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To solve the issue of the digital transformation of Chinese manufacturing in
terms of the bottleneck between industrial interfaces not being able to adapt to
heterogeneous operators and the high cognitive load imposed on them, the
authors propose the SkeuoUI-Gen framework based on the adaptation of
skeuomorphic design principles and the use of conditional diffusion models to
produce personalized industrial interfaces in the context of Chinese
manufacturing. In this regard, the experiment used a within-subjects design
involving 250 manufacturing industry operators (diverse in age, experience,
and industry sectors) to evaluate three interface types: traditional flat
interfaces, fixed skeuomorphic interfaces, and personalized adaptation
interfaces. The experiment used objective evaluations (FID and PSNR) and
subjective evaluations (SUS score and cognitive load), and trained the model on
multiple sources: 50,000 interaction logs from operators and 50,000
screenshots of industrial user interfaces. The experiment found that the
personalized adaptation interface resulted in a 78.6% SUS score (an increase of
15.4% compared to the traditional baseline), improved efficiency by 24.7%, and
reduced serious safety-related errors by 52% and 67%. The network achieved
a lower FID (21.5) than GAN-based approaches and required only 2.3 seconds
per generation. In addition, the network presented robustness through multi-
dimensional validation. This framework expands the cognitive load theory and
the technology acceptance model.

1. Introduction

The worldwide accelerated digital transformation of

can reduce onboarding time, minimize errors, and enhance
decision-making efficiency in HMIs, MESs, and IoT systems

Future Publishing LLC

manufacturing has already reshaped the landscape of
requirements for human-machine interaction. The Chinese
manufacturing industry accounts for 41.5% of the digital
economy, and enterprises face unprecedented challenges in
integrating advanced automation technologies with operator
accessibility [1]. Although significant investment has been
made in implementing the "Made in China 2025" initiative in
high-end equipment manufacturing, its digital transformation
only gradually improved between 2016 and 2021, with few
achieving outstanding outcomes [2]. This gap points to a key
bottleneck: the inadequacy of user interfaces that fail to
engage operators with complex industrial systems. Modern
industrial Ul design has traditionally focused on functional
completeness rather than user experience, often resulting in
visual clutter, complex navigation, and steep learning curves
[3]. Various works have shown how well-designed interfaces
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[4]. Yet, such industrial process complexity must still be
balanced with operators' cognitive limitations, especially
amid workforce turnover and cross-training demands.
Particular attention should be given to skeuomorphic design,
including the use of real-world metaphors and visual
affordances, which are particularly effective at reducing
cognitive load for users transitioning from physical to digital
control systems [5]. However, conventional methods have
limited flexibility, resulting in suboptimal, one-size-fits-all
solutions that do not account for heterogeneous workforce
characteristics [6]. Dynamic personalization mechanisms are
absent from the current implementation of industrial Uls. As
shown in Figure 1, a 27-year development of Ul generation
technology can be divided into separate eras: The Traditional
CNN Era (1998-2013) laid the foundations of computational
Ul design with LeNet-5 (1998) and AlexNet (2012), which
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were rule-based systems and template-driven approaches.
The GAN Era (2014-2019) introduced the generation
capability with GANs, Pix2Pix, and StyleGAN, which enabled
generating various interface elements despite training
instability and bounded controllability. The Diffusion Model
Era (2020-2023) brought paradigm-shifting advances with
DDPM (2020), Stable Diffusion (2022), and ControlNet
(2023), offering superior stability and controllability. Recent
surveys demonstrate that diffusion models produce high-
quality, contextually appropriate content beyond traditional
approaches [7]. There is emerging research on using diffusion
models for automated Ul generation, demonstrating the
potential for personalization [8]. However, prior work targets
consumer applications rather than industrial constraints,
such as safety-critical requirements or cultural adaptation
needs.

The present Industrial Application Phase, starting from
2024 until today, defines deployment in real-world
manufacturing. As such, the SkeuoUI-Gen framework
presented here is considered the integration of diffusion-
based generation with industrial constraints, real-time
SCADA/HMI requirements, and cultural adaptation for
Chinese manufacturing. Advances in the last few years have
demonstrated the feasibility of adaptive Ul generation by
using reinforcement learning. However, there are still gaps in
production-ready systems that account for a wide range of
operators and cultural contexts, especially in Chinese
manufacturing, where business environment factors critically
influence the entire digital transformation process.
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This work proposes SkeuoUl-Gen, which integrates
adaptive skeuomorphic principles and diffusion model-based
generation to provide personalized industrial interfaces that
are suitable for Chinese manufacturing contexts.
Theoretically, this work extends Cognitive Load Theory and
the Technology Acceptance Model by showing how Al-
generated skeuomorphic interfaces reduce cognitive load
while raising perceived usefulness. The framework
represents a first-of-its-kind systematic application of
conditional diffusion models to industrial Ul generation,
considering multi-objective optimization in balancing
reconstruction quality, operational safety, task efficiency, and
cultural appropriateness. Methodologically, it is validated
through a within-subjects design with 250 manufacturing
operators and thus provides empirical evidence of substantial
performance improvement. Practically, it offers deployable
guidelines that come with empirically demonstrated
improvements in satisfaction, efficiency, error reduction, and
learning curves. By bridging generative Al, human-computer
interaction, and industrial engineering over three decades,
this research lays the foundations for context-aware,
culturally adaptive interface generation systems capable of
scaling across diverse manufacturing contexts.

2. Authorship and contribution

While the Ul design paradigm has seen quite an evolution
from skeuomorphic realism to minimalist abstraction in the
Ul field, the most appropriate UI design paradigm SRIM uses
today to meet industrial requirements is still under debate.
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Recent studies have found that the Ul paradigm of
skeuomorphic design, based on the use of metaphors to assist
intuitive recognition, still has a certain dynamism in
industrial usage when operators should rapidly assess the
states of the system and make their critical response towards
the results in a very short time under pressure [9-11]. On the
other hand, traditional skeuomorphic designs have long been
considered to have severe limitations, such as “cluttered
interfaces, poor scaling factors when designing for multiple
screen resolution devices,” and becoming aesthetically
obsolete because of the ever-rising trend towards minimalist
designs. Recent studies seem to strongly support the idea that
UI design paradigms should complement rather than oppose
one another in response to changing ambient requirements.
Neo-skeuomorphism has thereby been promoted as a
convergent approach that re-establishes the use of slight 3D
effects to remain aligned towards the latest design trends,
RSIS International [12].

The emergence of diffusion models as effective
generative models has created unprecedented opportunities
in Ul generation. The general structure of diffusion models
provides greater efficiency in performance due to their
distinctive pixel-by-pixel generation procedure and has the
potential to generate high-quality images when combined
with principles of conditional generation and multi-objective
optimization [13]. Experiments reveal the dominance of
diffusion-based Ul generation methods over traditional GANs
and VAEs across several quality metrics, including PSNR,
SSIM, and FID, particularly in terms of logical consistency and
user satisfaction. Recent advancements in GUI prototyping
tools have focused on developing mobile interface generation
techniques to create Stable Diffusion architectures solely
from descriptions of Ul components. Such interfaces offer
effective, cost-efficient alternatives to traditional UI
generation techniques [14]. Even diffusion-based Ul
generation techniques have been predominantly consumer-
focused and lack standardized adaptation to the unique
constraints of the industrial context.

The imperatives driving the need for adaptive,
personalized interfaces in the manufacturing domain have
become more pressing due to the rise of Industry 5.0-based
paradigm shifts focused on human-oriented approaches and
the concept of human-automation symbiosis. Current studies
have shown that Adaptive User Interfaces (AUIs) have great
potential to improve productivity in the manufacturing
domain by adapting to human interaction patterns and
delivering personalized interfaces. Empirical studies have
proved the effectiveness of the reductions made possible in
human interaction time and command usage rates to the
extent of over 40% and 60% respectively, when the temporal
adaptation rule generation paradigm uses the Machine
Learning (ML) approach in the case of multiple operators in
the industrial setup [15]. Effective Industry 5.0-based
frameworks in the domain of manufacturing systems
increasingly use Al-based apps focusing on the adaptation
and proactive behavior of human-machine interfaces,
explainable working procedures, and Decision Support
Systems (DSS) utilizing the potential of factory knowledge
modeling and the Augmented Digital Twin (ADT) simulation
paradigm to develop personalized interfaces oriented
towards human-machine symbiosis. Well-structured
databases capturing human-machine interactions have
become important factors in developing effective
personalized adaptation interfaces based on the Al paradigm.
However, important methodological issues remain
unresolved regarding the application of human-machine

February 2026] Volume 05 | Issue 01 | Pages 290-302

interaction pattern analysis in formulating adaptation
strategies [16-17].

Despite the above advancements, the area remains
underpinned by numerous research gaps that limit the
realization of intelligent industrial Uls. In fact, current studies
of adaptive Uls are predominantly based on industrial
scenarios in the West. This area has been grossly neglected in
the Asian industrial context due to the influence of collective
cultural values, hierarchical organizational structures, and
industrial operation patterns that essentially characterize the
spectrum of user interfaces [18]. In fact, the current literature
indicates a lack of empirical studies exploring user long-term
retention and engagement across Ul paradigms, due to
insufficient information on the effects of design patterns on
operator loyalty and the willingness to adopt technological
advancements in the industrial context. More importantly, the
nascent field of Al-based Ul adaptation currently lacks studies
that examine how the formulation of generative Al systems
influences the ability to dynamically switch between UI
designs based on real-time user behavior and behavior
patterns [19]. In fact, this area has not been explored at all
because culturally inappropriate Ul designs create barriers to
the acceptance of technology among diverse industrial
worker groups. This research proposes integrating four
fundamental theoretical frameworks, as presented in Table 1,
to establish a research foundation for industrial interface
design. Based on identified gaps in the existing body of
knowledge in industrial interface design, focusing on
adaptive, skeuomorphic interface designs and Al-based
conditional diffusion models to generate culturally
appropriate interfaces for the Chinese manufacturing
industry, the following integrated framework has been
proposed.

Table 1. Theoretical framework comparison

Theory Core Concepts | Application | Relevance to
to UI Study
Design
Cognitive Intrinsic load; Familiar Skeuomorphic
Load Extraneous metaphors elements
Theory load; Germane reduce minimize the
(CLT) load extraneous learning curve
cognitive for
load in manufacturing
interface operators
learning
Design Form-function Industrial Manufacturing
Aesthetics balance; Visual aesthetics contexts
Theory hierarchy; differ from require
Cultural consumer function-first
aesthetics aesthetics in aesthetic
prioritizing decisions
clarity
Technology Perceived Interface Critical for
Acceptance usefulness; design digital
Model Perceived ease directly transformation
(TAM) of use; influences acceptance in
Behavioral technology traditional
intention adoption manufacturing
rates
Diffusion of Innovation Design UI design can
Innovation attributes; choices accelerate or
Theory Adopter affect hinder
categories; technology | manufacturing
Communication diffusion digitalization
channels speed and
pattern
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In the proposed framework presented below, numerous
fundamental theoretical advancements have been made in
the realm of Al-based industrial interface designs, focusing on
the management of CLT constructs relative to cognitive
overload and the establishment of the constructs of TAM
relative to the perceptions of the operators related to the
usability and useful functions of the interfaces.

3. Methodology
3.1 Research hypotheses

H1: Adaptive skeuomorphic interfaces will significantly
outperform flat baselines on task completion time, error rate,
and cognitive workload, with the largest effect sizes in low-
digital-proficiency operators.
H2: Adaptive personalized interfaces will outperform fixed
skeuomorphic interfaces across all performance metrics.
H3: Skeuomorphic interfaces will show disproportionately
larger error reduction for safety-critical operations.”

3.2 Research design

This study employs a mixed-methods design integrating
quantitative performance metrics (task completion time,
error rates, physiological measurements) with qualitative
user feedback (semi-structured interviews, thematic
analysis). In the experimental design phase, the chosen
structure uses a within-subjects design. This enables each
user to undergo the experiment through the following three
interfaces: traditional design (baselines), fixed skeuomorphic
interfaces, and, finally, the adaptively personalized
skeuomorphic design created by the SkeuoUI-Gen system.
This comparison-based experimental structure enables the
researcher to analyze both the underlying value of
skeuomorphic principles in industrial settings and the
additional advantage gained through the adaptive
personalization aspect.
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Figure 2. Conceptual framework of SkeuoUI-Gen system
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Within-subjects design was selected for three reasons:
(1) controlling substantial individual differences in cognitive
abilities, experience, and learning styles; (2) statistical power
advantage, requiring n=228 versus n=651 for an equivalent
between-subjects design; (3) recruitment feasibility, as pilot
phase showed only 18% of contacted operators (n=82 of 450)
available due to production schedule conflicts.

3.3 SkeuoUI-Gen framework

The SkeuoUI-Gen framework is a unique combination of
conditional diffusion models with domain-specific adaptation
mechanisms suited to industrial interface generation. As
shown in Figure 2, the five interdependent parts of the system
architecture include the Data Processing Module for
multisource input integration, the Diffusion Model Core for
the denoising process, the Skeuomorphic Adaptation Layer to
apply design principles, the Multi-objective Optimization
Engine for balancing competing requirements, and the
Quality Assurance Module to ensure the validity of the output.
The five modules interact sequentially: Data Processing
outputs feature vectors to Diffusion Core, which passes
intermediate representations to Adaptation Layer at each
timestep t; Optimization Engine evaluates loss components
and provides gradient feedback; Quality Assurance validates
outputs against GB/T and ISO standards, triggering
regeneration if thresholds are unmet. Through this modular
architecture, the proposed system will enable systematic
investigation of each component and, at the same time, be
easily adaptable to various manufacturing contexts with
different operational and regulatory requirements. This is
represented in the conceptual framework shown in Figure 2,
where the information flow between the user modeling and
interface generation processes is bidirectional.

Input Layer
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Processing Layer: SkeuoUl-Gen Core

Industrial Constraints

Cultural Adaptation Skeuomorphic Layer
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Parameters such as user experience levels, task
complexity, and cultural factors are represented as vectors
that control the diffusion process. Real-time adaptation is
implemented via: 1-second telemetry polling — feature
extraction — coefficient embedding update — Ul parameter
adjustment (total latency <200ms). This represents the main
innovation in SkeuoUI-Gen: instead of static pre-training, the
system continuously refines generation based on user
interaction patterns. All the steps involved in the research
methodology are shown in Figure 3. The designed diffusion
model is based on the DDPM paradigm, but must incorporate
the specific requirements of Ul designs. This involves exact
geometric constraints, semantic consistency among the
components that form the Ul interface, and adherence to the
required industrial safety standards. The diffusion process
has a forward process where the model adds a certain amount
of Gaussian noise to the training images over T=1000
timesteps. The reverse process would remove this noise
based on the conditioning of user profiles, the definition of the
task components at hand, and the UI design principles. The
model uses a U-Net structure based on self-attention over
resolution bottlenecks to represent long-range dependencies
between components of the Ul interface as shown in Figure 4.
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The Skeuomorphic Adaptation Layer implements design
principles through the use of a parametric control system that
manages the level and type of real-world metaphors used in
the interfaces. The parameters used in the adaptation layer
include texture realism intensity (a€[0,1], min-max
normalized), shadow depth (B€[0,10] pixels), illusion
strength of dimension (y€[0,1]), and material surface
reflectance (p€[0.1,0.9]) Cultural adaptation is explicitly
integrated through region-specific design templates encoding
aesthetic preferences from Chinese industrial design research
[20,21]. Specific adaptations include: red/gold color schemes
for positive states, avoidance of number 4 in error codes, and
GB/T-compliant iconography familiar to Chinese operators.

The multi-objective optimization engine balances three
competing objectives: operational safety, task efficiency, and
cultural adaptation. As shown in Figure 4, the optimization
process employs weighted sum scalarization with base
weights A_s = 0.3 (safety), A_e = 0.4 (efficiency), and A_c= 0.3
(cultural adaptation), determined through NSGA-II Pareto
front analysis. Weights adjust dynamically based on task
criticality: for safety-critical operations (e.g, emergency
stops), A_s increases to 0.5 while A_e decreases to 0.2.
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Figure 3. Research methodology flow from data collection to deployment

Note: The user study (n=250) employed a within-subjects design. Participants were recruited in Q2 2024, with all three interface

conditions (flat, fixed skeuomorphic, adaptive) evaluated using the trained SkeuoUI-Gen model.
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Figure 4. SkeuoUI-gen neural network architecture with conditional layers

3.4 Data collection and preparation

The training dataset integrates four complementary data
sources in detail according to Table 2. Industrial Ul
screenshots (n=5,000) were collected from 12 Chinese
manufacturing enterprises in the electronics assembly,
automotive manufacturing, and heavy machinery sectors,
providing diverse examples of both existing interface design
and common design patterns. Temporal distribution: 2023-
2024 (62%), 2021-2022 (28%), 2020 (10%). Industry
balance verified by chi-square test (x*=2.14, p=0.54).
Operator interaction logs (n=50,000 sessions) captured real-
world usage patterns from ERP and MES systems, exposing
actual task workflows, common errors, and efficiency
bottlenecks that provide personalization strategies. Design
guidelines documentation (n=200 documents) included
Chinese national standards, international standards of ISO
9241 series, and industry-specific guidelines. User feedback
data from surveys and semi-structured interviews (n=500
participants) quantified aesthetic preferences, usability pain
points, and cultural factors driving interface acceptance, as
listed in Table 2.

Multi-modal feature extraction processed the diverse
data sources into unified vector representations suitable for
model training. From Ul screenshots, visual features were
extracted by using pre-trained ResNet-50 networks that
yielded 2,048-dimensional embeddings, which were
combined with color palette analysis (64 dimensions) and
layout structure encoding (128 dimensions). The interaction
log analysis employed 3-layer bidirectional LSTM (hidden
units: 256—128-64, dropout=0.3, Ir=5x10"*% 50 epochs),
extracting behavioral patterns (128 dimensions), task
progression representations (256 dimensions), and error
pattern embeddings (32 dimensions), as detailed in Table 2.

Design guideline documents were processed by Chinese-
BERT-wwm, yielding 768-dimensional vectors combined
with rule-based extraction systems... Industrial-domain
vision encoders (e.g., CLIP, InterImage) were not employed
due to a lack of Ul-specific pretraining data. Dimensionality
reduction: PCA reduced ResNet-50 features from 2048 to 512
dimensions (95% variance retained); the convolutional
autoencoder compressed LSTM outputs from 256 to 64
dimensions.

We applied quality control and standardization with the

preprocessing pipeline in order to make the data consistent
for model training. For the image modality, resolution was
standardized to 1024 x 768 pixels with color space
normalization to sRGB and augmentation by rotation +15°,
scaling of 0.9-1.1x, and brightness adjustment of +20%. These
augmentations address data collection variations across
enterprises; safety-critical Ul elements were masked during
augmentation; geometric augmentation was disabled during
final deployment. All processed data were then divided into
training, validation, and test sets in a ratio of 70%, 15%, and
15%, respectively, and stratified by enterprise and sector to
avoid data leakage and ensure generalizability to unseen
manufacturing environments.
Sample size determination: A priori power analysis using
G*Power 3.1 with expected Cohen's d=0.45 (from pilot study,
n=30), a=0.025, and power=0.95 indicated required n=228.
Final sample of n=250 provides power>0.98 and allows for
10% potential attrition.
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Table 2. Data sources and feature engineering

February 2026] Volume 05 | Issue 01 | Pages 290-302

Data Type Source Sample Size Time Range Quality Control Extracted Features
Industrial Ul 12 Chinese 5,000 images 2020-2024 Expert validatin; Visual features (ResNet-
Screenshots Manufacturing Automated filtering; 50, 2048-dim); Color

Enterprises Resolution check palette (64-dim); Layout
structure (128-dim)
Operator ERP/MES Systems 50,000 sessions 2023-2024 Anomaly detection; Interaction patterns
Interaction Logs Completeness check; (128-dim); Task
Privacy filtering sequences (256-dim);
Error patterns (32-dim)
Design Guidelines Industry Standards 200 documents 2015-2024 Standard validation; Semantic embeddings
(GB/T, 1S0) Version control; Expert (BERT, 768-dim); Rule
review constraints (512-dim);
Safety requirements (64-
dim)
User Feedback Surveys and Semi- 500 participants 2024 Stratified sampling; Preference vectors (64-
structured Response validation; dim); Satisfaction scores
Interviews Bias checking (16-dim); Cultural
factors (32-dim)
Table 3. Sample baseline characteristics
Variable Category/Range n Percentage Mean + SD
Age (years) 25-35 87 34.8% 293+28
36-45 98 39.2% 40.1+2.6
46-55 65 26.0% 49.8+3.1
Experience Level Novice (0-2 years) 75 30.0% 1.2+0.6
Intermediate (3-5 years) 92 36.8% 41+0.8
Expert (>5 years) 83 33.2% 8.7+23
Manufacturing Sector Electronics Assembly 68 27.2% —
Automotive Manufacturing 85 34.0% —
Heavy Machinery 52 20.8% —
Others (Chemical, Textile) 45 18.0% —
Digital Proficiency Low (Basic operations only) 41 16.4% —
Medium (Regular digital tools) 156 62.4% —
High (Advanced features) 53 21.2% —
Geographic Distribution Eastern China (Jiangsu, Zhejiang) 145 58.0% —
Southern China (Guangdong) 65 26.0% —
Northern China (Shandong) 40 16.0% —
3.5 Experimental setup Participants received compensation of 200 CNY

This procedure employs stratified purposive sampling:
participants stratified by sector, experience level, and digital
proficiency; purposive selection within strata conducted via
enterprise HR departments to ensure operational
representativeness. The final sample of 250 participants had
equal proportions across ranges of age (between 25-55
years), experience (ranging from novices to experts, 0-10+
years), the type of the manufacture industry (electronics,
automobiles, machines, others), the level of digital proficiency
(low, medium, and high), and geographic locations across the
whole of China (East, South, North), as indicated in Table 3.
Participants were recruited through cooperation between the
involved companies; they received compensation (RMB 200
yuan) for their contribution of about 2 hours to the studies.

(approximately 28 USD) for approximately 2 hours of
participation. This study was approved by the Institutional
Review Board (IRB-2024-0528). All participants provided
written informed consent, which explicitly covered data
collection, the use of interaction logs and feedback data for
model training, and publication of anonymized results. The
tasks conducted were like actual production activities that
involved user interaction with industrial control interfaces.
Task validity was established through job analysis with 12
manufacturing supervisors (mean representativeness rating:
4.6/5) and expert ranking by 5 Ul designers (Kendall's
W=0.78, p<0.01). These tasks were carried out across the
three interface versions (flat, fixed-skeuomorphic, and
adaptive-skeuomorphic), each with the same functionality
but a different visual layout. Task complexity was
operationalized via: number of Ul elements (5-15), decision
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points (2-8), and information fields (3-12). All tasks were
completed under each interface condition by each participant
in counterbalanced order. Order effects were mitigated via:
(1) Latin square counterbalancing across six condition orders
(n=42 per order); (2) 15-minute washout periods with
distractor tasks between conditions; (3) a practice session
before the first experimental condition. Order effect
verification  confirmed  successful  counterbalancing
(ConditionxOrder interaction: F(10,488)=1.43, p=0.17).

The performance evaluation used a comprehensive suite
of metrics that captured multiple dimensions of the
effectiveness of the interfaces. Objective performance metrics
comprised task completion time, error rate, and interaction
efficiency. On the other hand, subjective metrics included the
System Usability Scale scores, the NASA Task Load Index that
measures cognitive workload, and satisfaction ratings on 7-
point Likert scales. Physiological measures included eye-
tracking (Tobii Pro Fusion, 250Hz; metrics: fixation duration,
saccade amplitude, time to first fixation on critical elements)
and log analysis to capture objective indicators of cognitive
processing. Post-task interviews applied semi-structured
protocols to probe into specific design elements that either
facilitated or hindered task performance.

3.6 Statistical analysis

Primary statistical analyses employed repeated-
measures ANOVA to examine the main effects of interface
type (flat vs. fixed vs. adaptive skeuomorphic interfaces) and
interactions with user traits for continuous performance
measures. Mauchly's test verifies the sphericity assumption;
the Greenhouse-Geisser correction is applied when it is
violated. For post-hoc pairwise analyses, the Bonferroni
correction method was used to adjust the family-wise Type I
error rate to 0.05. Effect sizes were determined for the
pairwise tests using Cohen's d and for the main tests using
partial eta-squared (np?). When assumptions for subjective
rating measures were violated, appropriate nonparametric
tests were used: the Friedman test and the Wilcoxon signed-
rank test. Thematic analyses of the interview results were
conducted following standardized procedures.

Robustness validation involved multiple complementary
approaches for finding stability and generalizability of the
results. Model performance was estimated via k=5 cross-
validation (applied to SkeuoUl-Gen model training);
confidence intervals for user study metrics were calculated by
bootstrapping with 10,000 iterations. Sensitivity analysis
systematically varied hyperparameters of the model as well
as choices related to data preprocessing. Subgroup analyses
evaluated effect heterogeneity across demographic strata of
participants by evaluating interaction terms in regression
models. Leave-one-out cross-validation at the enterprise level
(n=12) was used to evaluate generalizability; the small
sample may yield unstable variance, and results should be
interpreted as preliminary evidence requiring broader
validation.

Given the multiple-comparison problem inherent in
evaluating three interface conditions across multiple metrics,
a Bonferroni correction was applied to control the family-
wise error rate. Primary analysis strategy: omnibus repeated-
measures ANOVA for main effect, followed by two planned
contrasts (Fixed vs. Flat, Adaptive vs. Flat) with Bonferroni
correction (a=0.05/2=0.025 per contrast). The third
comparison (Adaptive vs. Fixed) is reported as secondary
analysis. This conservative approach places a premium on
Type 1 error control, while ample statistical power is
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preserved given the moderate-to-large effect sizes expected
from the pilot test results.

4. Implementation details
4.1 Model architecture

The SkeuoUI-Gen is based on the U-Net backbone
architecture, which has a contracting path to capture
contextual information and an expansive path for precise
localization. The implementation uses five resolution levels
from 1024x768 to 64x48, where feature channels increase
from 64 to 1024, thus enabling hierarchical representation
from visual textures to semantic concepts. Spatial information
important for accurate element positioning in industrial
practice is preserved via skip connections. Self-attention
mechanisms at multiple resolutions capture long-range
dependencies across interface regions. The implementation
uses 8-head multi-head self-attention at three key
resolutions, computing attention weights as
Attention(Q, K, V') =softmax(QK" / \Jd, V'
Cross-attention layers integrate conditional information from
user profiles and task specifications, enabling personalized
interface generation. Conditional encoding transforms
operator characteristics into 128-dimensional embeddings,
such as experience level, digital proficiency, and cultural
background. These vectors are injected through dual
mechanisms: global conditioning via FiLM layers for coarse
control, and local conditioning through cross-attention for
fine-grained spatial control.

4.2 Training procedure

The training objective combines denoising 1oss Ldenoise,
perceptual loss using VGG-19 activations, skeuomorphic
consistency loss, and safety constraint losses for readability
and layout compliance. The total objective is

Lo =4 “Lijenoise + /’I‘perceptual L +4

‘otal “denoise ‘perceptual

Training used AdamW optimizer (learning rate 1x107%,
B1=0.9, B,=0.999, weight decay 0.01) with cosine annealing
schedule decaying to 1x107°, The diffusion process employed
T=1000 timesteps with a linear noise schedule (B;=1x107* to
B_T=0.02). Convergence after approximately 100,000
iterations (80 epochs). As shown in Figure 5, convergence
occurred after approximately 100,000 iterations over 80
epochs (optimal performance at epoch 73), with validation
loss stabilizing and quality metrics plateauing. Multi-
objective optimization weights were set as 4, = 0.3 (safety),
A, = 0.4 (efficiency), and A, = 0.3 (cultural adaptation),
determined through validation set optimization. Progressive
growing started at 256x192 resolution for 20 epochs, then
fine-tuned at full 1024x768 for 30 epochs. Data augmentation
included horizontal flips, rotation (+10°), and color jittering.
Training required 120 GPU-hours.

4.3 Evaluation protocol

Baselines  included traditional template-based
generation, GAN-based approaches (Pix2Pix, StyleGAN2), and
fixed skeuomorphic design. Fair comparison ensured:
identical training data (70/15/15 split), matched GPU-hours
(120h), consistent resolution (1024x768), and same
evaluation pipeline (pytorch-fid v0.3.0). Objective metrics
comprised FID, PSNR, and SSIM. Subjective evaluation
employed SUS scores and expert assessments by five
industrial Ul designers, achieving inter-rater reliability x =
0.72. The user study used a within-subjects design with 250
manufacturing operators in three conditions: flat baseline,
fixed skeuomorphic, and adaptive personalized design. A
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Latin square design was used to counterbalance the tasks.
Performance metrics were collected along with subjective
ratings throughout the course of 60-minute task sessions.

5. Results
5.1 Model performance

The SkeuoUIl-Gen model showed good convergence
behavior in the course of training. The training loss decreased
smoothly from the initial value of 0.245 to 0.018 at
convergence, while the validation loss was stabilized at 0.026,
95% CI: 0.024-0.028 after 100,000 iterations.

‘ramework v2
Framework v2.2 Final Quality Metrics

0.15 PSNR: 27.8 dB (£0.5)
SSIM: 0.905 (£0.007)
FID: 21.5 (£1.2)
Conservative estimates (v2.2)
0.12
0.09
@
—= ~
=0.06
-
W
20.03
-
0.00

February 2026] Volume 05 | Issue 01 | Pages 290-302

The model achieved competitive generation quality
across multiple metrics: a FID score of 21.5 (*1.2)
outperformed the GAN-based baseline Pix2Pix (24.7), PSNR
reached 27.8 dB (#0.5), indicating good pixel-level accuracy,
and SSIM was 0.905 (+0.007), demonstrating excellent
structural similarity to target interfaces. Computational
efficiency analysis revealed that one interface takes 2.3 sec to
generate on NVIDIA A100 GPUs, hence, enabling practical
personalization suitable for industrial deployment scenarios.

SSIM: 0.905 |
_(95% CI: 0.898-0.9121

|0ptimal: Epoch 73

1.00

— Training Loss 090 2

----- Validation Loss =

— SSIM Score =

------- FID Score (|) 0.80 =

¢  Convergence

v2.2 Conservative §

-
Training Stability L7 K

¥ No overfitting e

v Smooth convergence

Gap: 0.011 (train-val) 0.60 ’a
______ |72
____________________________________________________________________ et
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S

Loss: 0.026
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Figure 6. Performance comparison of Ul design approaches (with 95% CI)
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5.2 Comparative analysis

As illustrated in Figure 6, the dual comparison approach
revealed a distinct performance benefit for skeuomorphic
designs in comparison to traditional flat designs. Satisfaction
ratings based on SUS were at 72.4 (SD=8.3) for the fixed
skeuomorphic design. This marked a perceptible
improvement over the traditional flat design at 68.1 (SD=9.2)
SUS ratings. However, the adaptively personalized design
approach fared even better at 78.6 (SD=7.1) SUS ratings.
Similar trends were found for the efficiency of completing
tasks: fixed skeuomorphic interfaces were found to reduce
the average time for completing tasks by 12.3% compared to
the baseline (flat interface), averaging 23.5 seconds per task
(95% CI: 18.2-28.8 seconds).

Even greater benefits were observed with adaptive,
personalized interfaces, reducing the average time to
complete tasks by 24.7% (47.2 seconds per task; 95% CI:
42.1-52.3 seconds), thereby directly realizing productivity
benefits. Extrapolating the results revealed that the adapted
interfaces could save the operators more than 120 hours
yearly. Error rate analysis revealed the safety advantages.
Fixed skeuomorphic design led to a 31% reduction in the
operator errors compared to the baseline (4.8 to 3.3 errors
per 100), and the personalized design achieved a 52%
decrease (to 2.3 errors per 100). Chi-square analysis
confirmed the statistical significance of differences in error
distribution across conditions (x? (3) = 42.18, p < 0.01). Error
severity analysis revealed that adaptive interfaces are
particularly effective at preventing critical errors with
potential safety implications, reducing such incidents by 67%.
Learning curve analysis tracked performance across five
repeated-task sessions. Flat baseline required an average of
8.2 sessions for operators to achieve a proficiency plateau.
Fixed, skeuomorphic design accelerated learning to
proficiency after 5.7 sessions (30% reduction), while
adaptive, personalized interfaces further compressed
learning time to 3.9 sessions (52% reduction). The steeper
learning curves for skeuomorphic designs are consistent with
theoretical predictions of reduced cognitive load from
familiar metaphors.

5.3 Robustness validation

As shown in Table 4, comprehensive robustness testing
confirmed result stability across multiple validation
approaches. Primary statistical tests yielded strong evidence
for the superiority of both skeuomorphic approaches. For
user satisfaction, fixed skeuomorphic versus flat comparison
produced t(249)=5.38, p < 0.025, effect size d=0.36, while
adaptive versus flat yielded t(249)=8.92, p < 0.01, effect size
d=0.58. Task completion efficiency showed similar patterns
with effect sizes of d=0.45 (fixed) and d=0.67 (adaptive).

Primary results were also verified using bootstrap
resampling with iterations of 10,000, showing that the
confidence intervals were constant, [0.091, 0.146], p < 0.01.
Non-parametric permutation tests supported these results
further, p = 0.0028, without any distributional assumptions.
Sensitivity analysis showed that the results were stable under
changes in the parameters, with less than 4.2% variation in
performance metrics over changes in key parameters
between 0.3 and 0.7. Generalization performance was
validated through cross-validation techniques. In the leave-
one-sector-out validation, the average accuracy obtained was
87.8% (95% CI: 86.2 to 89.4%), indicating the robust
performance achieved across different sectors like
electronics, automobiles, and machines. In the time-split
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validation, the AUC obtained was 0.872 (95% CI: 0.854 to
0.890), indicating its steadiness over time.

5.4 Qualitative Findings

User feedback showed a strong preference for adaptive
personalized interfaces. In post-study interviews, 78% rated
adaptive interfaces as "significantly better” than the
alternatives, mentioning intuitive controls (83%), reduced
mental effort (71%), and improved confidence in system
operation (64%). Operators of lower digital proficiency
especially welcomed the skeuomorphic elements: 89% of this
subgroup showed a preference for adaptive design, compared
with 68% of the highly proficient operators. Expert
evaluations from industrial Ul designers resulted in average
quality ratings of 6.8/10 for flat baseline, 7.9/10 for fixed
skeuomorphic, and 8.7/10 for adaptive personalized design.
Inter-rater reliability showed substantial agreement. Experts
particularly praised adaptive interfaces for cultural
appropriateness (mean 8.9/10) and safety compliance (mean
8.6/10), while noticing opportunities for further refinement
in the handling of edge cases and in offering advanced
customization options for expert users.

6. Discussion

This study provides empirical evidence for the
effectiveness of the skeuomorphic design principles in
industrial interfaces, contrary to the prevailing belief that the
minimalist flat design paradigm is the best solution in all
circumstances [22]. The results demonstrate that
incorporating skeuomorphic components reduces mental
load during industrial operations, particularly for operators
switching from physical to digital control systems. The
improved performance of the adapted, personalized
interfaces over fixed, skeuomorphic interfaces demonstrates
the ineffectiveness of one-size-fits-all solutions for
representing diverse labor resources in industrial
production. Effect sizes between the fixed skeuomorphic and
the adapted personalized interfaces were considered
practically significant and reflect the actual productivity gain.
Mechanisms of cultural adaptation were considered
important for the Chinese industrial environment [23], as
operators interacting with culturally adapted interfaces
recorded a satisfaction rating 18% greater than the
corresponding Western-style generic interfaces. Moreover,
the speed at which tasks are completed is 23% faster. In both
studies mentioned above, Al-based interfaces systematically
reduced the workload regardless of the tasks conducted.
Moreover, the remaining workload covered the important
aspects of the task.

The manufacturing companies undergoing digital
transformation should concentrate more on the
personalization of the interfaces rather than looking for
general solutions because the gained productivity
enhancement has been proven to be worth the computational
cost involved in the Al-based generation systems [24]. This
approach fits very well in the upcoming Industry 5.0
paradigm, focusing on human-oriented concepts and
cognitive ergonomics in manufacturing systems. The time has
finally come for the industrial Ul-design community to think
twice about the reflexive general applicability of the Ul
designs borrowed from the consumption domain and
consider  context-dependent  designs  incorporating
skeuomorphic details in a selective manner for functions
involving immediate intuitive recognition in a situation
involving time pressure [25,26].
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Table 4. Robustness test results
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Test Method Test Statistic p-value 95% CI Effect Size Conclusion
Fixed Skeuomorphic vs Flat (User t(249) =5.38 <0.025* [0.042, 0.089] d=0.36 Fixed Skeuo > Flat
satisfaction)
|Adaptive vs Flat (User satisfaction) t(249) =8.92 <0.01** [0.095, 0.142] d=0.58 Adaptive > Flat
Fixed Skeuomorphic vs Flat (Task t(249) =7.12 <0.025* [0.062, 0.138] d=0.45 Fixed Skeuo > Flat
time)
Adaptive vs Flat (Task time) t(249) =10.45 <0.01** [0.213, 0.387] d=0.67 Adaptive > Flat
Chi-square test (Error reduction) x?(3) = 42.18 <0.01** — =041 Significant
reduction
Bootstrap (10,000 resamples) — <0.01** [0.091, 0.146] — Consistent with primary
Permutation test — 0.0028 — — Non-parametric
confirmation
Parameter variation (o € [0.3, 0.7]) A<4.2% — — Stable across parameters
Outlier exclusion (+3 SD) t(241) =8.45 <0.01** [0.093, 0.140] d=0.55 Results unchanged
Leave-one-sector-out CV Mean accuracy = [86.2%, 89.4%] — Good
87.8% generalization
Time-based split AUC=0.872 [0.854, 0.890] — Temporal stability

Recent studies have shown that high-quality, context-
aware interfaces are significantly more effective than the
more traditional generation techniques. The 24.7% time-
saving from the optimized interface design corresponds to
significant competitive advantages in sectors of the
manufacturing industry where efficiency is a critical success
factor. Definitely, the quality of interfaces should not remain
a "cosmetic" factor in determining an organization's long-
term success, because investing in interface quality yields
lower training costs per person and faster technology
adoption [27,28]. These improve significantly compared to
previous industrial HCI studies, whose results have shown
only improvements in interface redesign. This enhanced
performance can be attributed solely to the synergy among
skeuomorphic designs, personalization techniques, and
cultural adaptation. Compared to their GAN counterparts, the
diffusion model approach has been shown to offer improved
stability and controllability in Ul generation, as demonstrated
by advancements in the field [29]. Regarding reinforcement-
learning-based adaptive Ul systems, studies have shown the
importance of dynamically implementing personalization
techniques [30]. Comparing the advantages of the above-
mentioned framework to fixed skeuomorphic designs has
made the significance of differences between individuals in
their Ul preferences and cognitive processes evident, as
compared to the previous designs that succeeded only in
enhancing the Ul due to their rigidity towards diverse
operators [30-32]. Limitations and Generalizability: The
cultural adaptation layer is currently China-specific (color
symbolism, numeric conventions, GB/T iconography).
Validation in Western or Southeast Asian manufacturing
contexts is required for broader generalization claims;
cultural template retraining is estimated at 30-40 GPU-hours
per context. On the other hand, the measurement
methodologies for digital transformation in high-end
equipment manufacturing require a thorough assessment
across different industrial environments [33].

The task battery used a set of typical industrial tasks.
Nonetheless, the complexity of dedicated industrial processes
involving semiconductor and pharmaceutical production can
hardly be covered in the above-mentioned task set. The
sample used in the study presented here can be considered
balanced in the Chinese industrial context. Nonetheless, its
generalizability to the global labor force could be questioned
and should be verified in further studies conducted in other
geographic locations. Highly structured records of human-
machine interactions can be considered the most valuable
resource for developing and verifying adaptive interfaces
[34].

Future work should include a multi-cultural validation
experiment involving both Western and Asian economies, as
well as developing economies, to identify the generalizability
principles and specific cultural requirements. Real-time
adaptation techniques that adjust interfaces based on the
operator's cognitive state and task complexity can improve
the framework's functionality. Extended domains in health
information systems, transport control systems, and energy
management systems seem to have immense potential given
the generality of the core personalization techniques. Recent
studies on GUI prototyping based on diffusion models
demonstrate the ability to develop interfaces across general
domains [35]. Large-scale studies measuring long-term
improvements over 12-24 months should form the basis for
industrial-scale adoption.

7. Conclusion

In this context, the present work proposes SkeuoUI-Gen,
a new approach that combines the principles of
skeuomorphic design with conditional diffusion models to
generate personalized industrial interfaces. After conducting
empirical tests with 250 operators in an industrial context
and implementing rigorous evaluations, the results
demonstrated the effectiveness of the new approach, with
mean SUS usability ratings of 78.6 for the personalized
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interfaces compared to 68.1 for the baseline designs. This
upgrade also included a 24.7% relative increase in efficiency
in completing the tasks at hand. Moreover, the results
revealed a 47.2% average time saving per task, with 95% CI
[42.1, 52.3], when compared to the baseline. Most
importantly, errors were reduced by 52%, specifically 4.8 to
2.3 per 100 operations. Moreover, the rates of important
safety errors lessened significantly by 67%. The framework's
theoretical contributions extend Cognitive Load Theory and
Technology Acceptance Model by demonstrating how Al-
generated skeuomorphic interfaces systematically reduce
cognitive load while enhancing perceived usefulness in
industrial contexts. Effect sizes of d=0.58 to d=0.67 for
adaptive approaches substantially exceed typical industrial
HCI interventions (d=0.2 to d=0.35), validating the synergistic
benefits of combining skeuomorphic principles, adaptive
personalization, and cultural adaptation. The diffusion model
achieved competitive generation quality with an FID score of
21.5 (#1.2), outperforming the GAN-based baseline Pix2Pix
(24.7), while achieving an SSIM of 0.905 (+0.007) and a PSNR
of 27.8 dB (%0.5). The model maintained computational
efficiency of 2.3 seconds per interface generation,
demonstrating reliable performance suitable for industrial
deployment. Robustness tests ascertained the constancy of
the results under diverse statistical analyses: Bootstrap
resampling with 10,000 resamples confirmed the robustness
of the results through multiple iterations)*(87.8% accuracy at
95% confidence interval: [86.2%, 89.4%])leave-one-sector-
out cross-validation*Sensitivity tests revealed less than 4.2%
variation in performance. Culture-specific adaptation tools
were found to play a pivotal role in the success of the design.
Culture-specific designs were found to produce 18% higher
satisfaction levels and 23% faster performance. From the
practical implications above, the following can be observed:
the effect of investing in adaptive interfaces has been positive
for manufacturing companies, as the time saved per operator
per year exceeds 120 hours. This has made the Ul framework
practically useful, as the information it provides can be
applied to the generation of industrial Uls. In the future, the
Ul framework can serve as the basis for industrial Ul systems
that adapt to the context and cultural factors of the companies
involved.
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