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A B S T R A C T 
 

To solve the issue of the digital transformation of Chinese manufacturing in 
terms of the bottleneck between industrial interfaces not being able to adapt to 
heterogeneous operators and the high cognitive load imposed on them, the 
authors propose the SkeuoUI-Gen framework based on the adaptation of 
skeuomorphic design principles and the use of conditional diffusion models to 
produce personalized industrial interfaces in the context of Chinese 
manufacturing. In this regard, the experiment used a within-subjects design 
involving 250 manufacturing industry operators (diverse in age, experience, 
and industry sectors) to evaluate three interface types: traditional flat 
interfaces, fixed skeuomorphic interfaces, and personalized adaptation 
interfaces. The experiment used objective evaluations (FID and PSNR) and 
subjective evaluations (SUS score and cognitive load), and trained the model on 
multiple sources: 50,000 interaction logs from operators and 50,000 
screenshots of industrial user interfaces. The experiment found that the 
personalized adaptation interface resulted in a 78.6% SUS score (an increase of 
15.4% compared to the traditional baseline), improved efficiency by 24.7%, and 
reduced serious safety-related errors by 52% and 67%. The network achieved 
a lower FID (21.5) than GAN-based approaches and required only 2.3 seconds 
per generation. In addition, the network presented robustness through multi-
dimensional validation. This framework expands the cognitive load theory and 
the technology acceptance model. 

1. Introduction 

The worldwide accelerated digital transformation of 
manufacturing has already reshaped the landscape of 
requirements for human-machine interaction. The Chinese 
manufacturing industry accounts for 41.5% of the digital 
economy, and enterprises face unprecedented challenges in 
integrating advanced automation technologies with operator 
accessibility [1]. Although significant investment has been 
made in implementing the "Made in China 2025" initiative in 
high-end equipment manufacturing, its digital transformation 
only gradually improved between 2016 and 2021, with few 
achieving outstanding outcomes [2]. This gap points to a key 
bottleneck: the inadequacy of user interfaces that fail to 
engage operators with complex industrial systems. Modern 
industrial UI design has traditionally focused on functional 
completeness rather than user experience, often resulting in 
visual clutter, complex navigation, and steep learning curves 
[3]. Various works have shown how well-designed interfaces 

can reduce onboarding time, minimize errors, and enhance 
decision-making efficiency in HMIs, MESs, and IoT systems 
[4]. Yet, such industrial process complexity must still be 
balanced with operators' cognitive limitations, especially 
amid workforce turnover and cross-training demands. 
Particular attention should be given to skeuomorphic design, 
including the use of real-world metaphors and visual 
affordances, which are particularly effective at reducing 
cognitive load for users transitioning from physical to digital 
control systems [5]. However, conventional methods have 
limited flexibility, resulting in suboptimal, one-size-fits-all 
solutions that do not account for heterogeneous workforce 
characteristics [6]. Dynamic personalization mechanisms are 
absent from the current implementation of industrial UIs. As 
shown in Figure 1, a 27-year development of UI generation 
technology can be divided into separate eras: The Traditional 
CNN Era (1998-2013) laid the foundations of computational 
UI design with LeNet-5 (1998) and AlexNet (2012), which 
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were rule-based systems and template-driven approaches. 
The GAN Era (2014-2019) introduced the generation 
capability with GANs, Pix2Pix, and StyleGAN, which enabled 
generating various interface elements despite training 
instability and bounded controllability. The Diffusion Model 
Era (2020-2023) brought paradigm-shifting advances with 
DDPM (2020), Stable Diffusion (2022), and ControlNet 
(2023), offering superior stability and controllability. Recent 
surveys demonstrate that diffusion models produce high-
quality, contextually appropriate content beyond traditional 
approaches [7]. There is emerging research on using diffusion 
models for automated UI generation, demonstrating the 
potential for personalization [8]. However, prior work targets 
consumer applications rather than industrial constraints, 
such as safety-critical requirements or cultural adaptation 
needs. 

The present Industrial Application Phase, starting from 
2024 until today, defines deployment in real-world 
manufacturing. As such, the SkeuoUI-Gen framework 
presented here is considered the integration of diffusion-
based generation with industrial constraints, real-time 
SCADA/HMI requirements, and cultural adaptation for 
Chinese manufacturing. Advances in the last few years have 
demonstrated the feasibility of adaptive UI generation by 
using reinforcement learning. However, there are still gaps in 
production-ready systems that account for a wide range of 
operators and cultural contexts, especially in Chinese 
manufacturing, where business environment factors critically 
influence the entire digital transformation process. 

 

 

This work proposes SkeuoUI-Gen, which integrates 
adaptive skeuomorphic principles and diffusion model-based 
generation to provide personalized industrial interfaces that 
are suitable for Chinese manufacturing contexts. 
Theoretically, this work extends Cognitive Load Theory and 
the Technology Acceptance Model by showing how AI-
generated skeuomorphic interfaces reduce cognitive load 
while raising perceived usefulness. The framework 
represents a first-of-its-kind systematic application of 
conditional diffusion models to industrial UI generation, 
considering multi-objective optimization in balancing 
reconstruction quality, operational safety, task efficiency, and 
cultural appropriateness. Methodologically, it is validated 
through a within-subjects design with 250 manufacturing 
operators and thus provides empirical evidence of substantial 
performance improvement. Practically, it offers deployable 
guidelines that come with empirically demonstrated 
improvements in satisfaction, efficiency, error reduction, and 
learning curves. By bridging generative AI, human-computer 
interaction, and industrial engineering over three decades, 
this research lays the foundations for context-aware, 
culturally adaptive interface generation systems capable of 
scaling across diverse manufacturing contexts. 

2. Authorship and contribution 

While the UI design paradigm has seen quite an evolution 
from skeuomorphic realism to minimalist abstraction in the 
UI field, the most appropriate UI design paradigm SRIM uses 
today to meet industrial requirements is still under debate.  

 

 
Figure 1. Evolution of industrial UI generation applications (1998-present) 
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Recent studies have found that the UI paradigm of 
skeuomorphic design, based on the use of metaphors to assist 
intuitive recognition, still has a certain dynamism in 
industrial usage when operators should rapidly assess the 
states of the system and make their critical response towards 
the results in a very short time under pressure [9-11]. On the 
other hand, traditional skeuomorphic designs have long been 
considered to have severe limitations, such as “cluttered 
interfaces, poor scaling factors when designing for multiple 
screen resolution devices,” and becoming aesthetically 
obsolete because of the ever-rising trend towards minimalist 
designs. Recent studies seem to strongly support the idea that 
UI design paradigms should complement rather than oppose 
one another in response to changing ambient requirements. 
Neo-skeuomorphism has thereby been promoted as a 
convergent approach that re-establishes the use of slight 3D 
effects to remain aligned towards the latest design trends, 
RSIS International [12]. 

The emergence of diffusion models as effective 
generative models has created unprecedented opportunities 
in UI generation. The general structure of diffusion models 
provides greater efficiency in performance due to their 
distinctive pixel-by-pixel generation procedure and has the 
potential to generate high-quality images when combined 
with principles of conditional generation and multi-objective 
optimization [13]. Experiments reveal the dominance of 
diffusion-based UI generation methods over traditional GANs 
and VAEs across several quality metrics, including PSNR, 
SSIM, and FID, particularly in terms of logical consistency and 
user satisfaction. Recent advancements in GUI prototyping 
tools have focused on developing mobile interface generation 
techniques to create Stable Diffusion architectures solely 
from descriptions of UI components. Such interfaces offer 
effective, cost-efficient alternatives to traditional UI 
generation techniques [14]. Even diffusion-based UI 
generation techniques have been predominantly consumer-
focused and lack standardized adaptation to the unique 
constraints of the industrial context. 

The imperatives driving the need for adaptive, 
personalized interfaces in the manufacturing domain have 
become more pressing due to the rise of Industry 5.0-based 
paradigm shifts focused on human-oriented approaches and 
the concept of human-automation symbiosis. Current studies 
have shown that Adaptive User Interfaces (AUIs) have great 
potential to improve productivity in the manufacturing 
domain by adapting to human interaction patterns and 
delivering personalized interfaces. Empirical studies have 
proved the effectiveness of the reductions made possible in 
human interaction time and command usage rates to the 
extent of over 40% and 60% respectively, when the temporal 
adaptation rule generation paradigm uses the Machine 
Learning (ML) approach in the case of multiple operators in 
the industrial setup [15]. Effective Industry 5.0-based 
frameworks in the domain of manufacturing systems 
increasingly use AI-based apps focusing on the adaptation 
and proactive behavior of human-machine interfaces, 
explainable working procedures, and Decision Support 
Systems (DSS) utilizing the potential of factory knowledge 
modeling and the Augmented Digital Twin (ADT) simulation 
paradigm to develop personalized interfaces oriented 
towards human-machine symbiosis. Well-structured 
databases capturing human-machine interactions have 
become important factors in developing effective 
personalized adaptation interfaces based on the AI paradigm. 
However, important methodological issues remain 
unresolved regarding the application of human-machine 

interaction pattern analysis in formulating adaptation 
strategies [16-17]. 

Despite the above advancements, the area remains 
underpinned by numerous research gaps that limit the 
realization of intelligent industrial UIs. In fact, current studies 
of adaptive UIs are predominantly based on industrial 
scenarios in the West. This area has been grossly neglected in 
the Asian industrial context due to the influence of collective 
cultural values, hierarchical organizational structures, and 
industrial operation patterns that essentially characterize the 
spectrum of user interfaces [18]. In fact, the current literature 
indicates a lack of empirical studies exploring user long-term 
retention and engagement across UI paradigms, due to 
insufficient information on the effects of design patterns on 
operator loyalty and the willingness to adopt technological 
advancements in the industrial context. More importantly, the 
nascent field of AI-based UI adaptation currently lacks studies 
that examine how the formulation of generative AI systems 
influences the ability to dynamically switch between UI 
designs based on real-time user behavior and behavior 
patterns [19]. In fact, this area has not been explored at all 
because culturally inappropriate UI designs create barriers to 
the acceptance of technology among diverse industrial 
worker groups. This research proposes integrating four 
fundamental theoretical frameworks, as presented in Table 1, 
to establish a research foundation for industrial interface 
design. Based on identified gaps in the existing body of 
knowledge in industrial interface design, focusing on 
adaptive, skeuomorphic interface designs and AI-based 
conditional diffusion models to generate culturally 
appropriate interfaces for the Chinese manufacturing 
industry, the following integrated framework has been 
proposed.  

Table 1. Theoretical framework comparison 

 

Theory Core Concepts Application 
to UI 

Design 

Relevance to 
Study 

Cognitive 
Load 

Theory 
(CLT) 

Intrinsic load; 
Extraneous 

load; Germane 
load 

Familiar 
metaphors 

reduce 
extraneous 
cognitive 

load in 
interface 
learning 

Skeuomorphic 
elements 

minimize the 
learning curve 

for 
manufacturing 

operators 

Design 
Aesthetics 

Theory 

Form-function 
balance; Visual 

hierarchy; 
Cultural 

aesthetics 

Industrial 
aesthetics 
differ from 
consumer 

aesthetics in 
prioritizing 

clarity 

Manufacturing 
contexts 
require 

function-first 
aesthetic 
decisions 

Technology 
Acceptance 

Model 
(TAM) 

Perceived 
usefulness; 

Perceived ease 
of use; 

Behavioral 
intention 

Interface 
design 

directly 
influences 
technology 
adoption 

rates 

Critical for 
digital 

transformation 
acceptance in 

traditional 
manufacturing 

Diffusion of 
Innovation 

Theory 

Innovation 
attributes; 

Adopter 
categories; 

Communication 
channels 

Design 
choices 
affect 

technology 
diffusion 

speed and 
pattern 

UI design can 
accelerate or 

hinder 
manufacturing 
digitalization 
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In the proposed framework presented below, numerous 
fundamental theoretical advancements have been made in 
the realm of AI-based industrial interface designs, focusing on 
the management of CLT constructs relative to cognitive 
overload and the establishment of the constructs of TAM 
relative to the perceptions of the operators related to the 
usability and useful functions of the interfaces. 

3. Methodology 

3.1 Research hypotheses 
H1: Adaptive skeuomorphic interfaces will significantly 

outperform flat baselines on task completion time, error rate, 
and cognitive workload, with the largest effect sizes in low-
digital-proficiency operators. 
H2: Adaptive personalized interfaces will outperform fixed 
skeuomorphic interfaces across all performance metrics. 
H3: Skeuomorphic interfaces will show disproportionately 
larger error reduction for safety-critical operations." 

3.2 Research design 
This study employs a mixed-methods design integrating 

quantitative performance metrics (task completion time, 
error rates, physiological measurements) with qualitative 
user feedback (semi-structured interviews, thematic 
analysis). In the experimental design phase, the chosen 
structure uses a within-subjects design. This enables each 
user to undergo the experiment through the following three 
interfaces: traditional design (baselines), fixed skeuomorphic 
interfaces, and, finally, the adaptively personalized 
skeuomorphic design created by the SkeuoUI-Gen system. 
This comparison-based experimental structure enables the 
researcher to analyze both the underlying value of 
skeuomorphic principles in industrial settings and the 
additional advantage gained through the adaptive 
personalization aspect. 
 

 
Figure 2. Conceptual framework of SkeuoUI-Gen system 

Within-subjects design was selected for three reasons: 
(1) controlling substantial individual differences in cognitive 
abilities, experience, and learning styles; (2) statistical power 
advantage, requiring n=228 versus n=651 for an equivalent 
between-subjects design; (3) recruitment feasibility, as pilot 
phase showed only 18% of contacted operators (n=82 of 450) 
available due to production schedule conflicts. 

3.3 SkeuoUI-Gen framework 
The SkeuoUI-Gen framework is a unique combination of 

conditional diffusion models with domain-specific adaptation 
mechanisms suited to industrial interface generation. As 
shown in Figure 2, the five interdependent parts of the system 
architecture include the Data Processing Module for 
multisource input integration, the Diffusion Model Core for 
the denoising process, the Skeuomorphic Adaptation Layer to 
apply design principles, the Multi-objective Optimization 
Engine for balancing competing requirements, and the 
Quality Assurance Module to ensure the validity of the output. 
The five modules interact sequentially: Data Processing 
outputs feature vectors to Diffusion Core, which passes 
intermediate representations to Adaptation Layer at each 
timestep t; Optimization Engine evaluates loss components 
and provides gradient feedback; Quality Assurance validates 
outputs against GB/T and ISO standards, triggering 
regeneration if thresholds are unmet. Through this modular 
architecture, the proposed system will enable systematic 
investigation of each component and, at the same time, be 
easily adaptable to various manufacturing contexts with 
different operational and regulatory requirements. This is 
represented in the conceptual framework shown in Figure 2, 
where the information flow between the user modeling and 
interface generation processes is bidirectional.  
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Parameters such as user experience levels, task 
complexity, and cultural factors are represented as vectors 
that control the diffusion process. Real-time adaptation is 
implemented via: 1-second telemetry polling → feature 
extraction → coefficient embedding update → UI parameter 
adjustment (total latency <200ms). This represents the main 
innovation in SkeuoUI-Gen: instead of static pre-training, the 
system continuously refines generation based on user 
interaction patterns. All the steps involved in the research 
methodology are shown in Figure 3. The designed diffusion 
model is based on the DDPM paradigm, but must incorporate 
the specific requirements of UI designs. This involves exact 
geometric constraints, semantic consistency among the 
components that form the UI interface, and adherence to the 
required industrial safety standards. The diffusion process 
has a forward process where the model adds a certain amount 
of Gaussian noise to the training images over T=1000 
timesteps. The reverse process would remove this noise 
based on the conditioning of user profiles, the definition of the 
task components at hand, and the UI design principles. The 
model uses a U-Net structure based on self-attention over 
resolution bottlenecks to represent long-range dependencies 
between components of the UI interface as shown in Figure 4. 

 
 

 
 
 

The Skeuomorphic Adaptation Layer implements design 
principles through the use of a parametric control system that 
manages the level and type of real-world metaphors used in 
the interfaces. The parameters used in the adaptation layer 
include texture realism intensity (α∈[0,1], min-max 
normalized), shadow depth (β∈[0,10] pixels), illusion 
strength of dimension (γ∈[0,1]), and material surface 
reflectance (ρ∈[0.1,0.9]) Cultural adaptation is explicitly 
integrated through region-specific design templates encoding 
aesthetic preferences from Chinese industrial design research 
[20,21]. Specific adaptations include: red/gold color schemes 
for positive states, avoidance of number 4 in error codes, and 
GB/T-compliant iconography familiar to Chinese operators. 

The multi-objective optimization engine balances three 
competing objectives: operational safety, task efficiency, and 
cultural adaptation. As shown in Figure 4, the optimization 
process employs weighted sum scalarization with base 
weights λ_s = 0.3 (safety), λ_e = 0.4 (efficiency), and λ_c = 0.3 
(cultural adaptation), determined through NSGA-II Pareto 
front analysis. Weights adjust dynamically based on task 
criticality: for safety-critical operations (e.g., emergency 
stops), λ_s increases to 0.5 while λ_e decreases to 0.2. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 3. Research methodology flow from data collection to deployment 

Note: The user study (n=250) employed a within-subjects design. Participants were recruited in Q2 2024, with all three interface 

conditions (flat, fixed skeuomorphic, adaptive) evaluated using the trained SkeuoUI-Gen model. 
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3.4 Data collection and preparation 
The training dataset integrates four complementary data 

sources in detail according to Table 2. Industrial UI 
screenshots (n=5,000) were collected from 12 Chinese 
manufacturing enterprises in the electronics assembly, 
automotive manufacturing, and heavy machinery sectors, 
providing diverse examples of both existing interface design 
and common design patterns. Temporal distribution: 2023-
2024 (62%), 2021-2022 (28%), 2020 (10%). Industry 
balance verified by chi-square test (χ²=2.14, p=0.54). 
Operator interaction logs (n=50,000 sessions) captured real-
world usage patterns from ERP and MES systems, exposing 
actual task workflows, common errors, and efficiency 
bottlenecks that provide personalization strategies. Design 
guidelines documentation (n=200 documents) included 
Chinese national standards, international standards of ISO 
9241 series, and industry-specific guidelines. User feedback 
data from surveys and semi-structured interviews (n=500 
participants) quantified aesthetic preferences, usability pain 
points, and cultural factors driving interface acceptance, as 
listed in Table 2. 

Multi-modal feature extraction processed the diverse 
data sources into unified vector representations suitable for 
model training. From UI screenshots, visual features were 
extracted by using pre-trained ResNet-50 networks that 
yielded 2,048-dimensional embeddings, which were 
combined with color palette analysis (64 dimensions) and 
layout structure encoding (128 dimensions). The interaction 
log analysis employed 3-layer bidirectional LSTM (hidden 
units: 256→128→64, dropout=0.3, lr=5×10⁻⁴, 50 epochs), 
extracting behavioral patterns (128 dimensions), task 
progression representations (256 dimensions), and error 
pattern embeddings (32 dimensions), as detailed in Table 2.  

 
 
Design guideline documents were processed by Chinese-

BERT-wwm, yielding 768-dimensional vectors combined 
with rule-based extraction systems... Industrial-domain 
vision encoders (e.g., CLIP, InterImage) were not employed 
due to a lack of UI-specific pretraining data. Dimensionality 
reduction: PCA reduced ResNet-50 features from 2048 to 512 
dimensions (95% variance retained); the convolutional 
autoencoder compressed LSTM outputs from 256 to 64 
dimensions. 

We applied quality control and standardization with the 
preprocessing pipeline in order to make the data consistent 
for model training. For the image modality, resolution was 
standardized to 1024 × 768 pixels with color space 
normalization to sRGB and augmentation by rotation ±15°, 
scaling of 0.9-1.1×, and brightness adjustment of ±20%. These 
augmentations address data collection variations across 
enterprises; safety-critical UI elements were masked during 
augmentation; geometric augmentation was disabled during 
final deployment. All processed data were then divided into 
training, validation, and test sets in a ratio of 70%, 15%, and 
15%, respectively, and stratified by enterprise and sector to 
avoid data leakage and ensure generalizability to unseen 
manufacturing environments. 
Sample size determination: A priori power analysis using 
G*Power 3.1 with expected Cohen's d=0.45 (from pilot study, 
n=30), α=0.025, and power=0.95 indicated required n=228. 
Final sample of n=250 provides power>0.98 and allows for 
10% potential attrition. 

 
 
 
 
 
 

Figure 4. SkeuoUI-gen neural network architecture with conditional layers 
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3.5 Experimental setup 
This procedure employs stratified purposive sampling: 

participants stratified by sector, experience level, and digital 
proficiency; purposive selection within strata conducted via 
enterprise HR departments to ensure operational 
representativeness. The final sample of 250 participants had 
equal proportions across ranges of age (between 25-55 
years), experience (ranging from novices to experts, 0-10+ 
years), the type of the manufacture industry (electronics, 
automobiles, machines, others), the level of digital proficiency 
(low, medium, and high), and geographic locations across the 
whole of China (East, South, North), as indicated in Table 3. 
Participants were recruited through cooperation between the 
involved companies; they received compensation (RMB 200 
yuan) for their contribution of about 2 hours to the studies. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Participants received compensation of 200 CNY 

(approximately 28 USD) for approximately 2 hours of 
participation. This study was approved by the Institutional 
Review Board (IRB-2024-0528). All participants provided 
written informed consent, which explicitly covered data 
collection, the use of interaction logs and feedback data for 
model training, and publication of anonymized results. The 
tasks conducted were like actual production activities that 
involved user interaction with industrial control interfaces. 
Task validity was established through job analysis with 12 
manufacturing supervisors (mean representativeness rating: 
4.6/5) and expert ranking by 5 UI designers (Kendall's 
W=0.78, p<0.01). These tasks were carried out across the 
three interface versions (flat, fixed-skeuomorphic, and 
adaptive-skeuomorphic), each with the same functionality 
but a different visual layout. Task complexity was 
operationalized via: number of UI elements (5-15), decision 

Table 2. Data sources and feature engineering 

Data Type Source Sample Size Time Range Quality Control Extracted Features 

Industrial UI 
Screenshots 

12 Chinese 
Manufacturing 

Enterprises 

5,000 images 2020-2024 Expert validatin; 
Automated filtering; 

Resolution check 

Visual features (ResNet-
50, 2048-dim); Color 

palette (64-dim); Layout 
structure (128-dim) 

Operator 
Interaction Logs 

ERP/MES Systems 50,000 sessions 2023-2024 Anomaly detection; 
Completeness check; 

Privacy filtering 

Interaction patterns 
(128-dim); Task 

sequences (256-dim); 
Error patterns (32-dim) 

Design Guidelines Industry Standards 
(GB/T, ISO) 

200 documents 2015-2024 Standard validation; 
Version control; Expert 

review 

Semantic embeddings 
(BERT, 768-dim); Rule 
constraints (512-dim); 

Safety requirements (64-
dim) 

User Feedback Surveys and Semi-
structured 
Interviews 

500 participants 2024 Stratified sampling; 
Response validation; 

Bias checking 

Preference vectors (64-
dim); Satisfaction scores 

(16-dim); Cultural 
factors (32-dim) 

 

Table 3. Sample baseline characteristics 

Variable Category/Range n Percentage Mean ± SD 

Age (years) 25-35 87 34.8% 29.3 ± 2.8 

 36-45 98 39.2% 40.1 ± 2.6 

 46-55 65 26.0% 49.8 ± 3.1 

Experience Level Novice (0-2 years) 75 30.0% 1.2 ± 0.6 

 Intermediate (3-5 years) 92 36.8% 4.1 ± 0.8 

 Expert (>5 years) 83 33.2% 8.7 ± 2.3 

Manufacturing Sector Electronics Assembly 68 27.2% — 

 Automotive Manufacturing 85 34.0% — 

 Heavy Machinery 52 20.8% — 

 Others (Chemical, Textile) 45 18.0% — 

Digital Proficiency Low (Basic operations only) 41 16.4% — 

 Medium (Regular digital tools) 156 62.4% — 

 High (Advanced features) 53 21.2% — 

Geographic Distribution Eastern China (Jiangsu, Zhejiang) 145 58.0% — 

 Southern China (Guangdong) 65 26.0% — 

 Northern China (Shandong) 40 16.0% — 
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points (2-8), and information fields (3-12). All tasks were 
completed under each interface condition by each participant 
in counterbalanced order. Order effects were mitigated via: 
(1) Latin square counterbalancing across six condition orders 
(n≈42 per order); (2) 15-minute washout periods with 
distractor tasks between conditions; (3) a practice session 
before the first experimental condition. Order effect 
verification confirmed successful counterbalancing 
(Condition×Order interaction: F(10,488)=1.43, p=0.17). 

The performance evaluation used a comprehensive suite 
of metrics that captured multiple dimensions of the 
effectiveness of the interfaces. Objective performance metrics 
comprised task completion time, error rate, and interaction 
efficiency. On the other hand, subjective metrics included the 
System Usability Scale scores, the NASA Task Load Index that 
measures cognitive workload, and satisfaction ratings on 7-
point Likert scales. Physiological measures included eye-
tracking (Tobii Pro Fusion, 250Hz; metrics: fixation duration, 
saccade amplitude, time to first fixation on critical elements) 
and log analysis to capture objective indicators of cognitive 
processing. Post-task interviews applied semi-structured 
protocols to probe into specific design elements that either 
facilitated or hindered task performance. 

3.6 Statistical analysis 
Primary statistical analyses employed repeated-

measures ANOVA to examine the main effects of interface 
type (flat vs. fixed vs. adaptive skeuomorphic interfaces) and 
interactions with user traits for continuous performance 
measures. Mauchly's test verifies the sphericity assumption; 
the Greenhouse-Geisser correction is applied when it is 
violated. For post-hoc pairwise analyses, the Bonferroni 
correction method was used to adjust the family-wise Type I 
error rate to 0.05. Effect sizes were determined for the 
pairwise tests using Cohen's d and for the main tests using 
partial eta-squared (ηp²). When assumptions for subjective 
rating measures were violated, appropriate nonparametric 
tests were used: the Friedman test and the Wilcoxon signed-
rank test. Thematic analyses of the interview results were 
conducted following standardized procedures. 

Robustness validation involved multiple complementary 
approaches for finding stability and generalizability of the 
results. Model performance was estimated via k=5 cross-
validation (applied to SkeuoUI-Gen model training); 
confidence intervals for user study metrics were calculated by 
bootstrapping with 10,000 iterations. Sensitivity analysis 
systematically varied hyperparameters of the model as well 
as choices related to data preprocessing. Subgroup analyses 
evaluated effect heterogeneity across demographic strata of 
participants by evaluating interaction terms in regression 
models. Leave-one-out cross-validation at the enterprise level 
(n=12) was used to evaluate generalizability; the small 
sample may yield unstable variance, and results should be 
interpreted as preliminary evidence requiring broader 
validation. 

Given the multiple-comparison problem inherent in 
evaluating three interface conditions across multiple metrics, 
a Bonferroni correction was applied to control the family-
wise error rate. Primary analysis strategy: omnibus repeated-
measures ANOVA for main effect, followed by two planned 
contrasts (Fixed vs. Flat, Adaptive vs. Flat) with Bonferroni 
correction (α=0.05/2=0.025 per contrast). The third 
comparison (Adaptive vs. Fixed) is reported as secondary 
analysis. This conservative approach places a premium on 
Type I error control, while ample statistical power is 

preserved given the moderate-to-large effect sizes expected 
from the pilot test results. 

4. Implementation details 

4.1 Model architecture 
The SkeuoUI-Gen is based on the U-Net backbone 

architecture, which has a contracting path to capture 
contextual information and an expansive path for precise 
localization. The implementation uses five resolution levels 
from 1024×768 to 64×48, where feature channels increase 
from 64 to 1024, thus enabling hierarchical representation 
from visual textures to semantic concepts. Spatial information 
important for accurate element positioning in industrial 
practice is preserved via skip connections. Self-attention 
mechanisms at multiple resolutions capture long-range 
dependencies across interface regions. The implementation 
uses 8-head multi-head self-attention at three key 
resolutions, computing attention weights as 
Attention( , , ) softmax( / )T

kQ K V QK d V=   
Cross-attention layers integrate conditional information from 
user profiles and task specifications, enabling personalized 
interface generation. Conditional encoding transforms 
operator characteristics into 128-dimensional embeddings, 
such as experience level, digital proficiency, and cultural 
background. These vectors are injected through dual 
mechanisms: global conditioning via FiLM layers for coarse 
control, and local conditioning through cross-attention for 
fine-grained spatial control. 

4.2 Training procedure 
The training objective combines denoising loss Ldenoise, 

perceptual loss using VGG-19 activations, skeuomorphic 
consistency loss, and safety constraint losses for readability 
and layout compliance. The total objective is 

total denoise denoise perceptual perceptual skeuo skeuo read read layout layoutL L L L L L    =  +  +  +  + 
 

 
Training used AdamW optimizer (learning rate 1×10⁻⁴, 

β₁=0.9, β₂=0.999, weight decay 0.01) with cosine annealing 
schedule decaying to 1×10⁻⁶. The diffusion process employed 
T=1000 timesteps with a linear noise schedule (β₁=1×10⁻⁴ to 
β_T=0.02). Convergence after approximately 100,000 
iterations (80 epochs). As shown in Figure 5, convergence 
occurred after approximately 100,000 iterations over 80 
epochs (optimal performance at epoch 73), with validation 
loss stabilizing and quality metrics plateauing. Multi-
objective optimization weights were set as 𝜆𝑠 = 0.3  (safety), 
𝜆𝑒 = 0.4 (efficiency), and 𝜆𝑐 = 0.3 (cultural adaptation), 
determined through validation set optimization. Progressive 
growing started at 256×192 resolution for 20 epochs, then 
fine-tuned at full 1024×768 for 30 epochs. Data augmentation 
included horizontal flips, rotation (±10°), and color jittering. 
Training required 120 GPU-hours. 

4.3 Evaluation protocol 
Baselines included traditional template-based 

generation, GAN-based approaches (Pix2Pix, StyleGAN2), and 
fixed skeuomorphic design. Fair comparison ensured: 
identical training data (70/15/15 split), matched GPU-hours 
(120h), consistent resolution (1024×768), and same 
evaluation pipeline (pytorch-fid v0.3.0). Objective metrics 
comprised FID, PSNR, and SSIM. Subjective evaluation 
employed SUS scores and expert assessments by five 
industrial UI designers, achieving inter-rater reliability 𝜅 =
0.72. The user study used a within-subjects design with 250 
manufacturing operators in three conditions: flat baseline, 
fixed skeuomorphic, and adaptive personalized design. A 
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Latin square design was used to counterbalance the tasks. 
Performance metrics were collected along with subjective 
ratings throughout the course of 60-minute task sessions. 

5. Results 

5.1 Model performance 
The SkeuoUI-Gen model showed good convergence 

behavior in the course of training. The training loss decreased 
smoothly from the initial value of 0.245 to 0.018 at 
convergence, while the validation loss was stabilized at 0.026, 
95% CI: 0.024-0.028 after 100,000 iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model achieved competitive generation quality 
across multiple metrics: a FID score of 21.5 (±1.2) 
outperformed the GAN-based baseline Pix2Pix (24.7), PSNR 
reached 27.8 dB (±0.5), indicating good pixel-level accuracy, 
and SSIM was 0.905 (±0.007), demonstrating excellent 
structural similarity to target interfaces. Computational 
efficiency analysis revealed that one interface takes 2.3 sec to 
generate on NVIDIA A100 GPUs, hence, enabling practical 
personalization suitable for industrial deployment scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Training and validation curves for skeuoUI-gen model  

 

 

Figure 6. Performance comparison of UI design approaches (with 95% CI) 
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5.2 Comparative analysis 
As illustrated in Figure 6, the dual comparison approach 

revealed a distinct performance benefit for skeuomorphic 
designs in comparison to traditional flat designs. Satisfaction 
ratings based on SUS were at 72.4 (SD=8.3) for the fixed 
skeuomorphic design. This marked a perceptible 
improvement over the traditional flat design at 68.1 (SD=9.2) 
SUS ratings. However, the adaptively personalized design 
approach fared even better at 78.6 (SD=7.1) SUS ratings. 
Similar trends were found for the efficiency of completing 
tasks: fixed skeuomorphic interfaces were found to reduce 
the average time for completing tasks by 12.3% compared to 
the baseline (flat interface), averaging 23.5 seconds per task 
(95% CI: 18.2-28.8 seconds).  

Even greater benefits were observed with adaptive, 
personalized interfaces, reducing the average time to 
complete tasks by 24.7% (47.2 seconds per task; 95% CI: 
42.1-52.3 seconds), thereby directly realizing productivity 
benefits. Extrapolating the results revealed that the adapted 
interfaces could save the operators more than 120 hours 
yearly. Error rate analysis revealed the safety advantages. 
Fixed skeuomorphic design led to a 31% reduction in the 
operator errors compared to the baseline (4.8 to 3.3 errors 
per 100), and the personalized design achieved a 52% 
decrease (to 2.3 errors per 100). Chi-square analysis 
confirmed the statistical significance of differences in error 
distribution across conditions (χ² (3) = 42.18, p < 0.01). Error 
severity analysis revealed that adaptive interfaces are 
particularly effective at preventing critical errors with 
potential safety implications, reducing such incidents by 67%. 
Learning curve analysis tracked performance across five 
repeated-task sessions. Flat baseline required an average of 
8.2 sessions for operators to achieve a proficiency plateau. 
Fixed, skeuomorphic design accelerated learning to 
proficiency after 5.7 sessions (30% reduction), while 
adaptive, personalized interfaces further compressed 
learning time to 3.9 sessions (52% reduction). The steeper 
learning curves for skeuomorphic designs are consistent with 
theoretical predictions of reduced cognitive load from 
familiar metaphors. 

5.3 Robustness validation 
As shown in Table 4, comprehensive robustness testing 

confirmed result stability across multiple validation 
approaches. Primary statistical tests yielded strong evidence 
for the superiority of both skeuomorphic approaches. For 
user satisfaction, fixed skeuomorphic versus flat comparison 
produced t(249)=5.38, p < 0.025, effect size d=0.36, while 
adaptive versus flat yielded t(249)=8.92, p < 0.01, effect size 
d=0.58. Task completion efficiency showed similar patterns 
with effect sizes of d=0.45 (fixed) and d=0.67 (adaptive). 

Primary results were also verified using bootstrap 
resampling with iterations of 10,000, showing that the 
confidence intervals were constant, [0.091, 0.146], p < 0.01. 
Non-parametric permutation tests supported these results 
further, p = 0.0028, without any distributional assumptions. 
Sensitivity analysis showed that the results were stable under 
changes in the parameters, with less than 4.2% variation in 
performance metrics over changes in key parameters 
between 0.3 and 0.7. Generalization performance was 
validated through cross-validation techniques. In the leave-
one-sector-out validation, the average accuracy obtained was 
87.8% (95% CI: 86.2 to 89.4%), indicating the robust 
performance achieved across different sectors like 
electronics, automobiles, and machines. In the time-split 

validation, the AUC obtained was 0.872 (95% CI: 0.854 to 
0.890), indicating its steadiness over time. 

5.4 Qualitative Findings 
User feedback showed a strong preference for adaptive 

personalized interfaces. In post-study interviews, 78% rated 
adaptive interfaces as "significantly better" than the 
alternatives, mentioning intuitive controls (83%), reduced 
mental effort (71%), and improved confidence in system 
operation (64%). Operators of lower digital proficiency 
especially welcomed the skeuomorphic elements: 89% of this 
subgroup showed a preference for adaptive design, compared 
with 68% of the highly proficient operators. Expert 
evaluations from industrial UI designers resulted in average 
quality ratings of 6.8/10 for flat baseline, 7.9/10 for fixed 
skeuomorphic, and 8.7/10 for adaptive personalized design. 
Inter-rater reliability showed substantial agreement. Experts 
particularly praised adaptive interfaces for cultural 
appropriateness (mean 8.9/10) and safety compliance (mean 
8.6/10), while noticing opportunities for further refinement 
in the handling of edge cases and in offering advanced 
customization options for expert users. 

6. Discussion 

This study provides empirical evidence for the 
effectiveness of the skeuomorphic design principles in 
industrial interfaces, contrary to the prevailing belief that the 
minimalist flat design paradigm is the best solution in all 
circumstances [22]. The results demonstrate that 
incorporating skeuomorphic components reduces mental 
load during industrial operations, particularly for operators 
switching from physical to digital control systems. The 
improved performance of the adapted, personalized 
interfaces over fixed, skeuomorphic interfaces demonstrates 
the ineffectiveness of one-size-fits-all solutions for 
representing diverse labor resources in industrial 
production. Effect sizes between the fixed skeuomorphic and 
the adapted personalized interfaces were considered 
practically significant and reflect the actual productivity gain. 
Mechanisms of cultural adaptation were considered 
important for the Chinese industrial environment [23], as 
operators interacting with culturally adapted interfaces 
recorded a satisfaction rating 18% greater than the 
corresponding Western-style generic interfaces. Moreover, 
the speed at which tasks are completed is 23% faster. In both 
studies mentioned above, AI-based interfaces systematically 
reduced the workload regardless of the tasks conducted. 
Moreover, the remaining workload covered the important 
aspects of the task. 

The manufacturing companies undergoing digital 
transformation should concentrate more on the 
personalization of the interfaces rather than looking for 
general solutions because the gained productivity 
enhancement has been proven to be worth the computational 
cost involved in the AI-based generation systems [24]. This 
approach fits very well in the upcoming Industry 5.0 
paradigm, focusing on human-oriented concepts and 
cognitive ergonomics in manufacturing systems. The time has 
finally come for the industrial UI-design community to think 
twice about the reflexive general applicability of the UI 
designs borrowed from the consumption domain and 
consider context-dependent designs incorporating 
skeuomorphic details in a selective manner for functions 
involving immediate intuitive recognition in a situation 
involving time pressure [25,26]. 
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Recent studies have shown that high-quality, context-

aware interfaces are significantly more effective than the 
more traditional generation techniques. The 24.7% time-
saving from the optimized interface design corresponds to 
significant competitive advantages in sectors of the 
manufacturing industry where efficiency is a critical success 
factor. Definitely, the quality of interfaces should not remain 
a "cosmetic" factor in determining an organization's long-
term success, because investing in interface quality yields 
lower training costs per person and faster technology 
adoption [27,28]. These improve significantly compared to 
previous industrial HCI studies, whose results have shown 
only improvements in interface redesign. This enhanced 
performance can be attributed solely to the synergy among 
skeuomorphic designs, personalization techniques, and 
cultural adaptation. Compared to their GAN counterparts, the 
diffusion model approach has been shown to offer improved 
stability and controllability in UI generation, as demonstrated 
by advancements in the field [29]. Regarding reinforcement-
learning-based adaptive UI systems, studies have shown the 
importance of dynamically implementing personalization 
techniques [30]. Comparing the advantages of the above-
mentioned framework to fixed skeuomorphic designs has 
made the significance of differences between individuals in 
their UI preferences and cognitive processes evident, as 
compared to the previous designs that succeeded only in 
enhancing the UI due to their rigidity towards diverse 
operators [30-32]. Limitations and Generalizability: The 
cultural adaptation layer is currently China-specific (color 
symbolism, numeric conventions, GB/T iconography). 
Validation in Western or Southeast Asian manufacturing 
contexts is required for broader generalization claims; 
cultural template retraining is estimated at 30-40 GPU-hours 
per context. On the other hand, the measurement 
methodologies for digital transformation in high-end 
equipment manufacturing require a thorough assessment 
across different industrial environments [33].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The task battery used a set of typical industrial tasks. 

Nonetheless, the complexity of dedicated industrial processes 
involving semiconductor and pharmaceutical production can 
hardly be covered in the above-mentioned task set. The 
sample used in the study presented here can be considered 
balanced in the Chinese industrial context. Nonetheless, its 
generalizability to the global labor force could be questioned 
and should be verified in further studies conducted in other 
geographic locations. Highly structured records of human-
machine interactions can be considered the most valuable 
resource for developing and verifying adaptive interfaces 
[34]. 

Future work should include a multi-cultural validation 
experiment involving both Western and Asian economies, as 
well as developing economies, to identify the generalizability 
principles and specific cultural requirements. Real-time 
adaptation techniques that adjust interfaces based on the 
operator's cognitive state and task complexity can improve 
the framework's functionality. Extended domains in health 
information systems, transport control systems, and energy 
management systems seem to have immense potential given 
the generality of the core personalization techniques. Recent 
studies on GUI prototyping based on diffusion models 
demonstrate the ability to develop interfaces across general 
domains [35]. Large-scale studies measuring long-term 
improvements over 12-24 months should form the basis for 
industrial-scale adoption. 

7. Conclusion 

In this context, the present work proposes SkeuoUI-Gen, 
a new approach that combines the principles of 
skeuomorphic design with conditional diffusion models to 
generate personalized industrial interfaces. After conducting 
empirical tests with 250 operators in an industrial context 
and implementing rigorous evaluations, the results 
demonstrated the effectiveness of the new approach, with 
mean SUS usability ratings of 78.6 for the personalized 

Table 4. Robustness test results 

Test Method Test Statistic p-value 95% CI Effect Size Conclusion 

Fixed Skeuomorphic vs Flat (User 
satisfaction) 

t(249) = 5.38 <0.025* [0.042, 0.089] d = 0.36 Fixed Skeuo > Flat 

Adaptive vs Flat (User satisfaction) t(249) = 8.92 <0.01** [0.095, 0.142] d = 0.58 Adaptive > Flat 

Fixed Skeuomorphic vs Flat (Task 
time) 

t(249) = 7.12 <0.025* [0.062, 0.138] d = 0.45 Fixed Skeuo > Flat 

Adaptive vs Flat (Task time) t(249) = 10.45 <0.01** [0.213, 0.387] d = 0.67 Adaptive > Flat 

Chi-square test (Error reduction) χ²(3) = 42.18 <0.01** — φ = 0.41 Significant  
          reduction 

Bootstrap (10,000 resamples) — <0.01** [0.091, 0.146] — Consistent with primary 

Permutation test — 0.0028 — — Non-parametric 
confirmation 

Parameter variation (α ∈ [0.3, 0.7]) Δ < 4.2% — — — Stable across parameters 

Outlier exclusion (±3 SD) t(241) = 8.45 <0.01** [0.093, 0.140] d = 0.55 Results unchanged 

Leave-one-sector-out CV Mean accuracy = 
87.8% 

— [86.2%, 89.4%] — Good                       
          generalization 

Time-based split AUC = 0.872 — [0.854, 0.890] — Temporal stability 
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interfaces compared to 68.1 for the baseline designs. This 
upgrade also included a 24.7% relative increase in efficiency 
in completing the tasks at hand. Moreover, the results 
revealed a 47.2% average time saving per task, with 95% CI 
[42.1, 52.3], when compared to the baseline. Most 
importantly, errors were reduced by 52%, specifically 4.8 to 
2.3 per 100 operations. Moreover, the rates of important 
safety errors lessened significantly by 67%. The framework's 
theoretical contributions extend Cognitive Load Theory and 
Technology Acceptance Model by demonstrating how AI-
generated skeuomorphic interfaces systematically reduce 
cognitive load while enhancing perceived usefulness in 
industrial contexts. Effect sizes of d=0.58 to d=0.67 for 
adaptive approaches substantially exceed typical industrial 
HCI interventions (d=0.2 to d=0.35), validating the synergistic 
benefits of combining skeuomorphic principles, adaptive 
personalization, and cultural adaptation. The diffusion model 
achieved competitive generation quality with an FID score of 
21.5 (±1.2), outperforming the GAN-based baseline Pix2Pix 
(24.7), while achieving an SSIM of 0.905 (±0.007) and a PSNR 
of 27.8 dB (±0.5). The model maintained computational 
efficiency of 2.3 seconds per interface generation, 
demonstrating reliable performance suitable for industrial 
deployment. Robustness tests ascertained the constancy of 
the results under diverse statistical analyses: Bootstrap 
resampling with 10,000 resamples confirmed the robustness 
of the results through multiple iterations)*(87.8% accuracy at 
95% confidence interval: [86.2%, 89.4%])leave-one-sector-
out cross-validation*Sensitivity tests revealed less than 4.2% 
variation in performance. Culture-specific adaptation tools 
were found to play a pivotal role in the success of the design. 
Culture-specific designs were found to produce 18% higher 
satisfaction levels and 23% faster performance. From the 
practical implications above, the following can be observed: 
the effect of investing in adaptive interfaces has been positive 
for manufacturing companies, as the time saved per operator 
per year exceeds 120 hours. This has made the UI framework 
practically useful, as the information it provides can be 
applied to the generation of industrial UIs. In the future, the 
UI framework can serve as the basis for industrial UI systems 
that adapt to the context and cultural factors of the companies 
involved. 
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