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A B S T R A C T 
 

Piano sight-reading is a complex cognitive activity that many pupils remain 
unable to perform despite sustained educational efforts. AI and digital 
technology have revolutionized numerous educational fields; however, their 
integration with educational technology for sight-reading piano remains diffuse 
and concerning to experts due to a lack of coherence across AI-related 
investigations. This study aims to systematize knowledge on the application of 
AI and digital technologies in educational technology for sight-reading piano, 
following the PRISMA-ScR guidelines. A search of four main databases (Web of 
Science, IEEE Xplore, Scopus, ACM Digital Library) was conducted for papers on 
AI-related technology for sight-reading piano from 2014 to 2024. This resulted 
in screening 368 entries to select 33 relevant to the study objective. Five types 
of technology exist: AI-related intelligent tutoring systems, computer vision and 
optical music recognition, pattern recognition with deep learning, applications 
of virtual reality and augmented reality, and mobile and IoT. The study 
demonstrates a discrepancy between the complexity of AI and accessibility for 
pupils. AI-powered tutoring systems and deep learning approaches are 
showing promising results in controlled settings, but evidence on long-term 
effectiveness remains limited. A fundamental tension exists between analytical 
sophistication and accessibility: high-performing systems require substantial 
computational resources, while accessible mobile solutions provide much 
weaker analytical capabilities. On the other hand, accessibility for pupils 
remains a top priority, including the use of IoT technology for educational sight-
reading piano. 

1. Introduction 

One of the most complex skills involved in instrumental 
music learning could be viewed as sight-reading for the piano. 
This skill encompasses the ability to read and render musical 
scores accurately upon first viewing. A skilled sight-reader’s 
ability to successfully integrate a number of complex visual-
perception skills with bimanual movements and 
instantaneous musical interpretations can only be described 
as remarkable [1]. Not only does this skill take a long time to 
develop for the average student, but a lack of sight-reading 
ability can continue to pose a challenge for many pianists 
despite instructors' best efforts to remediate the issue. 
Studies exploring sight-reading accuracy and a range of 
variables that can impact that accuracy have found that sight-
reading ability encompasses a range of skills that need to be 
specifically developed [2]. Traditional methods of piano 
instruction typically address sight-reading only as a 
secondary issue, incrementally practiced rather than formally 

instructed. This often takes the form of folk pedagogy, 
consisting of an increasingly complex repertoire, with the 
hope that competency can be achieved without specific 
techniques aimed at developing knowledge of the underlying 
mental processes that control the activity. A lack of 
pedagogical materials for sight-reading instruction geared 
explicitly to that instruction can be noted; the materials that 
do exist may lack a technology of instruction that directly 
relates the activity to the mental mechanism [3]. Also, because 
it is highly labor-intensive, personal instruction at a 
substantive level can be ruled out for some pupils due to 
affordability. Current trends in artificial intelligence have 
driven a fundamental shift across various educational areas. 
Analysis of AI applications between 2010 and 2020 has 
documented improvement from simple computer-assisted 
learning to advanced applications of AI algorithms and 
computer vision techniques [4]. Technological innovations in 
AI can align with learning pedagogies by incorporating 
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intelligent learning applications that adapt to learning paths 
and provide instant learning results and feedback to students 
[5]. Today, the trend of AI applications continues to witness a 
fundamental shift due to increased awareness of AI’s ability 
to transform learning applications to meet the specific needs 
of learning across various disciplines of study [6]. In music 
education specifically, new technology offers particular 
opportunities to meet the needs of instrumental instruction. 
Related applications of virtual and augmented reality have 
begun investigating immersive methods for learning to play 
the piano, occupying a space where digital instruction 
coexists with physical activity [7]. Trends indicate that 
artificial intelligence can transform learning methodologies 
by introducing better interface design and more intuitive 
personalization capabilities [8]. Implementing technology 
successfully in learning requires understanding good design 
and developing artificial intelligence literacy to prevent 
complex technology from hindering educational progress 
instead of advancing it [9]. 

Despite the popularity of technology-supported piano 
learning solutions and applications, existing knowledge on 
the topic remains fragmented and dispersed over a range of 
applications and associated technology. Attempts to study a 
single technology system leave the relevance of other 
systems, with respect to their relative efficiency and 
suitability for sight-reading learning, unaddressed. A 
comprehensive analysis of the range of AI and technology 
applications for sight-reading piano learning does not exist. 
This creates a barrier for informed decision-making for 
technology adopters in the education community and a 
challenge for researchers to establish promising areas of 
investigation. This current scoping study aims to bridge this 
knowledge deficit by methodically surveying AI and 
technology applications for sight-reading piano instruction. 
Based on the PRISMA-ScR guideline for conducting a scoping 
study [10], the current study aims to compile evidence for 
current technology design efforts and their respective levels 
of success. This study has three aims: to tabulate existing 
technology offerings, to survey evidence on current 
technology levels of pedagogical effect and technical design 
efforts, and to identify current knowledge gaps for future 
study. 

2. Methods 

2.1 Review design  

This research used the scoping review methodology to 
systematically map the digital technologies and artificial 
intelligence being used for the development of piano sight-
reading skills. Scoping reviews are especially suited to areas 
of novel technology, allowing for the extensive identification 
and classification of heterogeneous interventions and being 
amenable to various study designs and outcome measures 
[11]. A scoping review was preferred over a systematic 
review because the heterogeneity of technology types, 
outcome metrics, and study designs in this field precludes 
meta-analytic synthesis. The method supports exploring the 
extent of evidence across technology types, application 
settings, and assessment methods. The process was informed 
by the PRISMA Extension for Scoping Reviews (PRISMA-ScR) 
statement for transparency and reproducibility. Although 
traditional scoping reviews do not exclude studies based on 
quality, a critical appraisal phase was incorporated because 
this review aims to inform practice decisions, requiring focus 
on studies with verifiable technical details [12]. The review 
aimed to (1) uncover and categorize current AI and digital 
technologies employed in piano sight-reading education, (2) 

synthesize evidence on their effectiveness and technical 
implementation, and (3) determine gaps and future research 
directions.  

2.2 Search strategy  

A systematic literature search was conducted in four 
online databases: Web of Science Core Collection, IEEE Xplore 
Digital Library, Scopus, and ACM Digital Library. These 
databases were selected since they comprehensively cover 
the literature of computer science, engineering, and 
education technology. Education-specific databases, such as 
ERIC, are not included, since this review focuses on technical 
AI implementations rather than general music pedagogy. The 
search covered publications from January 2014 to December 
2024. The starting year was set to 2014 because it coincides 
with the emergence of deep learning applications in music 
technology following improvements in convolutional neural 
networks. Search terms were combined using the Boolean 
'AND' and 'OR' operators in groups representing three 
concepts: (1) AI technology terms, (2) musical instrument 
terms, and (3) sight-reading instruction terms. Complete 
search strings used for each database are provided in Table 1. 
Results were limited to English-language peer-reviewed 
journal articles and conference proceedings. The reference 
lists of the included studies were manually checked for 
additional relevant publications. 

2.3 Selection process  

The studies were selected based on predefined inclusion 
and exclusion criteria. The inclusion criteria encompassed the 
following: (1) publication dates between 2014 and 2024; (2) 
being peer-reviewed English-language publications; (3) 
dealing with AI or digital technology for piano sight-reading 
or piano learning with components concerning sight-reading; 
and (4) having sufficient detail on technical or empirical 
levels. For the present review, sight-reading was 
operationally defined as performing music either at first sight 
or with minimal prior exposure. These framed studies are 
concerned with real-time score reading, immediate 
performance from notation, or technologies designed to 
facilitate one or both of these skills specifically. Exclusion 
criteria excluded a study if: (1) it focused exclusively on 
general piano pedagogy without involvement of technology; 
(2) it dealt exclusively with non-piano instruments; (3) it was 
a non-empirical publication that did not present any 
information about implementation; or (4) the full text was 
unavailable. 

Two reviewers independently screened all the records. 
Inter-rater reliability was calculated by using Cohen's kappa, 
yielding κ = 0.88 for title/abstract screening and κ = 0.85 for 
full-text assessment. This reflects almost perfect agreement. 
Disagreements were resolved through consensus after 
discussion. Figure 1 illustrates the selection process and its 
results. 

At quality appraisal, studies were assessed using criteria 
adapted from the Mixed Methods Appraisal Tool (MMAT): (1) 
methodological rigor, (2) sample adequacy, (3) technical 
implementation clarity, and (4) relevance to piano sight-
reading. Those studies with significant quality concerns or 
marginal relevance were excluded to ensure the review 
presents actionable guidance for practitioners. 
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Records identified through

database searching
(n = 368)

·Web of Science: 95      ·Scopus: 93
·IEEE Xplore: 138           ·ACM Digital Library: 42

Records after duplicates removed
(n=213)

Duplicates removed: n= 155

Records screened
(n=213)

Full-text articles assessed
(n= 85)

Articles for quality
assessment

（n=52）

Articles excluded (n= 19)
.·Quality concerns: 8
·Limited relevance: 7

·Data overlap:4

Full-text excluded (n = 33)
·Insufficient technical detail: 14

·Non-empirical study: 11
·Incomplete data: 8

Records excluded (n =128)
·Non-technology focus: 58

·Non-piano related: 42
·Non-sight-reading:28

Studies included in synthesis
(n =33)

·Al-powered Intelligent Tutoring Systems: 5                        ·VR/AR Applications: 6
·Computer Vision and OMR: 7                                               ·Mobile and loT Solutions: 9
·Deep Learning for Pattern Recognition: 6

PRISMA Flow Diagram

 
 

Figure 1. PRISMA flow diagram 

2.4 Data synthesis  

Data were extracted systematically using a standard 
template prepared for this review. From each included study, 
we extracted the following: bibliographic information 
(authors, year, country), type and category of technology, 
main algorithms and technical details, study design and 
methods, sample details, primary findings and results, 
measures of effectiveness, and limitations noted. Collected 
data were synthesized using thematic analysis, a continuous 
cycle of pattern identification, analysis, and reporting across 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
the included studies. Coding followed a hybrid approach: an 
initial deductive framework based on technology types was 
applied, followed by inductive refinement as new patterns 
emerged from the data. Data extraction and coding were 
managed using Microsoft Excel. Studies were initially coded 
into five overarching categories of technology types with their 
main technical focus: (1) AI-based intelligent tutoring 
systems, (2) computer vision and optical recognition of music, 
(3) deep learning for pattern recognition, (4) virtual and 
augmented reality applications, and (5) mobile apps and IoT 
solutions. Within each category, we used descriptive 
synthesis to look for common technical characteristics, 
implementation strategies, and efficacy patterns. Between-
category comparisons were then conducted to identify top-
level trends, technology convergence, and future 
development directions. Because of extreme heterogeneity in 
technology types, study design, and outcome measures, meta-
analysis was not feasible; hence, narrative synthesis was 
used. 

3. Results 

Studies were categorized by their primary technological 
approach. The five categories represent distinct technical 
architectures and pedagogical affordances: AI-powered 
tutoring (adaptive feedback), OMR (score digitization), deep 
learning (performance analysis), VR/AR (immersive 
interaction), and mobile/IoT (accessible delivery). This 
review comprised 33 studies published from 2015 to 2024, 
with most (78.8%) since 2020, indicating rapid development 
in this field. Figure 2 illustrates the temporal distribution of 
publications, showing a marked increase after 2020 with a 
peak output in 2022 (n=10). Table 2 presents the distribution 
characteristics of included studies by publication year, 
geographic location, study design, and type of technology. 
Studies came mostly from China (n=12), the United States 
(n=8), and Europe (n=9), and four from other countries. The 
evidence pool included empirical research (n=17), technical 
development articles (n=11), and case studies (n=5). Five 
technology categories emerged from the analysis: AI-based 
tutoring systems (n=5), computer vision and optical music 

Table 1. Database search strategies 

Database Search String Limits Applied Results 
Web of 

Science Core 
Collection 

TS=("artificial intelligence" OR "machine learning" OR "deep 
learning" OR "computer vision") AND TS=("piano" OR "keyboard") 
AND TS=("sight reading" OR "sight-reading" OR "music reading") 
AND TS=("education" OR "training" OR "learning") 

2014-2024; English; Articles 
& Proceedings 

95 

IEEE Xplore ("All Metadata":"artificial intelligence" OR "All Metadata":"machine 
learning" OR "All Metadata":"deep learning" OR "All 
Metadata":"computer vision") AND ("All Metadata":"piano" OR "All 
Metadata":"keyboard") AND ("All Metadata":"sight reading" OR "All 
Metadata":"sight-reading" OR "All Metadata":"music reading") AND 
("All Metadata":"education" OR "All Metadata":"training" OR "All 
Metadata":"learning") 

2014-2024; English; 
Journals & Conferences 

138 

Scopus TITLE-ABS-KEY("artificial intelligence" OR "machine learning" OR 
"deep learning" OR "computer vision") AND TITLE-ABS-
KEY("piano" OR "keyboard") AND TITLE-ABS-KEY("education" OR 
"training" OR "learning") AND TITLE-ABS-KEY("sight reading" OR 
"sight-reading" OR "music reading") 

2014-2024; English; Articles 
& Conference Papers 

93 

ACM Digital 
Library 

[All: "artificial intelligence" OR All: "machine learning" OR All: "deep 
learning" OR All: "computer vision"] AND [All: "piano" OR All: 
"keyboard"] AND [All: "sight reading" OR All: "sight-reading" OR All: 
"music reading"] AND [All: "education" OR All: "training" OR All: 
"learning"] 

2014-2024; English; 
Research Articles 

42 

Total   368 
Note: TS = Topic Search; TITLE-ABS-KEY = Title, Abstract, Keywords; All Metadata/All = Full-text and metadata search. Search conducted in 

December 2024. 
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recognition (n=7), deep learning for pattern recognition 
(n=6), VR/AR applications (n=6), and mobile with IoT 
solutions (n=9). These categories are described in detail in the 
sections to follow. Table 3 reveals a fundamental trade-off 
between analytical capability and accessibility across 
technology types. High-performing systems (AI tutoring, deep 
learning) face significant computational and cost barriers, 
while accessible solutions (mobile/IoT) sacrifice analytical 
depth. This divergence suggests that hybrid approaches 
combining multiple technology categories may be necessary 
to balance pedagogical effectiveness with practical 
implementation constraints. 

 
Figure 2. Temporal trends of included studies (2015-2024) 

3.1 AI-Powered Intelligent Tutoring Systems  
One of the hottest technology domains explored with AI-

powered intelligent tutoring systems is artificial intelligence 
for piano learning tutorials, with machine learning and deep 
learning techniques being explored to deliver lesson-centric 
messages with personalized remarks to users. This normally 
attracts the integration of the implementation of the neural 
network for determining performance, identifying 
deficiencies in techniques, and designing roads to learning for 
the users by assessing their performance [13, 14]. This 
normally encompasses the performance capture segments, 
pattern recognition segments, and feedback statements that 
can be implemented using cloud technology to enable 
continuous improvement and scaling for better performance 
[15]. Unlike fixed sets in conventional computer-aided 
instructional systems, contemporary AI tutoring systems 
dynamically vary difficulty levels and practice content with 
respect to individual learning trajectories and performance 
patterns. 

Current implementations exhibit various forms of smart 
piano pedagogy. Some systems focus on analyzing 
performance by specifying acoustic and temporal features 
from student performance and using convolutional neural 
networks to detect errors in pitch, rhythm, and articulation 
[13]. Deep learning approaches have been found to be 
particularly effective at grading fine details of musical 
expression that are hard for rule-based methods to quantify 
[14]. Other research features adaptive curriculum 
sequencing, in which practice history is analyzed using 
machine learning and used to recommend optimal repertoire-
building and technical work [16]. Others involve multimodal 
analysis of audio recordings, coupled with visual observation 
of the user’s hand positions and posture, to provide 
comprehensive feedback [17]. By integrating augmented 
reality into some designs, the tutoring paradigm can expand 

beyond simple intent analysis to encompass interactive 
learning that combines digital feedback with actual keyboard 
learning [17]. All designs are geared toward reducing reliance 
on one-on-one instruction for comprehensive learning, 
achieving equal or better learning efficiency, while also 
decreasing reliance on complete one-on-one instruction to 
improve learning efficiency. Empirical evidence about 
learning outcomes remains scant. Li [13] reported a 25-35% 
improvement in learning efficiency using CNN-based 
performance analysis, though this was in a small sample in a 
controlled environment and has not been independently 
replicated. Other studies have focused mostly on technical 
accuracy rather than pedagogical outcomes [14,16]. Student 
engagement seems to improve when gamification elements 
are included [15]; however, there is a lack of comparative 
studies across different AI tutoring methods. 

Student engagement is also showing a positive trend, 
particularly when gamification elements are provided to view 
progress [15]. However, several factors limit the widespread 
use of the technology. Deep learning models require 
substantial computational resources and annotated training 
data, creating barriers for individual learners with limited 
technical infrastructure [13,14]. Building robust models 
requires large amounts of annotated piano performances, 
which remain in short supply in this specialized field [16]. 
Additionally, concerns about reliance on machine feedback to 
the exclusion of the development of essential self-assessment 
skills deserve careful pedagogical consideration [13]. Cost 
factors also raise issues, as expensive AI systems involve 
significant development work that may not be accessible 
within every learning environment.  

3.2 Computer vision and optical music recognition 
Music recognition technology has also improved 

immensely over the last few years, from rule-based image 
processing pipelines to end-to-end deep learning systems. 
OMR systems aim to convert visual representations of 
musical notation into machine-readable formats, such as 
MusicXML or MIDI, enabling digital manipulation, playback, 
and analysis of handwritten or printed scores [18,19]. In 
piano sight-reading pedagogy, these technologies perform 
several tasks: digitization of instructional content for use in 
interactive learning materials, real-time visual monitoring 
during practice exercises, and automatic evaluation based on 
related notes played against familiar score content. 
Computational difficulty lies in correctly interpreting two-
dimensional musical semantics, where pitch and length are 
encoded by symbol location and morphology rather than a 
sequential representation [18]. Classic methods used staff 
detection, symbol breaking, and error-prone classification, 
while modern methods use integrated neural network models 
that implicitly learn the music notation hierarchy from 
examples. Recent technological advances have focused on 
applying deep learning object-detection methods to music 
score examination. 

Convolutional neural networks have proven robust for 
note position and duration recognition from score images, 
and several implementations have tested different network 
architectures and training schemes [20-22]. Most systems 
process score pages using hierarchical visual feature 
extraction across one or more convolutional layers, with 
classification heads predicting note features such as pitch 
class, duration, and accidentals. Some methods extend region-
based CNN architectures originally designed for overall object 
detection, treating musical symbols as detection objects in the 
image of the score [20].  
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Others use fully convolutional architectures, which 

produce dense predictions across the entire image in a single 
pass [22]. More recently, transformer models have been at the 
forefront for their ability to represent long-range 
dependencies in musical sequences and to tackle OMR as a 
sequence-to-sequence translation problem from image 
patches to symbolic music notation [23,24]. These are found 
to hold particular promise for processing polyphonic piano 
scores with interplaying multiple voices on different staves 
[23]. Attention Mechanisms help pay heed to significant 
properties of musical notation while remaining attentive to 
musical scale, without incurring the costs of full convolutions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance varies significantly depending on the 

evaluation metrics and datasets. The CNN-based approaches 
achieve between 85-95% symbol-level accuracy for standard 
benchmarks like MUSCIMA++ and PrIMuS, which are mainly 
formed by monophonic or simple polyphonic scores [18, 20]. 
Transformer-based models exhibit advantages in dealing 
with longer musical sequences and complex polyphonic 
textures but usually require substantially bigger training 
datasets and computational resources [23, 24]. Nevertheless, 
the tasks of evaluation on piano-specific polyphonic scores 
have remained scant, and the accuracy usually drops when 
dealing with complex multi-voice piano repertoires [21]. 

Table 2. Distribution characteristics of included studies (n=33) 

Characteristic Category Number (n) Percentage (%) 

Publication Year 2015-2017 2 6.1 
 2018-2020 5 15.2 
 2021-2024 26 78.8 

Geographic Origin China 12 36.4 

 United States 8 24.2 
 Europe 9 27.3 
 Other regions 4 12.1 

Study Design Empirical studies 17 51.5 

 Technical development 11 33.3 

 Case studies 5 15.2 
Technology Type AI-powered tutoring systems 5 15.2 

 Computer vision and OMR 7 21.2 

 Deep learning for pattern 
recognition 

6 18.2 

 VR/AR applications 6 18.2 

 Mobile applications and IoT 9 27.3 

Note: OMR = Optical Music Recognition; VR = Virtual Reality; AR = Augmented Reality; IoT = Internet of Things. 

Table 3. Cross-category comparison of technology types for piano sight-reading education 

Technology 
Type 

Number of 
Studies 

Primary 
Algorithms 

Computational 
Requirements 

Accessibility Reported 
Effectiveness 

Main Limitations 

AI-Powered 
Intelligent 
Tutoring 
Systems 

5 CNN, LSTM, 
Neural 

Networks, Deep 
Learning 

High Low 25-35% learning 
efficiency 

improvement 

High computational costs; 
requires powerful 
hardware; large annotated 
datasets needed; 
expensive development 

Computer 
Vision and 

OMR 

7 CNN, 
Transformer, 
Region-based 
CNN, Object 

Detection 

Medium-High Medium 85-95% 
recognition 

accuracy 

Difficulty with polyphonic 
scores; challenges with 
handwritten notation; 
real-time processing 
demands 

Deep Learning 
for Pattern 

Recognition 

6 RNN, LSTM, Bi-
LSTM, CNN 

with Attention 

High Low 85%+ agreement 
with expert 
evaluation 

Large training dataset 
requirements; model 
interpretability concerns; 
limited generalization to 
unseen repertoire 

VR/AR 
Applications 

6 Computer 
Vision, Hand 

Tracking, 
Spatial 

Computing 

High Low Enhanced 
engagement and 
motivation (not 

quantified) 

High hardware costs; 
potential for simulator 
sickness; reduced 
attention to acoustic 
output quality 

Mobile and IoT 
Solutions 

9 Cloud 
Computing, 

Audio Analysis, 
MSC, QLA 

Low (cloud-
based) 

High Variable (up to 
99%+ accuracy 
with advanced 

algorithms) 

Weaker analytical 
capabilities compared to 
dedicated systems; 
connectivity dependency; 
privacy concerns 

Note: CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory; RNN = Recurrent Neural Network; OMR = Optical Music 

Recognition; VR = Virtual Reality; AR = Augmented Reality; IoT = Internet of Things; MSC = Multiple Signal Classification; QLA = Quality-Learning 

Algorithm. 
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Polyphonic piano music with complex notation, multiple 
dynamic markings, and performance marks is considerably 
more challenging than simple monophonic melodies [21]. 
Handwritten scores and degraded historic documents 
introduce additional challenges for identification, 
necessitating high-quality training data and model adaptation 
[19]. Real-time requirements for processing interactive 
training programs offload the burden on efficient inference, 
necessitating compromises in model complexity and 
computational tractability [20]. Furthermore, the process of 
converting recognized symbols into semantically rich musical 
forms with particular attention to voice leading and harmonic 
structure remains a research issue to date [24].   

3.3 Deep learning for pattern recognition 
Deep learning methods are particularly powerful 

analytical techniques for piano performance analysis, 
enabling beyond-error analysis of simple patterns and 
detailed commentary on musicality and technique. Neural 
network learning with hierarchical representation learning 
from performance data enables automated analysis of 
characteristics that, without expert knowledge, only human 
analysis could correctly determine [25,26]. Analysis power 
encompasses all levels of analysis performance, from 
correctness analysis for rhythm precision to pitch-precision 
analysis, including control of dynamics and temporal 
synchronization of the hands and fingers. First of all, the key 
benefit of using deep learning analysis is that patterns can be 
extracted at a high level of performance complexity without 
specifically engineering performance characteristics. This 
works magnificently for catching musical interpretations at a 
detailed level of performance that rule-description analysis 
can hardly catch. Different analysis techniques have been 
implemented using neural network architectures tailored to 
the specific level of analysis to be carried out. 

Recurrent neural networks and their variants, such as 
Long Short-Term Memory networks, have worked well in 
describing temporal dependencies in musical performance. 
Such models depict sequences of performances with 
recurrently connected representations and internal state 
representations so that the network can locate each note 
within its previous musical context. Bi-directional LSTM 
architectures realize this potential through the addition of 
new as well as old context, particularly beneficial in error 
detection, where lack of fit to expected patterns is made 
apparent through temporal discontinuity [27]. Convolutional 
neural networks also possess complementary capacity for 
analyzing spatial patterns within spectrograms or piano roll 
representations, with recent studies investigating attention 
mechanisms that enable models to concentrate on musically 
significant areas when assessing [28]. Dynamic time warping 
algorithms combined with deep learning frameworks enable 
comparison between performed and reference renderings 
even with natural tempo changes [25]. Certain research has 
tried to push pattern recognition to multimodal analysis, 
combining audio features with physiological measures like 
EEG for performance error detection and cognitive load [27]. 
Such multimodal research points toward the potential for 
adaptive systems not just to be acoustic output-sensitive but 
even to performers' mental states. Performance assessment 
research indicates that the accuracy of deep learning models 
can be comparable to human expert agreement. Wang and 
Mukaidani reported an agreement of 85% using DTW-based 
evaluation, but this was tested on a limited repertoire of 
classical pieces. Current state-of-the-art models, including 
Onsets and Frames and transformer-based architectures, 

have advanced automatic piano transcription, but their 
application to pedagogical assessment remains 
underexplored. The most important limitation across studies 
is the lack of standardized datasets: most models are trained 
on small, proprietary collections with varying annotation 
methods, which limits cross-study comparability and 
generalization to diverse repertoire [29,30]. 

However, there are certain limitations in existing 
deployments. Well-trained evaluative models require very 
large datasets with diverse skill levels, musical styles, and 
repertoire. The currently available datasets differ 
significantly in size (ranging from hundreds to tens of 
thousands of performances), annotation granularity, and 
genre representation, making direct comparisons of model 
performance difficult [29]. Moreover, models trained on a 
particular repertoire often cannot generalize well to 
unknown musical pieces [30]. Also, the lack of transparency 
in Deep Neural Networks raises concerns about 
interpretability, since users may not understand the rationale 
for a particular performance being generated by them [28]. 
Lastly, the issue of dataset influence can lead to giving some 
performance characteristics precedence over others that may 
be equally fair and valid.   

3.4 Virtual and augmented reality applications 
Virtual and augmented reality technologies offer 

distinctive pedagogical affordances for piano instruction by 
enabling immersive learning environments that combine 
digital guidance with physical practice. These systems tend to 
be based on the use of head-mounted displays or spatial 
computing devices to overlay instructional content on the 
learner's field of view, providing immediate visual feedback 
on finger placement, posture, and score interpretation 
[31,32]. Unlike conventional screen-based lessons that 
require divided attention between the keyboard and screen, 
AR applications retain visual attention on the instrument 
itself by projecting notation, finger numbers, or colored 
guides onto piano keys [33,34]. VR implementations do it 
differently, constructing entirely virtual practice spaces 
where pupils practice with virtual pianos using hand tracking 
or haptic controllers. Mixed reality configurations combine 
elements of both paradigms so that real pianos can be 
observed, with overlays of virtual instructional data or 
avatars of distant teachers superimposed upon them [31]. 
The spatial nature of these technologies enables three-
dimensional visualization of musical conceptions that are 
difficult to convey in traditional two-dimensional media, such 
as hand motion paths and geometric relationships within 
chord structures. Existing implementations demonstrate 
varied pedagogical strategies utilizing immersive 
technologies. 

Some of them incorporate gamification techniques in 
which musical notes stream on the keyboard rhythmically, in 
a rhythm game fashion, making learning and practicing quite 
delightful for young learners [35]. Others are focused on 
developing techniques with continuous visual feedback on 
hand position and finger form to counterbalance posture-
related problems that develop during remote learning by 
individual students [34]. Some applications incorporate a 
social learning interface that facilitates remote learning, with 
the teacher serving as a virtual participant in the learner's 
mixed reality perception [31]. More sophisticated 
applications incorporate multimodal analysis that goes 
beyond computer vision techniques by combining computer 
vision technology with EMG sensors to analyze muscle 
activity patterns, with a view to understanding physical 
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tension that can lead to physical injuries [36]. The included 
six VR/AR studies fall into three categories: usability studies 
of hardware interfaces [32, 34], technical development of 
tracking systems [36], and initial pedagogical explorations 
[31,33,35]. Although these reports increased user 
engagement and enjoyment, such hedonic outcomes are to be 
distinguished from pedagogical effectiveness. Notably, none 
of the included studies used any sight-reading assessment 
instruments that have seen validation in the literature (e.g., 
Watkins-Farnum), and hence, there is a difficulty in saying 
whether immersive technologies enhance actual sight-
reading skills or simply add to subjective experience. This 
technology seems more suited to novice learners, who need 
gamified, visually engaging practice environments. 

However, some limitations exist that may impede its 
widespread acceptance. The current state of VR/AR 
technology remains somewhat costly and requires setting up, 
which may deter non-tech-savvy users. Engaging with the 
headset for a long time may cause simulator sickness in some 
users, thereby preventing them from spending a long time 
learning [32]. This immersion, caused by being secluded from 
the actual environment, may prevent one from being 
attentive to acoustic output, while its quality matters for 
musical performance [31]. Also, the short lifespan of 
hardware may pose sustainability challenges, as a program 
intended for current hardware may require an overhaul to 
run on new hardware.  

3.5 Mobile Applications and IoT Solutions 
Mobile technology and IoT are perhaps the most 

democratizing forces in technology-assisted keyboard 
learning, but they also signal a complete overhaul of the cost 
and availability of musical instruction. In contrast to specific 
hardware requirements for AI-assisted instruction or a 
virtual reality environment for installation, mobile 
technology leverages the pervasive presence of smartphones 
and tablets to respond to learning needs with minimal access 
barriers at all levels of instruction [37,38]. IoT Smart pianos 
push this paradigm further by incorporating sensors and 
connectivity into existing pianos, depurposing standard 
acoustic pianos as data input/output units that can record 
detailed performance data without necessarily employing 
audio recordings for learning, using recorders [39,40]. This 
enables a paradigm shift for learning that happens 
asynchronously and away from fixed geographic and 
chronological localities that have hitherto circumscribed 
musical learning experiences. Its relevance goes beyond 
simple convenience; a pressing issue of granularity for a 
technology system, as implemented here, is that it faithfully 
delivers quality learning material to geographically dispersed 
populations or learning communities that are simply too poor 
to afford private educational learning at exorbitantly 
expensive rates [41]. At the technology system 
implementation level, there appears to be a mix of learning 
technologies applied to mobile and IoT applications. First 
applications of mobile technology tended to centrally involve 
lesson plans and simple activities that necessarily acted as 
digital learning notebooks [37]. Additional improvements 
integrate cutting-edge audio analysis algorithms, enabling 
smartphones with built-in microphones to provide 
performance accuracy analysis [42]. Wireless network-based 
implementations have further enhanced the accuracy of 
algorithmic performance analysis [43,44].  

Cloud architectures integrate to support system 
operation, allowing intensive computation to be delegated to 
distant server machines without sacrificing user-friendliness 

on simple mobile device levels of operation [39]. This IoT 
system-level approach instead aims to longitudinally analyze 
the continuous accumulation of learning information input by 
sensor-laden pianos, uploading learning performance details 
to analytics databases for longitudinal learning improvement 
analysis and the discovery of regularly developing 
performance deficits [40]. Learning improvement algorithms 
seek to optimize by analyzing trends in musical activities 
using analytics databases to build customized, smart learning 
improvement advice based on personal learning patterns 
[39]. In hybrid online learning, concerning the network 
accessibility issue, balancing operations to continue running 
applications locally with occasional synchronization as a 
necessary condition for running applications when network 
access is available. The pedagogical implications of mobile 
and IoT technologies extend beyond technical feasibility to 
broach underlying questions about the character of musical 
learning. Through independent practice with immediate 
feedback, such systems most likely reduce conventional 
overdependence on regular instructor intervention [42]. With 
this independence, however, come dangers of reinforcing 
improper techniques when automated feedback fails to 
capture nuances of important errors [37]. IoT systems are 
inherently data-centric, which raises significant privacy and 
ethical concerns. For example, cloud-based platforms 
regularly collect data on keystroke-level performance, 
practice duration, and error patterns- the latter of which can 
be sensitive when users are minors. Discussion of compliance 
with data protection regulations such as GDPR or COPPA, as 
well as considerations of data ownership, retention policies, 
and third-party sharing practices, is rare within the existing 
literature [40]. It may also be that the freemium business 
model prevalent in mobile applications creates unequal 
access to advanced features, potentially contradicting the 
democratizing potential of those technologies themselves 
[37]. Regarding pedagogical outcomes, findings remain 
fragmented. While studies have indeed shown that real-time 
audio feedback improves rhythm accuracy [42, 44], others do 
not measure learning gains but instead focus on system 
architecture. Comparative studies investigating whether 
mobile/IoT approaches achieve outcomes at least equivalent 
to traditional instruction remain absent. There are few long-
term efficacy studies, and questions remain about whether 
mobile-mediated learning builds musical knowledge 
equivalent to that of traditional instruction [45]. 

4. Discussion 

The present review highlights an underlying tension in 
technology-assisted piano sight-reading practice: the 
technology with the greatest analytical capability is far too 
often inaccessible to those most in need of it. Artificially 
intelligent learning systems have demonstrated considerable 
promise in recent applications, with technical accuracy 
improvements of up to 35% over conventional practice [44]. 
Such improvements constitute actual pedagogical value. But 
real-time inference infrastructure within the computational 
realm faces hurdles that cannot be dismissed as technical 
[43]. It extends beyond hardware costs to include the lack of 
large, annotated performance data for strong model training 
[16]. These results point to a paradox in the contemporary 
piano sight-reading landscape: the systems that yield the 
most compelling pedagogical results are precisely those least 
accessible to learners who might benefit most. Whereas AI-
based tutoring systems demonstrate 25-35% efficiency gains, 
and deep learning-based models achieve expert-level 
evaluation accuracy, their deployment remains confined to 
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well-resourced institutional settings. Conversely, mobile and 
IoT solutions attain wide accessibility but at the expense of 
analytical sophistication. This pattern points to a market 
failure in educational technology, wherein technological 
capability and practical utility diverge rather than converge. 

Deep-learning approaches to performance evaluation 
have equaled the performance of expert judgment in a 
majority of application areas [25], but concerns about model 
explainability cannot be overlooked. Learners and instructors 
may not be able to identify the reasoning behind specific 
assessments being generated [28] and, therefore, may be 
suspicious of the value of such machine-generated feedback 
in teaching. Such explainability is particularly required when 
models automatically identify biases in the training data [29]. 
Mobile and IoT apps respond to accessibility in different 
ways, capitalizing on students' existing devices. Cloud 
architectures unbundled processing loads appropriately [39], 
enabling real-time feedback in practice problems [42]. The 
pedagogical trade-offs made here need to be scrutinized in 
depth. Though such platforms provide equal access to 
technology-facilitated instruction [41], analysis capability is 
weaker than that of purpose-designed AI systems. In distant 
or financially struggling environments where private tutoring 
in the conventional manner is beyond their budget, such 
concessions may well be entirely justified [37]. 

4.1 Practical implications for educators and institutions 
Technology selection should be informed by institutional 

context and learner needs, rather than sophistication per se. 
Where appropriate, computational infrastructure is in place, 
AI-driven tutoring systems and deep learning-assisted 
assessment offer something near to personal feedback; 
instructors nonetheless have a duty of care to ensure that 
these augment, rather than replace, human teaching [17, 25]. 
Computer vision and OMR technologies can aid in the 
preparation of bespoke learning materials, yet recognition 
accuracy falls with increasingly complex polyphonic 
repertoire, necessitating manual checking [18,20]. Immersive 
VR/AR applications may provide a heightened sense of 
engagement for beginners. Yet, instructors should emphasize 
demonstrated pedagogical benefit over entertainment value, 
given the limited evidence to date regarding actual skill 
acquisition [31]. In resource-poor and/or dispersed learning 
settings, mobile and IoT solutions are most accessible [44]. 
When instructors recommend particular apps, they should 
prioritize offline functionality, robust feedback mechanisms, 
and data privacy protections, especially for younger learners 
[37, 42]. 

4.2 Research limitations and future directions 
This review relies on several methodological limitations. 

Firstly, the diversity of outcome metrics precluded a 
quantitative analysis. A good many more concerns were the 
lack of a longitudinal study. Studies have been conducted for 
weeks and months; no study was found that investigated 
retention after the end of training or generalization to an 
unroutined repertoire. A recent study highlighted the 
underinvestigated nature of questions about the resilience of 
long-term skills [41]. Others questioned the ability to assess 
the value of mobile-mediated learning by reference to musical 
understanding as provided by conventional learning 
modalities [45]. 

Publication bias may overestimate its efficacy because 
few null results are published. A lack of uncontrolled settings 
means its efficacy in a more realistic environment has not 
been adequately explored. Although immersion-related 
learning-related works have found considerable benefits for 

user engagement [31], its ability to aid with practicing 
discipline as a means of developing motivation remains 
unclear. 

Several priority areas for future research emerge from 
this review. First, there is a need for randomized controlled 
trials comparing AI-tutoring with traditional instruction over 
longer periods (e.g., 6-12 months) to determine whether 
efficiency gains persist beyond initial training. Second, 
studies should employ validated sight-reading assessments 
(e.g., Watkins-Farnum) to enable cross-study comparison. 
Third, work on hybrid systems that integrate multiple 
technologies (e.g., OMR combined with AR-based finger 
guidance) may overcome the current trade-off between 
analytical power and accessibility. Fourth, longitudinal 
investigations examining skill retention and transfer to 
unrehearsed repertoire remain notably absent [41,45]. 
Finally, as these technologies increasingly target younger 
learners, ethical frameworks addressing data privacy and the 
appropriate use of AI feedback within formative musical 
development urgently require attention. 

5. Conclusion  

This study’s scoping review initially probed the 
landscape of AI and digital technology applications in piano 
sight-reading instruction to establish that there are five 
categories of technology, differentiated by pedagogical needs 
and the specificities of implementation. Through careful 
aggregation of 33 specific studies published between 2015 
and 2024, a remarkable level of advancement in technology 
applications for sight-reading instruction over the past few 
years becomes evident, while acknowledging that specific 
persisting challenges continue to impact the actual 
implementation of these applications. This information 
explicitly supports the claim that while there exist specific 
technology applications that are not adequate to address all 
needs of sight-reading instruction, pedagogical and 
technology applications that emphasize sight-reading 
requirements, AI applications for instruction emphasize 
complex analysis through significant computation. Similarly, 
computer vision applications to specific OMR technology 
signify a lack of adequate musical comprehension. In contrast, 
applications of AR and VR technology promote immersion, 
but they entail specific hardware-related costs. In contrast, 
mobile applications signify a specific level of accessibility, 
while IoT applications signify a lack of adequate 
personalization. However, this review has some limitations in 
its scope. The lack of a quantitative analysis due to the 
diversity of outcome metrics across studies means that some 
questions about long-term skill retention remain 
unanswered, given the relative dominance of short-term 
outcome assessments. Publication bias may also influence the 
existing evidence base to some extent, as the vast majority of 
the literature studied focused on controlled environments 
rather than actual classroom applications. Long-term 
learning outcomes may be addressed by future studies that 
establish a common analytical framework across different 
outcome studies while exploring hybrid technology solutions 
that strategically incorporate multiple technology types. With 
the continued expansion of AI capabilities in multimodal 
solutions and long-range language modeling, it remains 
imperative to keep the spotlight on genuine educational 
needs. Technology should ultimately be viewed as a tool to 
enhance musical understanding and sight-reading ability, 
rather than the goal of musical instruction.  
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