into the position
updating equations of the AOA, Equations (7) and (8) are
respectively reformulated as Equations (10) and (11):
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X j(Creer +1) =
w(t) X best (x;) + (MOP+ €) x ((UB;) = LB;) X jt X LB), 7, < 0.5
w(t) X best (xj) X MOP x ((UBJ-) - LBL-) X u X LB;),otherwise

(10)

xi.j(CIter +1)=
{ w(t) X best (x;) = MOP x ((UB;) - LB;) x u + LB;), 13 <05

w(t) X best (xj) + MOP x ((UB,-) - LB]-) X u X LB;), otherwise
(11)

e Step 11: Dynamic mutation

In this study, a dynamic coefficient mutation is
introduced, which grows as the number of iterations
progresses. Through this strategy, the algorithm's ability to
avoid local optima is enhanced by increasing the probability
that parts of the population will explore alternative search
areas. The following equation computes the mutation
coefficient:

p=02+05x< (12)
where p is the mutation probability coefficient, which is
gradually increased as t repetitions are carried out. Three

solutions are chosen at random and merged in this strategy
by the following function:

Xr1+ X2+ X3

5 T 02 —p1) X (X1 — Xp2) + (p3 —
P2) X (X2 = Xr3) + (p1 = p3) X (X3 — X;1) (13)

X(t) =

where Xr1, Xr2 and Xr3 are three solutions selected randomly
by (p2-p1), (p1-p3) and (p1l-p3) respectively, and computed
as follows:

pl = If();rl)l (14)
If (Xr2)|

Here, f() is the fitness function, and p” is defined as follows:

b =f XDl + 1f X)) + 1f (Xp3)] (16)

The triangular mutation technique facilitates the
generation of datasets from a randomly chosen pattern while
maintaining updated solutions at the local optimum.
Therefore, triangular mutation increases the capability of the
algorithm to escape local optimal points.

e Step 12: Stopping criterion
Steps 3 to 11 are repeated until the stopping condition is
met or the maximum number of iterations is reached.

4. Results and discussion

The outcomes presented in this section aim to evaluate
the effectiveness and efficiency of the proposed algorithm in
predicting the four main factors: PV, WT, day-ahead price, and
load, respectively. The ultimate aim of this strategy is to
balance demand with supply, so that grid stress is minimized,
energy prices drop, and end-use consumer satisfaction
improves. Additionally, forecasting the above four aspects can
provide clear prospects for the system in the medium and
long term and be beneficial for constructing a sound
management system that uses renewables on the supply-
demand side to moderate the system's uncertainty or
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randomness. To evaluate the proposed model, the
computational cost challenge posed by repeated training of
the LSTM network within the GA-AWPSO algorithm's fitness
function was carefully managed. To achieve an optimal
balance between result accuracy and operational runtime, the
main parameters of the GA-AWPSO algorithm were set as
follows: the population size was set to 15 particles and the
iteration number to 20, resulting in 300 fitness evaluations
throughout the entire optimization process. It should be
noted that the hyperparameter optimization process is
performed only once, and after convergence, the optimal
parameters are fixed in the model; this approach ensures that
during the evaluation (testing) phase, the model is applied
only once with the optimized parameters on new data,
thereby significantly reducing the testing time.

Simulations were performed using MATLAB on
hardware comprising a 10th-generation Intel Core i7 CPU and
an NVIDIA GeForce GTX 1660 Ti GPU. Under these conditions,
the time required to train the LSTM model with optimized
parameters was 25 minutes on average, while the time
required for prediction on the entire test dataset was only 3
seconds. Given the limited number of evaluations (300) and
the very low runtime during testing, this model is
operationally assessed as highly suitable for forecasting
applications. To verify the validity and stability of the
proposed method, the predicted results will be compared
based on three statistical parameters (MSE, RMSE, and R?).
These statistics are critical for comparing real and predicted
performance using a model error calculation and for
assessing generalization across families of materials. The
model's performance is measured at several key points,
where R2 indicates the degree of convergence between actual
and estimated values, and MSE and RMSE assess the
predictive precision. The three parameters are shown in
Equations (17) - (19).

1
RMSE = \/;Z?q (Xobs.i — Xmodel .1)? (17)
1
MSE = 2 X1 Kobsi — Xmodel 1) (18)
R2=1-— Zit1 Kobs.i=Xmodel ) (19)

E?:1 (Xabs.i_)?obs.i)z

Where N is the number of observations, X,,qe; is the
predicted value, X, ; is the actual value, X, ; is the mean of
the observed values.

4.1 Dataset

To assess the efficiency of the suggested prediction
model, a real dataset on microgrid energy management was
employed. This dataset covers wind turbines, photovoltaic
(PV), and load demand. Data quality was ensured through
preprocessing, enabling the model to achieve high accuracy
during training. The dataset used for forecasting model
evaluation was obtained from the PJM Interconnection
database. The data refer to the PJM West Zone [25]. This zone,
which includes Western Pennsylvania, the states of Ohio, and
West Virginia, is regarded as one of the most important areas
for power generation and load management. In total, 800
hours of data (800 samples) were selected for the
experiments, corresponding to a 34-day span in 2020. This
period lasts from January 1, 2020, to February 3, 2020. The
data were split into training and test subgroups. 30% of the
total data was allocated to the test set to assess the model's
validity during the trials [20]. Before applying our algorithms,
the dataset underwent initial data cleaning. This stage
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identified missing values, which were recovered using a
simple linear interpolation method (Eq. 1). Figure 3 provides
an overview of the data used in this work. All parameters for
the LSTM structure and training requirements are listed in
Table 1.

Photovoltaiec Power (PVs)
T

=100 4

I

0 50 100 150 200
Time (h)

Wlnd Tourbins Power (WTs)

~ 150
E
S 100
: SUW
3
o %
P

Time (h)
Load

L L
0 50 100 150 200
Time (h)
Day-ahead Price (DAP)
T

! h
0 50 100 150 200
Time (h)

Figure 3. Dataset used in the work

Table 1. The essential parameters for the LSTM Structure

Parameters Values
Number of hidden units in LSTM layers 100
Dropout rate 0.2
Max Epochs 100
Mini Batch Size 32
Learning Rate 0.001
Activation function sigmoid
Optimizer type adam
Gradient Threshold 10
Number of time steps in each input sequence 10

4.2 Evaluation of proposed method performance in the

training phase

Figure 4 shows the convergence curve of the proposed
method during training. The red curve shows the network
loss over iterations, while the blue curve shows the RMSE at
each iteration. As shown, the network loss decreases steadily
with the number of iterations. The network loss converges
after 3000 iterations, at which point the loss variations
become minimal. This indicates that the model has
successfully captured the patterns.

4.3 Performance evaluation in PV power forecasting
The effectiveness of the suggested approach in
predicting the output power of photovoltaic (PV) systems is
analyzed in Figure 5. The actual PV power curve (solid blue
line) and the prediction curve from the suggested model
(dashed red line) are shown in the upper part of the figure.
The nearly perfect match between the actual and expected
curves demonstrates the model's high accuracy and ability to
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track dynamic trends and changes in solar power generation
over time. Furthermore, the error is limited to the range [-0.1,
0.1], suggesting that the approach is stable and generalizable
across a wide range of cases.

10 LA U o a s (3 il iy 30U ¥
0

L
0 1000 2000 3000 4000 5000
Iteration

" 10 .20 30 40 50 60 70 80 90

0 1000 2000 3000 4000 5000
Iteration

Figure 4. The LSTM convergence curve tuned with IDAOA
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Figure 5. Performance evaluation in PV prediction

The regression indicator between forecast and actual
PV power, shown in Figure 6, is used to assess the accuracy
of the suggested method. A: This graph shows the x, y
coordinates of real value (x) against the output value of the
model (y). The black circles show the data points, and the blue
line shows the regression line between the two variables.
The dashed diagonal line shows the optimal fit line (Y=T).
Most of the points lie around the perfect line, and the
regression line overlaps this line clearly. This illustrates that
the predicted values fit very well with the actual values for
our proposed model. Real vs model output form a linear
relationship with R = 0.99852, confirming strong linearity.
This value, which is close to one, indicates that the learning
model did well in producing a linear function that accurately
relates the inputs to the target output. Thus, the curves in
Figure 6 prove that the prediction of PV production using the
proposed method behaves very closely to the actual curve,
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and it can confidently be used in renewable energy-based
energy management systems.

: R=0.99852
150
(@] Data
Fit
Y=T

X S
S 100 [ o2 1
+ S}
-
D
<
s
=
%
=
\ o
-
3 50 o 1
£
=
o

o 1

(o] 50 100 150
Target

Figure 6. Regression plot comparing the actual and forecasted PV
power values

4.4 Performance evaluation in wind turbine (WT) power

prediction

The results of wind turbine (WT) output power
forecasting using the model described are shown in Figure 7.
The top half of the plot shows the expected values (dashed red
line) and the actual power (solid blue line). As shown, the
proposed model captures the complex temporal-spatial
structures and seasonal variations in wind power generation
across different timescales. The model's hallmark is its ability
to detect rapid, nonlinear variations in delivered power.
Energy systems based on wind, which can be quite variable,
depend heavily on this. The bottom half of the figure shows
the normalized prediction error over time. Global error
distribution is narrow. Most of the data is between +0.2. This
shows the model's consistency and reliability during
evaluation. The lack of clear systematic errors indicates
proper generalization and no overfitting on the training
dataset.
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Figure 7. Evaluation of the WTs' power prediction using the
proposed model
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Expected and real wind turbine output power values
are presented in Figure 8. The data points (black circles) are
close to the Y = T line, showing that the model output
represents well real values. The slope of the regression line
(blue) is near one, and the intercept is small (around -0.21).
We can tell that the recommended model performs uniformly
through the spectrum of target values due to the high density
of points around the ideal line and the lack of significant
point scattering on high and low value ranges. This is
particularly useful in applications such as wind power
planning, where it is important to have an accurate estimate
of performance across the full range of operation. The fact
that the model accurately reproduces wind production on
this dimension, as shown by the close match between actual
values and projections, indicates its structural accuracy and
its ability to effectively portray variability among wind
production.

: R=0.99494

Output ~= 1*Target + -0.21

Target

Figure 8. Regression analysis of the WT output power

4.5 Performance evaluation in load power prediction

The performance of the proposed method for load
demand forecasting is shown in Figure 9. The dashed red line
corresponds to estimated quantities, whereas the solid blue
line displays real data; their correlation is obviously
significant, as shown by the curves shown earlier. It has
enabled us to observe temporal variations in electricity
demand, especially at load troughs and peaks. Reflecting this,
the model can capture short-term fluctuations and cyclical
consumption patterns, indicating that it has great potential to
identify time-related and nonlinear characteristics of load
signals. The normalized error between the predicted and
actual quantities is displayed in the lower portion of the
figure. There is no evident pattern of systematic departure in
the error distribution, which is uniform and roughly
symmetric around the zero axis. This indicates there is no
systemic bias in the model.

Figure 10 examines the association between the actual
and predicted load. With a correlation coefficient of R =
0.99634, the linear regression line fits the data very well,
demonstrating a high degree of agreement between the
predicted and actual values. The large R-value indicates the
model's ability to faithfully capture complex consumption
behavior. In general, the regression line indicates that the
proposed model has strong reliability for practical load
demand control and performs well across a wide range of load
demand from real data, with strong statistical coherence with
the real data.
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Figure 9. Performance of the proposed method for load prediction
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Figure 10. Regression analysis of the actual and predicted load

4.6 Performance evaluation in day-ahead price (DAP)
forecasting

Figure 11 shows that the proposed method is highly
effective at forecasting the day-ahead price. By comparing the
actual and predicted price curves, it is evident that the system
has successfully reconstructed price fluctuations. This is
especially important in competitive energy markets with
significant price sensitivity, where even small price
movements can have exaggerated effects on buying behavior.
A second important characteristic that illustrates the model's
potential to learn complex economic and temporal features is
its ability to capture both nonlinear dynamics and periodic
behavior in price time series. The normalized error (forecast
vs. actual price) is shown in the lower part of the figure. The
low amplitude and symmetric spread of errors support the
idea that the model is stable and not biased toward any price
level, while showing low-amplitude errors, especially during
price-making price fluctuations. As seen in Figure 12, the
comparison is the day-ahead energy cost versus system
production. The correlation coefficient (R = 0.99863) of the
regression line we computed is almost perfect, which, as seen
below, shows that we can accurately replicate the price levels
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we see in the real world. In other words, the model predicts
absolute numbers and also the overall tendency. The model's
predictions show no apparent systematic bias, as evidenced
by the regression curve's intercept of around 0.0037, which is
small in the context of energy market prices. Real-time and
operational forecasting situations benefit significantly from
this level of accuracy in estimating variable pricing values. In
general, the analysis of Figure 11 and Figure 12 shows that
the suggested model is a viable tool for maximizing electricity
trading strategies in day-ahead markets since it produces
extremely accurate predictions, successfully adjusts to
market volatility, and maintains an impartial behavior.
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Figure 11. The proposed model's DAP effectiveness
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Figure 12. The regression plot between the DAP's actual and
predicted values

4.7 Comparative evaluation of prediction methods
Table 2 provides a quantitative comparison of the
suggested method, IDAOA-LSTM, with other comparable
state-of-the-art models for PV and WT power prediction.
Three common metrics are used to evaluate the performance:
RMSE, MSE, and R? The suggested model much outperforms
the best previous approach, GA-AWPSO-LSTM-GAM, which
produced an RMSE of 0.055 and an MSE of 0.031, in PV power
prediction, achieving an RMSE of 0.031 and an MSE of 0.0009.
Additionally, the model's excellent ability to correctly
reproduce fluctuations in PV production is confirmed by an
R? of 0.98. Again, the suggested model outperforms the best
reference model in wind power forecasting, with RMSE =
0.021 and MSE = 0.0004 as compared to 0.064 and 0.037. In
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this case, the model's robustness and strong relationship over
the whole range of real wind power outputs are supported by
the R? value of 0.98. The simultaneous improvement across
all three measures in both types of renewable energy sources
is an essential result from Table 2, showing that the IDAOA-
LSTM model retains excellent statistical alignment while
simultaneously lowering numerical prediction errors. These
enhancements are the result of the LSTM architecture's
intelligent layout and parameter optimization via the IDAOA
approach, which enables it to learn complex, nonlinear
patterns in renewable energy.

Table 2. Performance evaluation for forecasting renewable energy
(PV and WT Power)

PVs WTs
Method
RMSE MSE R2 RMSE MSE R2
LSTM[20] 0.099 0.065 | 0.85 | 0.112 | 0.077 | 0.80
LSTM- 0.071 0.047 | 0.89 | 0.083 | 0.051 | 0.83
GAM[20] '
PSO- 0.042 | 091 | 0.073 | 0.045 | 0.86
LSTM[20] 0.066
GA-AWPSO- 0.062 0.039 0.93 | 0.071 | 0.042 0.88
LSTM[20] '
GRU- 0.058 0.034 0.94 | 0.067 | 0.039 0.89
BiLSTM[21] )
GAN[21] 0.057 0.033 0.94 | 0.069 | 0.040 0.89
GA-AWPSO- 0.031 0.96 | 0.064 | 0.037 0.91
LSTM- 0.055
GAM[20]
IDAOA- 0.0009 | 0.98 | 0.021 | 0.0004 | 0.98
LSTM(propo | 0.031
sed)
Table 3. Performance analysis of MG, load, and DAP
Load DAP
Method
RMSE MSE R2 RMSE MSE R2
LSTM[20] 0.058 0.043 | 0.84 | 0.066 | 0.047 | 0.85
LSTM-GAM[20] 0.67 0.049 | 0.86 | 0.059 | 0.042 | 0.88
PSO-LSTM[20] 0.060 0.045 0.91 | 0.058 | 0.042 091
GA-AWPSO- 0.043 0.033 0.84 | 0.052 | 0.040 0.93
LSTM[20] '
GRU- 0.035 0.024 0.96 | 0.049 | 0.037 0.93
BiLSTM[21] )
GAN[21] 0.039 0.030 0.95 | 0.041 | 0.033 0.94
GA-AWPSO- 0.029 0.021 0.97 | 0.039 | 0.028 0.95
LSTM-GAM][20] )
IDAOA- 0.024 0.0005 | 0.99 | 0.013 | 0.0001 | 0.99
LSTM(proposed) )

The IDAOA-LSTM approach's prediction ability on two
additional key parameters, load demand and DAP forecast, is
studied in Table 3. This comparison uses the same metrics as
benchmark approaches: R?, MSE, and RMSE. The suggested
method accurately predicts load patterns, with an RMSE of
just 0.024, an R? of 0.99, and an extraordinarily low MSE of
0.0005. These results outperform even the best-performing
models, such as GA-AWPSO-LSTM-GAM (RMSE = 0.029, R? =
0.97). The prediction of DAP by IDAOA-LSTM has a high
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R?=0.99, RMSE=0.013, and MSE=0.0001 against the best
benchmark model (GA-AWPSO-LSTM-GAM) that achieves an
RMSE of 0.039 and R?* = 0.95, showing a significant
improvement. The R? value, which is close to 1, indicates that
the proposed model's fit to the actual data is generally high.
The small RMSE and MSE values, as shown in the table, exhibit
how efficiently it mitigates prediction error. With these
characteristics, IDAOA-LSTM is a reliable and practical model
that can be applied in intelligent energy management
systems.

5. Conclusion

In this paper, a new fusion model is proposed, which can
improve the energy prediction accuracy of a microgrid by
combining an IDAOA algorithm and an LSTM network.
Essentially, modeling temporal data should exploit the
strengths of deep learning. The adaptive determination of
hyperparameters, including the number of nodes in the
hidden layer, is also done via IDAOA. The proposed IDAOA-
LSTM model demonstrated high forecasting accuracy across
key energy parameters in microgrid systems. For
photovoltaic (PV) power prediction, the model achieved an
RMSE of 0.031, and for wind turbine (WT) output, an RMSE of
0.021. In forecasting electrical load demand and DAP, the
model achieved RMSE values of 0.024 and 0.013, respectively.
Across all prediction tasks, the model consistently achieved
coefficient of determination (R?) values of 0.98 or higher,
indicating strong alignment between predicted and actual
values. These results corroborated the utility of the method
developed herein for simulating and quantifying the
nonlinear energy response of a structure in order to achieve
accurate energy control decisions. The findings indicate
potential for integrating deep learning architectures that
predict challenges in microgrid and renewable-oriented
problems into metaheuristic optimization at the upper level.
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