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Piano sight-reading is a complex cognitive activity that many pupils remain
unable to perform despite sustained educational efforts. Al and digital
technology have revolutionized numerous educational fields; however, their
integration with educational technology for sight-reading piano remains diffuse
and concerning to experts due to a lack of coherence across Al-related
investigations. This study aims to systematize knowledge on the application of
Al and digital technologies in educational technology for sight-reading piano,
following the PRISMA-ScR guidelines. A search of four main databases (Web of
Science, IEEE Xplore, Scopus, ACM Digital Library) was conducted for papers on
Al-related technology for sight-reading piano from 2014 to 2024. This resulted
in screening 368 entries to select 33 relevant to the study objective. Five types
of technology exist: Al-related intelligent tutoring systems, computer vision and
optical music recognition, pattern recognition with deep learning, applications
of virtual reality and augmented reality, and mobile and IoT. The study
demonstrates a discrepancy between the complexity of Al and accessibility for
pupils. Al-powered tutoring systems and deep learning approaches are
showing promising results in controlled settings, but evidence on long-term
effectiveness remains limited. A fundamental tension exists between analytical
sophistication and accessibility: high-performing systems require substantial
computational resources, while accessible mobile solutions provide much
weaker analytical capabilities. On the other hand, accessibility for pupils
remains a top priority, including the use of IoT technology for educational sight-
reading piano.

1. Introduction

instructed. This often takes the form of folk pedagogy,

One of the most complex skills involved in instrumental
music learning could be viewed as sight-reading for the piano.
This skill encompasses the ability to read and render musical
scores accurately upon first viewing. A skilled sight-reader’s
ability to successfully integrate a number of complex visual-
perception skills with bimanual movements and
instantaneous musical interpretations can only be described
as remarkable [1]. Not only does this skill take a long time to
develop for the average student, but a lack of sight-reading
ability can continue to pose a challenge for many pianists
despite instructors’' best efforts to remediate the issue.
Studies exploring sight-reading accuracy and a range of
variables that can impact that accuracy have found that sight-
reading ability encompasses a range of skills that need to be
specifically developed [2]. Traditional methods of piano
instruction typically address sight-reading only as a
secondary issue, incrementally practiced rather than formally
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consisting of an increasingly complex repertoire, with the
hope that competency can be achieved without specific
techniques aimed at developing knowledge of the underlying
mental processes that control the activity. A lack of
pedagogical materials for sight-reading instruction geared
explicitly to that instruction can be noted; the materials that
do exist may lack a technology of instruction that directly
relates the activity to the mental mechanism [3]. Also, because
it is highly labor-intensive, personal instruction at a
substantive level can be ruled out for some pupils due to
affordability. Current trends in artificial intelligence have
driven a fundamental shift across various educational areas.
Analysis of Al applications between 2010 and 2020 has
documented improvement from simple computer-assisted
learning to advanced applications of Al algorithms and
computer vision techniques [4]. Technological innovations in
Al can align with learning pedagogies by incorporating
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intelligent learning applications that adapt to learning paths
and provide instant learning results and feedback to students
[5]. Today, the trend of Al applications continues to witness a
fundamental shift due to increased awareness of Al’s ability
to transform learning applications to meet the specific needs
of learning across various disciplines of study [6]. In music
education specifically, new technology offers particular
opportunities to meet the needs of instrumental instruction.
Related applications of virtual and augmented reality have
begun investigating immersive methods for learning to play
the piano, occupying a space where digital instruction
coexists with physical activity [7]. Trends indicate that
artificial intelligence can transform learning methodologies
by introducing better interface design and more intuitive
personalization capabilities [8]. Implementing technology
successfully in learning requires understanding good design
and developing artificial intelligence literacy to prevent
complex technology from hindering educational progress
instead of advancing it [9].

Despite the popularity of technology-supported piano
learning solutions and applications, existing knowledge on
the topic remains fragmented and dispersed over a range of
applications and associated technology. Attempts to study a
single technology system leave the relevance of other
systems, with respect to their relative efficiency and
suitability for sight-reading learning, unaddressed. A
comprehensive analysis of the range of Al and technology
applications for sight-reading piano learning does not exist.
This creates a barrier for informed decision-making for
technology adopters in the education community and a
challenge for researchers to establish promising areas of
investigation. This current scoping study aims to bridge this
knowledge deficit by methodically surveying AI and
technology applications for sight-reading piano instruction.
Based on the PRISMA-ScR guideline for conducting a scoping
study [10], the current study aims to compile evidence for
current technology design efforts and their respective levels
of success. This study has three aims: to tabulate existing
technology offerings, to survey evidence on current
technology levels of pedagogical effect and technical design
efforts, and to identify current knowledge gaps for future
study.

2. Methods
2.1 Review design

This research used the scoping review methodology to
systematically map the digital technologies and artificial
intelligence being used for the development of piano sight-
reading skills. Scoping reviews are especially suited to areas
of novel technology, allowing for the extensive identification
and classification of heterogeneous interventions and being
amenable to various study designs and outcome measures
[11]. A scoping review was preferred over a systematic
review because the heterogeneity of technology types,
outcome metrics, and study designs in this field precludes
meta-analytic synthesis. The method supports exploring the
extent of evidence across technology types, application
settings, and assessment methods. The process was informed
by the PRISMA Extension for Scoping Reviews (PRISMA-ScR)
statement for transparency and reproducibility. Although
traditional scoping reviews do not exclude studies based on
quality, a critical appraisal phase was incorporated because
this review aims to inform practice decisions, requiring focus
on studies with verifiable technical details [12]. The review
aimed to (1) uncover and categorize current Al and digital
technologies employed in piano sight-reading education, (2)
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synthesize evidence on their effectiveness and technical
implementation, and (3) determine gaps and future research
directions.

2.2 Search strategy

A systematic literature search was conducted in four
online databases: Web of Science Core Collection, IEEE Xplore
Digital Library, Scopus, and ACM Digital Library. These
databases were selected since they comprehensively cover
the literature of computer science, engineering, and
education technology. Education-specific databases, such as
ERIC, are not included, since this review focuses on technical
Al implementations rather than general music pedagogy. The
search covered publications from January 2014 to December
2024. The starting year was set to 2014 because it coincides
with the emergence of deep learning applications in music
technology following improvements in convolutional neural
networks. Search terms were combined using the Boolean
'AND' and 'OR' operators in groups representing three
concepts: (1) Al technology terms, (2) musical instrument
terms, and (3) sight-reading instruction terms. Complete
search strings used for each database are provided in Table 1.
Results were limited to English-language peer-reviewed
journal articles and conference proceedings. The reference
lists of the included studies were manually checked for
additional relevant publications.

2.3 Selection process

The studies were selected based on predefined inclusion
and exclusion criteria. The inclusion criteria encompassed the
following: (1) publication dates between 2014 and 2024; (2)
being peer-reviewed English-language publications; (3)
dealing with Al or digital technology for piano sight-reading
or piano learning with components concerning sight-reading;
and (4) having sufficient detail on technical or empirical
levels. For the present review, sight-reading was
operationally defined as performing music either at first sight
or with minimal prior exposure. These framed studies are
concerned with real-time score reading, immediate
performance from notation, or technologies designed to
facilitate one or both of these skills specifically. Exclusion
criteria excluded a study if: (1) it focused exclusively on
general piano pedagogy without involvement of technology;
(2) it dealt exclusively with non-piano instruments; (3) it was
a non-empirical publication that did not present any
information about implementation; or (4) the full text was
unavailable.

Two reviewers independently screened all the records.
Inter-rater reliability was calculated by using Cohen's kappa,
yielding k = 0.88 for title/abstract screening and k = 0.85 for
full-text assessment. This reflects almost perfect agreement.
Disagreements were resolved through consensus after
discussion. Figure 1 illustrates the selection process and its
results.

At quality appraisal, studies were assessed using criteria
adapted from the Mixed Methods Appraisal Tool (MMAT): (1)
methodological rigor, (2) sample adequacy, (3) technical
implementation clarity, and (4) relevance to piano sight-
reading. Those studies with significant quality concerns or
marginal relevance were excluded to ensure the review
presents actionable guidance for practitioners.
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Table 1. Database search strategies

February 2026] Volume 05 | Issue 01 | Pages 314-323

Database

Search String

Limits Applied

Results

Web of
Science Core
Collection

TS=("artificial intelligence" OR "machine learning" OR "deep
learning” OR "computer vision") AND TS=("piano" OR "keyboard")
AND TS=("sight reading" OR "sight-reading” OR "music reading")
AND TS=("education" OR "training" OR "learning")

2014-2024; English; Articles
& Proceedings

95

IEEE Xplore

("All Metadata":"artificial intelligence" OR "All Metadata":"machine
learning” OR "All Metadata":"deep learning” OR "All

Metadata":"computer vision") AND ("All Metadata":"piano” OR "All
Metadata":"keyboard") AND ("All Metadata":"sight reading” OR "All
Metadata":"sight-reading” OR "All Metadata":"music reading") AND

2014-2024; English;
Journals & Conferences

138

Metadata":"learning”)

("All Metadata":"education" OR "All Metadata":"training" OR "All

"sight-reading” OR "music reading")

Scopus TITLE-ABS-KEY("artificial intelligence" OR "machine learning” OR
"deep learning” OR "computer vision") AND TITLE-ABS-

KEY("piano" OR "keyboard") AND TITLE-ABS-KEY("education" OR
"training" OR "learning") AND TITLE-ABS-KEY("sight reading" OR

2014-2024; English; Articles 93
& Conference Papers

ACM Digital
Library

"learning"]

[All: "artificial intelligence" OR All: "machine learning” OR All: "deep
learning” OR All: "computer vision"] AND [All: "piano” OR All:
"keyboard"] AND [All: "sight reading” OR All: "sight-reading” OR All:
"music reading"] AND [All: "education” OR All: "training" OR All:

2014-2024; English; 42
Research Articles

Total

368

Note: TS = Topic Search; TITLE-ABS-KEY = Title, Abstract, Keywords; All Metadata/All = Full-text and metadata search. Search conducted in

December 2024.

Records identified through
database searching
(n=368)

‘Web of Science: 95  -Scopus: 93
\-|EEE Xplore: 138 -ACM Digital Library: 42 )

% N
Records after duplicates removed
(n=213)
Duplicates removed: n= 155
L J
s ¢ N s N
Records excluded (n =128)
Records screened Non-technology focus: 58

(n=213) -Non-piano related: 42
‘Non-sight-reading:28

i Full-text excluded (n = 33)

Full-text articles assessed ‘Insufficient technical detail: 14

(n=85) -Non-empirical study: 11
Incomplete data: 8

L J
, ] e
Articles for quality Articles excluded (n=19)
assessment .-Quality concerns: 8
-Limited relevance: 7
L (n=52) ) -Data overlap:4
p
Studies included in synthesis
(n=33)

-Al-powered Intelligent Tutoring Systems: 5
-Computer Vision and OMR: 7

-Deep Learning for Pattern Recognition: 6
\

-VR/AR Applications: 6
‘Mobile and loT Solutions: 9

Figure 1. PRISMA flow diagram

2.4 Data synthesis

Data were extracted systematically using a standard
template prepared for this review. From each included study,
we extracted the following: bibliographic information
(authors, year, country), type and category of technology,
main algorithms and technical details, study design and
methods, sample details, primary findings and results,
measures of effectiveness, and limitations noted. Collected
data were synthesized using thematic analysis, a continuous
cycle of pattern identification, analysis, and reporting across

the included studies. Coding followed a hybrid approach: an
initial deductive framework based on technology types was
applied, followed by inductive refinement as new patterns
emerged from the data. Data extraction and coding were
managed using Microsoft Excel. Studies were initially coded
into five overarching categories of technology types with their
main technical focus: (1) Al-based intelligent tutoring
systems, (2) computer vision and optical recognition of music,
(3) deep learning for pattern recognition, (4) virtual and
augmented reality applications, and (5) mobile apps and [oT
solutions. Within each category, we used descriptive
synthesis to look for common technical characteristics,
implementation strategies, and efficacy patterns. Between-
category comparisons were then conducted to identify top-
level trends, technology convergence, and future
development directions. Because of extreme heterogeneity in
technology types, study design, and outcome measures, meta-
analysis was not feasible; hence, narrative synthesis was
used.

3. Results

Studies were categorized by their primary technological
approach. The five categories represent distinct technical
architectures and pedagogical affordances: Al-powered
tutoring (adaptive feedback), OMR (score digitization), deep
learning (performance analysis), VR/AR (immersive
interaction), and mobile/IoT (accessible delivery). This
review comprised 33 studies published from 2015 to 2024,
with most (78.8%) since 2020, indicating rapid development
in this field. Figure 2 illustrates the temporal distribution of
publications, showing a marked increase after 2020 with a
peak outputin 2022 (n=10). Table 2 presents the distribution
characteristics of included studies by publication year,
geographic location, study design, and type of technology.
Studies came mostly from China (n=12), the United States
(n=8), and Europe (n=9), and four from other countries. The
evidence pool included empirical research (n=17), technical
development articles (n=11), and case studies (n=5). Five
technology categories emerged from the analysis: Al-based
tutoring systems (n=5), computer vision and optical music
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recognition (n=7), deep learning for pattern recognition
(n=6), VR/AR applications (n=6), and mobile with IoT
solutions (n=9). These categories are described in detail in the
sections to follow. Table 3 reveals a fundamental trade-off
between analytical capability and accessibility across
technology types. High-performing systems (Al tutoring, deep
learning) face significant computational and cost barriers,
while accessible solutions (mobile/IoT) sacrifice analytical
depth. This divergence suggests that hybrid approaches
combining multiple technology categories may be necessary
to balance pedagogical effectiveness with practical
implementation constraints.

124 r35
[ Annual Publications
—0—Cumulative Total

© o
L 1

Number of Publications
[}
Cumulative Publications

S 9 o\ g@® (9 0 (N (I (P
Publication Year

Figure 2. Temporal trends of included studies (2015-2024)

3.1 Al-Powered Intelligent Tutoring Systems

One of the hottest technology domains explored with Al-
powered intelligent tutoring systems is artificial intelligence
for piano learning tutorials, with machine learning and deep
learning techniques being explored to deliver lesson-centric
messages with personalized remarks to users. This normally
attracts the integration of the implementation of the neural
network for determining performance, identifying
deficiencies in techniques, and designing roads to learning for
the users by assessing their performance [13, 14]. This
normally encompasses the performance capture segments,
pattern recognition segments, and feedback statements that
can be implemented using cloud technology to enable
continuous improvement and scaling for better performance
[15]. Unlike fixed sets in conventional computer-aided
instructional systems, contemporary Al tutoring systems
dynamically vary difficulty levels and practice content with
respect to individual learning trajectories and performance
patterns.

Current implementations exhibit various forms of smart
piano pedagogy. Some systems focus on analyzing
performance by specifying acoustic and temporal features
from student performance and using convolutional neural
networks to detect errors in pitch, rhythm, and articulation
[13]. Deep learning approaches have been found to be
particularly effective at grading fine details of musical
expression that are hard for rule-based methods to quantify
[14]. Other research features adaptive curriculum
sequencing, in which practice history is analyzed using
machine learning and used to recommend optimal repertoire-
building and technical work [16]. Others involve multimodal
analysis of audio recordings, coupled with visual observation
of the user’'s hand positions and posture, to provide
comprehensive feedback [17]. By integrating augmented
reality into some designs, the tutoring paradigm can expand
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beyond simple intent analysis to encompass interactive
learning that combines digital feedback with actual keyboard
learning [17]. All designs are geared toward reducing reliance
on one-on-one instruction for comprehensive learning,
achieving equal or better learning efficiency, while also
decreasing reliance on complete one-on-one instruction to
improve learning efficiency. Empirical evidence about
learning outcomes remains scant. Li [13] reported a 25-35%
improvement in learning efficiency using CNN-based
performance analysis, though this was in a small sample in a
controlled environment and has not been independently
replicated. Other studies have focused mostly on technical
accuracy rather than pedagogical outcomes [14,16]. Student
engagement seems to improve when gamification elements
are included [15]; however, there is a lack of comparative
studies across different Al tutoring methods.

Student engagement is also showing a positive trend,
particularly when gamification elements are provided to view
progress [15]. However, several factors limit the widespread
use of the technology. Deep learning models require
substantial computational resources and annotated training
data, creating barriers for individual learners with limited
technical infrastructure [13,14]. Building robust models
requires large amounts of annotated piano performances,
which remain in short supply in this specialized field [16].
Additionally, concerns about reliance on machine feedback to
the exclusion of the development of essential self-assessment
skills deserve careful pedagogical consideration [13]. Cost
factors also raise issues, as expensive Al systems involve
significant development work that may not be accessible
within every learning environment.

3.2 Computer vision and optical music recognition

Music recognition technology has also improved
immensely over the last few years, from rule-based image
processing pipelines to end-to-end deep learning systems.
OMR systems aim to convert visual representations of
musical notation into machine-readable formats, such as
MusicXML or MIDI, enabling digital manipulation, playback,
and analysis of handwritten or printed scores [18,19]. In
piano sight-reading pedagogy, these technologies perform
several tasks: digitization of instructional content for use in
interactive learning materials, real-time visual monitoring
during practice exercises, and automatic evaluation based on
related notes played against familiar score content.
Computational difficulty lies in correctly interpreting two-
dimensional musical semantics, where pitch and length are
encoded by symbol location and morphology rather than a
sequential representation [18]. Classic methods used staff
detection, symbol breaking, and error-prone classification,
while modern methods use integrated neural network models
that implicitly learn the music notation hierarchy from
examples. Recent technological advances have focused on
applying deep learning object-detection methods to music
score examination.

Convolutional neural networks have proven robust for
note position and duration recognition from score images,
and several implementations have tested different network
architectures and training schemes [20-22]. Most systems
process score pages using hierarchical visual feature
extraction across one or more convolutional layers, with
classification heads predicting note features such as pitch
class, duration, and accidentals. Some methods extend region-
based CNN architectures originally designed for overall object
detection, treating musical symbols as detection objects in the
image of the score [20].

317



R. Rui et al. /Future Technology

Table 2. Distribution characteristics of included studies (n=33)
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Characteristic Category Number (n) Percentage (%)
Publication Year 2015-2017 2 6.1
2018-2020 5 15.2
2021-2024 26 78.8
Geographic Origin China 12 36.4
United States 8 24.2
Europe 9 27.3
Other regions 4 12.1
Study Design Empirical studies 17 51.5
Technical development 11 33.3
Case studies 5 15.2
Technology Type Al-powered tutoring systems 5 15.2
Computer vision and OMR 7 21.2
Deep learning for pattern 6 18.2
recognition
VR/AR applications 6 18.2
Mobile applications and IoT 9 27.3

Note: OMR = Optical Music Recognition; VR = Virtual Reality; AR = Augmented Reality; [oT = Internet of Things.

Table 3. Cross-category comparison of technology types for piano sight-reading education

Technology Number of Primary Computational | Accessibility Reported Main Limitations
Type Studies Algorithms Requirements Effectiveness
Al-Powered 5 CNN, LSTM, High Low 25-35% learning | High computational costs;
Intelligent Neural efficiency requires powerful
Tutoring Networks, Deep improvement hardware; large annotated
Systems Learning datasets needed;
expensive development
Computer 7 CNN, Medium-High Medium 85-95% Difficulty with polyphonic
Vision and Transformer, recognition scores; challenges with
OMR Region-based accuracy handwritten notation;
CNN, Object real-time processing
Detection demands
Deep Learning 6 RNN, LSTM, Bi- High Low 85%+ agreement | Large training dataset
for Pattern LSTM, CNN with expert requirements; model
Recognition with Attention evaluation interpretability concerns;
limited generalization to
unseen repertoire
VR/AR 6 Computer High Low Enhanced High hardware costs;
Applications Vision, Hand engagement and | potential for simulator
Tracking, motivation (not sickness; reduced
Spatial quantified) attention to acoustic
Computing output quality
Mobile and IoT 9 Cloud Low (cloud- High Variable (up to Weaker analytical
Solutions Computing, based) 99%+ accuracy capabilities compared to
Audio Analysis, with advanced dedicated systems;
MSC, QLA algorithms) connectivity dependency;
privacy concerns

Note: CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory; RNN = Recurrent Neural Network; OMR = Optical Music
Recognition; VR = Virtual Reality; AR = Augmented Reality; IoT = Internet of Things; MSC = Multiple Signal Classification; QLA = Quality-Learning

Algorithm.

Others use fully convolutional architectures, which
produce dense predictions across the entire image in a single
pass [22]. More recently, transformer models have been at the
forefront for their ability to represent long-range
dependencies in musical sequences and to tackle OMR as a
sequence-to-sequence translation problem from image
patches to symbolic music notation [23,24]. These are found
to hold particular promise for processing polyphonic piano
scores with interplaying multiple voices on different staves
[23]. Attention Mechanisms help pay heed to significant
properties of musical notation while remaining attentive to
musical scale, without incurring the costs of full convolutions.

Performance varies significantly depending on the
evaluation metrics and datasets. The CNN-based approaches
achieve between 85-95% symbol-level accuracy for standard
benchmarks like MUSCIMA++ and PrIMuS, which are mainly
formed by monophonic or simple polyphonic scores [18, 20].
Transformer-based models exhibit advantages in dealing
with longer musical sequences and complex polyphonic
textures but usually require substantially bigger training
datasets and computational resources [23, 24]. Nevertheless,
the tasks of evaluation on piano-specific polyphonic scores
have remained scant, and the accuracy usually drops when
dealing with complex multi-voice piano repertoires [21].
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Polyphonic piano music with complex notation, multiple
dynamic markings, and performance marks is considerably
more challenging than simple monophonic melodies [21].
Handwritten scores and degraded historic documents
introduce  additional challenges for identification,
necessitating high-quality training data and model adaptation
[19]. Real-time requirements for processing interactive
training programs offload the burden on efficient inference,
necessitating compromises in model complexity and
computational tractability [20]. Furthermore, the process of
converting recognized symbols into semantically rich musical
forms with particular attention to voice leading and harmonic
structure remains a research issue to date [24].

3.3 Deep learning for pattern recognition

Deep learning methods are particularly powerful
analytical techniques for piano performance analysis,
enabling beyond-error analysis of simple patterns and
detailed commentary on musicality and technique. Neural
network learning with hierarchical representation learning
from performance data enables automated analysis of
characteristics that, without expert knowledge, only human
analysis could correctly determine [25,26]. Analysis power
encompasses all levels of analysis performance, from
correctness analysis for rhythm precision to pitch-precision
analysis, including control of dynamics and temporal
synchronization of the hands and fingers. First of all, the key
benefit of using deep learning analysis is that patterns can be
extracted at a high level of performance complexity without
specifically engineering performance characteristics. This
works magnificently for catching musical interpretations at a
detailed level of performance that rule-description analysis
can hardly catch. Different analysis techniques have been
implemented using neural network architectures tailored to
the specific level of analysis to be carried out.

Recurrent neural networks and their variants, such as
Long Short-Term Memory networks, have worked well in
describing temporal dependencies in musical performance.
Such models depict sequences of performances with
recurrently connected representations and internal state
representations so that the network can locate each note
within its previous musical context. Bi-directional LSTM
architectures realize this potential through the addition of
new as well as old context, particularly beneficial in error
detection, where lack of fit to expected patterns is made
apparent through temporal discontinuity [27]. Convolutional
neural networks also possess complementary capacity for
analyzing spatial patterns within spectrograms or piano roll
representations, with recent studies investigating attention
mechanisms that enable models to concentrate on musically
significant areas when assessing [28]. Dynamic time warping
algorithms combined with deep learning frameworks enable
comparison between performed and reference renderings
even with natural tempo changes [25]. Certain research has
tried to push pattern recognition to multimodal analysis,
combining audio features with physiological measures like
EEG for performance error detection and cognitive load [27].
Such multimodal research points toward the potential for
adaptive systems not just to be acoustic output-sensitive but
even to performers' mental states. Performance assessment
research indicates that the accuracy of deep learning models
can be comparable to human expert agreement. Wang and
Mukaidani reported an agreement of 85% using DTW-based
evaluation, but this was tested on a limited repertoire of
classical pieces. Current state-of-the-art models, including
Onsets and Frames and transformer-based architectures,
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have advanced automatic piano transcription, but their
application to  pedagogical assessment remains
underexplored. The most important limitation across studies
is the lack of standardized datasets: most models are trained
on small, proprietary collections with varying annotation
methods, which limits cross-study comparability and
generalization to diverse repertoire [29,30].

However, there are certain limitations in existing
deployments. Well-trained evaluative models require very
large datasets with diverse skill levels, musical styles, and
repertoire. The currently available datasets differ
significantly in size (ranging from hundreds to tens of
thousands of performances), annotation granularity, and
genre representation, making direct comparisons of model
performance difficult [29]. Moreover, models trained on a
particular repertoire often cannot generalize well to
unknown musical pieces [30]. Also, the lack of transparency
in Deep Neural Networks raises concerns about
interpretability, since users may not understand the rationale
for a particular performance being generated by them [28].
Lastly, the issue of dataset influence can lead to giving some
performance characteristics precedence over others that may
be equally fair and valid.

3.4 Virtual and augmented reality applications

Virtual and augmented reality technologies offer
distinctive pedagogical affordances for piano instruction by
enabling immersive learning environments that combine
digital guidance with physical practice. These systems tend to
be based on the use of head-mounted displays or spatial
computing devices to overlay instructional content on the
learner's field of view, providing immediate visual feedback
on finger placement, posture, and score interpretation
[31,32]. Unlike conventional screen-based lessons that
require divided attention between the keyboard and screen,
AR applications retain visual attention on the instrument
itself by projecting notation, finger numbers, or colored
guides onto piano keys [33,34]. VR implementations do it
differently, constructing entirely virtual practice spaces
where pupils practice with virtual pianos using hand tracking
or haptic controllers. Mixed reality configurations combine
elements of both paradigms so that real pianos can be
observed, with overlays of virtual instructional data or
avatars of distant teachers superimposed upon them [31].
The spatial nature of these technologies enables three-
dimensional visualization of musical conceptions that are
difficult to convey in traditional two-dimensional media, such
as hand motion paths and geometric relationships within
chord structures. Existing implementations demonstrate
varied pedagogical strategies utilizing immersive
technologies.

Some of them incorporate gamification techniques in
which musical notes stream on the keyboard rhythmically, in
a rhythm game fashion, making learning and practicing quite
delightful for young learners [35]. Others are focused on
developing techniques with continuous visual feedback on
hand position and finger form to counterbalance posture-
related problems that develop during remote learning by
individual students [34]. Some applications incorporate a
social learning interface that facilitates remote learning, with
the teacher serving as a virtual participant in the learner's
mixed reality perception [31]. More sophisticated
applications incorporate multimodal analysis that goes
beyond computer vision techniques by combining computer
vision technology with EMG sensors to analyze muscle
activity patterns, with a view to understanding physical
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tension that can lead to physical injuries [36]. The included
six VR/AR studies fall into three categories: usability studies
of hardware interfaces [32, 34], technical development of
tracking systems [36], and initial pedagogical explorations
[31,33,35]. Although these reports increased user
engagement and enjoyment, such hedonic outcomes are to be
distinguished from pedagogical effectiveness. Notably, none
of the included studies used any sight-reading assessment
instruments that have seen validation in the literature (e.g.,
Watkins-Farnum), and hence, there is a difficulty in saying
whether immersive technologies enhance actual sight-
reading skills or simply add to subjective experience. This
technology seems more suited to novice learners, who need
gamified, visually engaging practice environments.

However, some limitations exist that may impede its
widespread acceptance. The current state of VR/AR
technology remains somewhat costly and requires setting up,
which may deter non-tech-savvy users. Engaging with the
headset for a long time may cause simulator sickness in some
users, thereby preventing them from spending a long time
learning [32]. This immersion, caused by being secluded from
the actual environment, may prevent one from being
attentive to acoustic output, while its quality matters for
musical performance [31]. Also, the short lifespan of
hardware may pose sustainability challenges, as a program
intended for current hardware may require an overhaul to
run on new hardware.

3.5 Mobile Applications and IoT Solutions

Mobile technology and IoT are perhaps the most
democratizing forces in technology-assisted keyboard
learning, but they also signal a complete overhaul of the cost
and availability of musical instruction. In contrast to specific
hardware requirements for Al-assisted instruction or a
virtual reality environment for installation, mobile
technology leverages the pervasive presence of smartphones
and tablets to respond to learning needs with minimal access
barriers at all levels of instruction [37,38]. IoT Smart pianos
push this paradigm further by incorporating sensors and
connectivity into existing pianos, depurposing standard
acoustic pianos as data input/output units that can record
detailed performance data without necessarily employing
audio recordings for learning, using recorders [39,40]. This
enables a paradigm shift for learning that happens
asynchronously and away from fixed geographic and
chronological localities that have hitherto circumscribed
musical learning experiences. Its relevance goes beyond
simple convenience; a pressing issue of granularity for a
technology system, as implemented here, is that it faithfully
delivers quality learning material to geographically dispersed
populations or learning communities that are simply too poor
to afford private educational learning at exorbitantly
expensive rates [41]. At the technology system
implementation level, there appears to be a mix of learning
technologies applied to mobile and IoT applications. First
applications of mobile technology tended to centrally involve
lesson plans and simple activities that necessarily acted as
digital learning notebooks [37]. Additional improvements
integrate cutting-edge audio analysis algorithms, enabling
smartphones with built-in microphones to provide
performance accuracy analysis [42]. Wireless network-based
implementations have further enhanced the accuracy of
algorithmic performance analysis [43,44].

Cloud architectures integrate to support system
operation, allowing intensive computation to be delegated to
distant server machines without sacrificing user-friendliness
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on simple mobile device levels of operation [39]. This IoT
system-level approach instead aims to longitudinally analyze
the continuous accumulation of learning information input by
sensor-laden pianos, uploading learning performance details
to analytics databases for longitudinal learning improvement
analysis and the discovery of regularly developing
performance deficits [40]. Learning improvement algorithms
seek to optimize by analyzing trends in musical activities
using analytics databases to build customized, smart learning
improvement advice based on personal learning patterns
[39]. In hybrid online learning, concerning the network
accessibility issue, balancing operations to continue running
applications locally with occasional synchronization as a
necessary condition for running applications when network
access is available. The pedagogical implications of mobile
and IoT technologies extend beyond technical feasibility to
broach underlying questions about the character of musical
learning. Through independent practice with immediate
feedback, such systems most likely reduce conventional
overdependence on regular instructor intervention [42]. With
this independence, however, come dangers of reinforcing
improper techniques when automated feedback fails to
capture nuances of important errors [37]. IoT systems are
inherently data-centric, which raises significant privacy and
ethical concerns. For example, cloud-based platforms
regularly collect data on keystroke-level performance,
practice duration, and error patterns- the latter of which can
be sensitive when users are minors. Discussion of compliance
with data protection regulations such as GDPR or COPPA, as
well as considerations of data ownership, retention policies,
and third-party sharing practices, is rare within the existing
literature [40]. It may also be that the freemium business
model prevalent in mobile applications creates unequal
access to advanced features, potentially contradicting the
democratizing potential of those technologies themselves
[37]. Regarding pedagogical outcomes, findings remain
fragmented. While studies have indeed shown that real-time
audio feedback improves rhythm accuracy [42, 44], others do
not measure learning gains but instead focus on system
architecture. Comparative studies investigating whether
mobile/loT approaches achieve outcomes at least equivalent
to traditional instruction remain absent. There are few long-
term efficacy studies, and questions remain about whether
mobile-mediated learning builds musical knowledge
equivalent to that of traditional instruction [45].

4. Discussion

The present review highlights an underlying tension in
technology-assisted piano sight-reading practice: the
technology with the greatest analytical capability is far too
often inaccessible to those most in need of it. Artificially
intelligent learning systems have demonstrated considerable
promise in recent applications, with technical accuracy
improvements of up to 35% over conventional practice [44].
Such improvements constitute actual pedagogical value. But
real-time inference infrastructure within the computational
realm faces hurdles that cannot be dismissed as technical
[43]. It extends beyond hardware costs to include the lack of
large, annotated performance data for strong model training
[16]. These results point to a paradox in the contemporary
piano sight-reading landscape: the systems that yield the
most compelling pedagogical results are precisely those least
accessible to learners who might benefit most. Whereas Al-
based tutoring systems demonstrate 25-35% efficiency gains,
and deep learning-based models achieve expert-level
evaluation accuracy, their deployment remains confined to
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well-resourced institutional settings. Conversely, mobile and
IoT solutions attain wide accessibility but at the expense of
analytical sophistication. This pattern points to a market
failure in educational technology, wherein technological
capability and practical utility diverge rather than converge.

Deep-learning approaches to performance evaluation
have equaled the performance of expert judgment in a
majority of application areas [25], but concerns about model
explainability cannot be overlooked. Learners and instructors
may not be able to identify the reasoning behind specific
assessments being generated [28] and, therefore, may be
suspicious of the value of such machine-generated feedback
in teaching. Such explainability is particularly required when
models automatically identify biases in the training data [29].
Mobile and IoT apps respond to accessibility in different
ways, capitalizing on students' existing devices. Cloud
architectures unbundled processing loads appropriately [39],
enabling real-time feedback in practice problems [42]. The
pedagogical trade-offs made here need to be scrutinized in
depth. Though such platforms provide equal access to
technology-facilitated instruction [41], analysis capability is
weaker than that of purpose-designed Al systems. In distant
or financially struggling environments where private tutoring
in the conventional manner is beyond their budget, such
concessions may well be entirely justified [37].

4.1 Practical implications for educators and institutions

Technology selection should be informed by institutional
context and learner needs, rather than sophistication per se.
Where appropriate, computational infrastructure is in place,
Al-driven tutoring systems and deep learning-assisted
assessment offer something near to personal feedback;
instructors nonetheless have a duty of care to ensure that
these augment, rather than replace, human teaching [17, 25].
Computer vision and OMR technologies can aid in the
preparation of bespoke learning materials, yet recognition
accuracy falls with increasingly complex polyphonic
repertoire, necessitating manual checking [18,20]. Immersive
VR/AR applications may provide a heightened sense of
engagement for beginners. Yet, instructors should emphasize
demonstrated pedagogical benefit over entertainment value,
given the limited evidence to date regarding actual skill
acquisition [31]. In resource-poor and/or dispersed learning
settings, mobile and IoT solutions are most accessible [44].
When instructors recommend particular apps, they should
prioritize offline functionality, robust feedback mechanisms,
and data privacy protections, especially for younger learners
[37, 42].

4.2 Research limitations and future directions

This review relies on several methodological limitations.
Firstly, the diversity of outcome metrics precluded a
quantitative analysis. A good many more concerns were the
lack of a longitudinal study. Studies have been conducted for
weeks and months; no study was found that investigated
retention after the end of training or generalization to an
unroutined repertoire. A recent study highlighted the
underinvestigated nature of questions about the resilience of
long-term skills [41]. Others questioned the ability to assess
the value of mobile-mediated learning by reference to musical
understanding as provided by conventional learning
modalities [45].

Publication bias may overestimate its efficacy because
few null results are published. A lack of uncontrolled settings
means its efficacy in a more realistic environment has not
been adequately explored. Although immersion-related
learning-related works have found considerable benefits for

February 2026] Volume 05 | Issue 01 | Pages 314-323

user engagement [31], its ability to aid with practicing
discipline as a means of developing motivation remains
unclear.

Several priority areas for future research emerge from
this review. First, there is a need for randomized controlled
trials comparing Al-tutoring with traditional instruction over
longer periods (e.g., 6-12 months) to determine whether
efficiency gains persist beyond initial training. Second,
studies should employ validated sight-reading assessments
(e.g., Watkins-Farnum) to enable cross-study comparison.
Third, work on hybrid systems that integrate multiple
technologies (e.g, OMR combined with AR-based finger
guidance) may overcome the current trade-off between
analytical power and accessibility. Fourth, longitudinal
investigations examining skill retention and transfer to
unrehearsed repertoire remain notably absent [41,45].
Finally, as these technologies increasingly target younger
learners, ethical frameworks addressing data privacy and the
appropriate use of Al feedback within formative musical
development urgently require attention.

5. Conclusion

This study’s scoping review initially probed the
landscape of Al and digital technology applications in piano
sight-reading instruction to establish that there are five
categories of technology, differentiated by pedagogical needs
and the specificities of implementation. Through careful
aggregation of 33 specific studies published between 2015
and 2024, a remarkable level of advancement in technology
applications for sight-reading instruction over the past few
years becomes evident, while acknowledging that specific
persisting challenges continue to impact the actual
implementation of these applications. This information
explicitly supports the claim that while there exist specific
technology applications that are not adequate to address all
needs of sight-reading instruction, pedagogical and
technology applications that emphasize sight-reading
requirements, Al applications for instruction emphasize
complex analysis through significant computation. Similarly,
computer vision applications to specific OMR technology
signify a lack of adequate musical comprehension. In contrast,
applications of AR and VR technology promote immersion,
but they entail specific hardware-related costs. In contrast,
mobile applications signify a specific level of accessibility,
while IoT applications signify a lack of adequate
personalization. However, this review has some limitations in
its scope. The lack of a quantitative analysis due to the
diversity of outcome metrics across studies means that some
questions about long-term skill retention remain
unanswered, given the relative dominance of short-term
outcome assessments. Publication bias may also influence the
existing evidence base to some extent, as the vast majority of
the literature studied focused on controlled environments
rather than actual classroom applications. Long-term
learning outcomes may be addressed by future studies that
establish a common analytical framework across different
outcome studies while exploring hybrid technology solutions
that strategically incorporate multiple technology types. With
the continued expansion of Al capabilities in multimodal
solutions and long-range language modeling, it remains
imperative to keep the spotlight on genuine educational
needs. Technology should ultimately be viewed as a tool to
enhance musical understanding and sight-reading ability,
rather than the goal of musical instruction.
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