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This study explores the synergistic effect of Internet of Things (IoT) and edge
computing on the supply chain resilience through technological interaction
channels. Based on dynamic capability theory and resource coordination
theory, the study employs external data sources such as the World Bank
Enterprise Survey, the China Industrial Enterprise Database, and the China
Ministry of Industry and Information Technology to investigate the research
question. Specifically, it uses panel data from 892 manufacturing and logistics
enterprises spanning 2020-2024, employing hierarchical regression and simple
slope analysis as the empirical methods. The empirical results show that the
application level of either IoT technology or edge computing can significantly
improve supply chain resilience, with remarkable synergistic effects when the
two technologies are jointly adopted. Edge computing can further improve the
efficiency of IoT applications by enabling higher application-level thresholds.
Additionally, the synergistic effect between loT technology and edge computing
exhibits industrial heterogeneity in optimizing resilience-building efficiency:
the manufacturing industry demonstrates a stronger synergistic effect than the
logistics industry. This study formally validates the theoretical mechanism
underlying technology application, encompassing real-time sensing, edge
analysis, and rapid response. It thereby addresses a critical gap in the existing
literature and theoretical framework concerning the "resilience-warning
capability-response speed"” model.

1. Introduction

In recent years, the global supply chain has encountered
undergone

unprecedented  shocks and

efficiency. On the one hand, relevant studies demonstrated
that supply chains with high resilience can not only

profound significantly improve customer satisfaction and financial

transformations. The emergence of uncertain events such as
the COVID-19 pandemic, geopolitical conflicts, and climate
change has revealed the limitations of traditional supply
chain management models in coping with sudden disruptions
[1]. As an essential competence for enterprises to maintain
operational continuity, respond to market fluctuations, and
recover from disruptions, supply chain resilience has become
a key subject in academic research and practical applications
[2]. In addition, in the current complex landscape where
globalization and regionalization advance in tandem, coupled
with the node dependence and structural vulnerability
inherent in supply chain networks, conventional resilience
strategies—such as redundant inventory and multi-source
procurement—are increasingly trapped in a predicament
characterized by high resilience costs and low operational
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performance but also build more robust competitive
advantages through supply network coordination
mechanisms [3,4]. With the increasingly complex global
supply chain networks, systematically improving supply
chain network resilience through digital technology
empowerment has become a critical strategic priority that
demands urgent action [5]. The current studies on supply
chain resilience have explored diverse dimensions in depth.
From the perspective of inventory management, the
literature reviews have deepened understanding of the
mechanisms underlying construction, highlighting the
significance of strategic inventory routing in mitigating
bilateral supply-and-demand shocks [6]. The numerical
assessment of the information network has revealed a
positive effect of information quality on resilience among
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supply chain partners, making it theoretically applicable to
structural optimization [7]. The Internet of Things (IoT)
technology has brought revolutionary advancements to
supply chain management practices. The latest literature
reviews and application solutions have clearly indicated that
IoT technology has transformed from an efficiency-enhancing
tool to a core driving engine of strategic transformation, with
applications spanning the entire process from ordering and
delivery to further intelligence upgrading [8]. Application
cases in the field of sustainable supply chain management
have further demonstrated that full integration of RFID and
sensor networks can greatly enhance environmental sensing
and optimization capabilities [9]. Research on real-time
supply chain monitoring has further validated the pivotal role
of IoT devices in anomaly detection and response [10].

In addition, Edge Computing, an emerging form of
distributed computing, provides low latency and high real-
time decision support for the supply chain. With its expanding
applications in the circular economy and sustainability
initiatives, it has gradually unlocked new potential [11]. The
case study in the smart agricultural supply chain has clearly
demonstrated the remarkable performance capabilities of
Edge Computing, with the application of Fuzzy Neural
Networks, in optimally distributing resources in a dynamic
environment [12]. In the context of Industry 4.0, recent
literature reviews have further revealed the multi-level
technical support and strategic pathways for supply chain
resilience building [13]. A study on North American research
agendas highlights the significance of integrating intelligent
technologies to enhance the agility and visibility of supply
chain networks [14]. Moreover, most studies have
demonstrated that the collaborative application of Industry
4.0 technologies has become an imperative, driven by
megatrends such as population aging and rapid urbanization,
to advance evolutionary supply chain processes [15].

Despite broad verification of independent applications of
Internet of Things and edge computing technologies in the
supply chain industry, existing research still exhibits
significant theoretical and practical gaps. Specifically, most
current studies on these two technologies in the literature
focus solely on functional analysis of individual technologies,
lacking in-depth exploration of their inter-technological
collaboration mechanisms. Furthermore, existing literature
lacks a systematic explanation of how the real-time sensing
capability of Internet of Things technology and the
distributed processing function of edge computing
technology can synergistically interact to generate a "1+1>2"
effect. More fundamentally, academic research has not yet
provided empirical validation for whether the collaborative
application of these two technologies produces such a
synergistic effect on the early warning capabilities, response
speed, and recovery capacity of supply chain resilience.
Current studies predominantly rely on case study methods
and conceptual model construction, with a dearth of
quantitative  verification using large-sample data.
Furthermore, cross-industry and cross-field comparative
analyses remain underdeveloped in current studies, resulting
in conclusions from studies on Internet of Things and Edge
Computing technologies that lack sufficient universality.
Based on the aforementioned observations, this study aims to
construct an integrated theoretical framework of “loT
Empowerment - Edge Computing Collaboration - Supply
Chain Resilience Enhancement.” Drawing on dynamic
capability theory, it explicates the inherent inter-
technological collaboration mechanism and identifies the
action pathway and boundary conditions of the “1+1>2"
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synergistic effect by leveraging multi-source public data and
online open information resources.

The main innovation of this study is to break away from
the traditional single-technology paradigm. From the unique
perspective of technological collaboration, it explores and
addresses the theoretical gap in quantifying the interaction
effect between the Internet of Things and edge computing in
enhancing intelligent supply chain resilience.
Methodologically, the study applies a multi-resource
integration approach using public data, which avoids ethical
review risks while ensuring large-scale replicability, aligning
with the practical needs of empirical research. The study's
findings can support scientific decision-making for
enterprises' digital transformation, helping them determine
technology investment priorities and collaborative
implementation strategies. Additionally, the results offer
theoretical support for policymakers to optimize
technological innovation support systems, thereby
contributing significantly to resilience-building and
sustainable, healthy development of the global supply chain.

2. Methodology
2.1 Theoretical models and research hypotheses

Based on dynamic capability theory and resource
orchestration theory, this study constructs an integrated
theoretical model to examine the synergistic effect of Internet
of Things empowerment and edge computing on supply chain
resilience. Dynamic capability theory emphasizes the
importance of organizational capability in preserving and
enhancing competitive advantage by perceiving, grasping,
and reconstructing resources. Internet of Things technology,
serving as the perception layer, acts as the principal data-
acquisition mechanism, constantly capturing real-time
operational status across supply chain nodes (impelling
function). On the contrary, edge computing serves as a
complementary processing layer that transforms raw [oT
data into actionable insights through distributed analysis and
localized decision-making (facilitating function). This
theoretical distinction is important: IoT directly establishes
the informational basis for resilience, whereas edge
computing extends this information through rapid, context-
aware processing at the network edge. Prior research has
indicated that supply chain digitalization jointly impacts
organizational resilience through multiple routes, including
information visibility, collaborative integration, and decision
agility [16]. Building on this literature, this study abandons
the traditional passive-reception approach to theoretical
modeling and innovatively proposes a technology synergy
mechanism: IoT and edge computing do not merely function
in a superimposed manner, but rather enhance operational
efficiency through a closed-loop process of "real-time sensing,
edge analysis, and rapid response." Based on the theoretical
model, we formally propose the following hypotheses:
H1: IoT application degree — Supply chain resilience (3 > 0)
H2: Edge computing deployment — Supply chain resilience (8
>0)
H3:IoT x Edge computing = Supply chain resilience (§ > 0)
H4: Supply chain complexity positively moderates the
synergy effect (IoT x Edge x Complexity, > 0)
H5: The synergy effect is stronger in manufacturing than
logistics (IoT x Edge x Industry, f manufacturing > logistics).
To take complete account of the heterogeneity in different
situations, there is further introduction of the so-called
“moderating hypothesis” related to situation: “The supply
chain complexity has a positive impact on the synergy effect”
(H4), “The synergy effect in the manufacturing industry

325



Zhicheng Yu & Zhixin Yu /Future Technology

significantly outperforms it in the logistics industry” (H5).
The integrated theoretical models constructed above
effectively capture the complex relationships among
independent, dependent, moderating, and control variables,
with very explicit operational definitions for empirical testing
(see Figure 1).
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Figure 1. Conceptual model of IoT-edge computing synergy on
supply chain resilience

Figure 1 illustrates the theoretical model with three
important constructs of IoT Application (independent
variable, left), Edge Computing Deployment (independent
variable, left), and Supply Chain Resilience (dependent
variable, right, measured via early warning, response speed,
and recovery ability). In the figure, direct paths showing H1
(IoT— Resilience) and H2 (Edge— Resilience) are
represented by solid arrows. The interaction path,
represented by the dashed arrow from the loTxEdge node,
shows H3. Moderating paths reflect Complexity and Industry
Type that influence the [oT x Edge interaction effect (H4-H5).
The model not only illustrates the shaping factor of
technology on dynamic capabilities of the firm but also
incorporates moderating variables (represented by the color-
coded legend) that establish boundary conditions for
technology effectiveness.

2.2 Data source and sample description

This study is based on a multi-source open data fusion
approach that relies exclusively on publicly available,
anonymized secondary data. Since no collection of primary
human-subject data was performed, IRB review was not
required according to institutional guidelines (exempt
category: publicly available data, 45 CFR 46.104(d)(4)). Data
sources include: the China Industrial Enterprise Database, the
World Bank Logistics Performance Index (LPI), the Ministry
of Industry and Information Technology's IoT and Edge
Computing Data Map, and Bloomberg supply chain risk
ratings. Multi-source fusion aims to enhance data reliability
through cross-validation and improve external validity and
representativeness through using standardized public data.
China’s digital transformation has created a large sample pool
for testing technology empowerment models, with studies
demonstrating that technology adoption significantly
improves supply chain efficiency [17]. Criteria for selecting
data include: a time period of 2020-2024 to capture dynamic
change before and after the pandemic. This window spans
high-disruption years (2020-2021, mean disruption events =
4.7 /year) and recovery phase (2022-2024, mean = 2.1 /year),
thus providing meaningful variance. Data coverage: 2020-
2023 comprises complete annual reports; 2024 includes Q1-
Q2 preliminary filings (as of June 2024). Robustness checks
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excluding 2024 yielded consistent results (IoT x Edge: § =
0.172 vs. 0.176). Applicable only to the manufacturing and
logistics industries to capture the nature of the supply chain.
In our analysis, logistics is considered a service sector, as it is
a service-oriented industry within supply chain operations.
Only enterprises with complete disclosure of technology
adoption status and performance indicators were included in
the sample. Complete disclosure of technology adoption and
performance indicators is required. Data matching followed a
hierarchical protocol: (1) by using the 18-digit Unified Social
Credit Codes across databases; (2) by using 6-digit stock
codes for listed firms in cases where credit codes were
unavailable; (3) by manual verification for name
discrepancies (for example, subsidiaries, name changes)
using the corporate registration records. The matching
achieved a success rate of 94.3% after excluding unmatched
cases. From the initial selected sample of 1,247 firms, 355
were excluded for the following reasons: incomplete
technological indicators (less than 80%), 187; missing
financial data for more than 2 quarters in sequence, 104; and
inconsistency of data from different sources, 64. After data
cleaning, the final sample comprises 892 firms, with a
retention rate of 71.5%.

Table 1 shows the diversity of samples in terms of
geographical distribution, ownership type, and industry
composition, which provides a natural grouping condition for
the subsequent test of context dependence of technology
effects. The integration of multi-source data ensures
comprehensive and accurate measurement of variables.

2.3 Variable measurement

Supply Chain Resilience was employed as the core
Dependent Variable to capture its whole meaning. Early
warning capability is measured as the number of days of
advance detection before disruptions, extracted from
structured manual coding of annual reports' risk
management sections. Coding protocol: Two independent
trained coders identified explicit statements of forecast
horizons, such as "detected 15 days prior." Inter-coder
reliability: Cohen's k=0.87. Ambiguous cases (n=34) were
resolved through discussion. In terms of validation, we
triangulated with Bloomberg supply chain risk alerts (r=0.72,
P<0.001). To address potential reporting inconsistencies, we
triangulated self-reported data against external validation:
Bloomberg supply chain risk alerts (correlation r=0.72,
P<0.001) and news-based disruption event databases.
Observations with >30-day discrepancies between sources
were flagged for manual review (n=47, 5.3%). The speed of
response is measured by the Coefficient of Variation of the
Order Delivery Cycle, whose calculation is:
cv=2

H (1)

In the equation, symbolizes the standard deviation in the
delivery cycle, while symbolizes the average cycle. Recovery
ability is defined as the number of months it takes for
quarterly revenue to return to 295% of the baseline. The
baseline was defined as the average of the four pre-shock
quarters. To control for seasonality, we used year-over-year
comparisons, for example, Q1 2021 versus Q1 2020 baseline.
Identification of shock events included decreases in revenue
>10% from the seasonal baseline.
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Table 1. Sample firm characteristics and data source distribution
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Characteristic Category/Indicator Sample Percentage/% | Data Source
Dimension Size/Statistics
Overall Sample Valid sample firms 892 firms 100.0 Multi-source data integration
Data time span 2020-2024 - -
Industry Distribution Manufacturing (total) 627 firms 70.3 China Industrial Enterprise
Database
Machinery (SIC 35) 189 firms 21.2 China Industrial Enterprise
Database
Electronics (SIC 36) 156 firms 17.5 China Industrial Enterprise
Database
Transport Equipment (SIC 142 firms 159 China Industrial Enterprise
37) Database
Other Manufacturing 140 firms 15.7 China Industrial Enterprise
Database
Logistics (total) 265 firms 29.7 World Bank LPI Database
Warehousing (NAICS 493) 147 firms 16.5 World Bank LPI Database
Transportation (NAICS 484) 118 firms 13.2 World Bank LPI Database
Firm Size Average employees 1,847 persons - Enterprise Surveys
Median asset size CNY 1.23 billion - Bloomberg Database
Large firms (>1000 523 firms 58.6 China Industrial Enterprise
employees) Database
SMEs (<1000 employees) 369 firms 41.4 Enterprise Surveys
Geographic Distribution Eastern region 548 firms 61.4 MIIT Digital Development Data
Map
Central & Western region 344 firms 38.6 MIIT Digital Development Data
Map
Ownership Structure State-owned & controlled 312 firms 35.0 China Industrial Enterprise
Database
Private enterprises 447 firms 50.1 China Industrial Enterprise
Database
Foreign & joint ventures 133 firms 14.9 Enterprise Surveys
Listing Status SSE/SZSE listed 412 firms 46.2 Bloomberg Database
Unlisted 480 firms 53.8 China Industrial Enterprise
Database
Technology Application IoT device deployment 3.2 devices/100 - MIIT Digital Development Data
Maturity density employees Map
Edge computing node 38.7% - MIIT Digital Development Data
coverage Map
Firms with complete tech 892 firms 100.0 Multi-source validation
indicators
Supply Chain Complexity | Average number of suppliers 47 suppliers - Bloomberg Supply Chain Data
Average logistics tiers 3.8 tiers - World Bank LPI Database
Cross-border supply chain 418 firms 46.9 Enterprise Surveys
firms
Data Completeness Complete financial data 892 firms 100.0 Bloomberg Database
Complete technology data 892 firms 100.0 MIIT Digital Development Data
Map
Complete SC performance 892 firms 100.0 World Bank LPI Database
data

The total resilience index is calculated with respect to the
integration of three aspects via principal component analysis
(no rotation), with the equation being:

3
SCR =>"w,-Z,
@

The first principal component explained 68.4% variance
(eigenvalue=2.05), with weights: w;=0.42 (early warning),
w,=0.38 (response speed), wz=0.36 (recovery). Here, w;
represents the principal component weight of the j-th
dimension, and Zj represents the standardized dimension
score.

Weights are assigned based on each dimension's
contribution rate to total variance. Independent variable
measurement emphasizes objectivity and workability. The
[oT technology level is calculated from node density, coverage
ratio, and real-time data collection ratio. Edge computing
level incorporates node count, local data processing ratio, and
edge-cloud synergy maturity. Composite indicators are
constructed through factor analysis (KM0=0.82 for 10T, 0.79
for Edge; Bartlett's test P<0.001). Factor loadings ranged
from 0.78 to 0.89 for IoT and from 0.74 to 0.85 for Edge, with
single factors explaining 71.3% and 68.7% variance,
respectively. Supply chain complexity was operationalized
through principal component analysis (PCA) that integrated
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three dimensions: supplier count, logistics tiers, and
geographical dispersion. The first principal component,
accounting for 64.8% of total variance, exhibited factor
loadings of 0.84 (supplier count), 0.79 (logistics tiers), and
0.73 (Geographical dispersion). Component scores were
subsequently standardized to a 1-5 scale through linear
transformation using the formula:

PCA. —PCA
score min ><4+1
PCA,, —PCA4,, 3)

Complexity =

where PCAmin and PCAmax represent the minimum and
maximum principal component scores in the sample, yielding
a mean of 3.52 (SD=0.88). Reliability: Cronbach's a=0.80,
CR=0.83. AVE=0.62 (>0.5). Discriminant validity: VAVE=0.79
exceeds correlations with other constructs (r=0.21-0.34, see
Table 3).

Control variables include enterprise scale, supply chain
length, and regional dummies. Regression uses standardized
variables to eliminate scale differences. Interaction terms are
generated through central multiplication to reduce
multicollinearity. All continuous variables were mean-
centered before creating interaction terms to reduce
multicollinearity. VIFs for the full model: IoT (1.89), Edge
(2.13), IoT x Edge (2.34), Complexity (1.67), IoT x Edge x
Complexity (3.17), all below 5. The IoTxEdge interaction term
quantifies the closed-loop synergy by measuring whether the
IoT marginal effect on resilience increases when edge
computing is deployed at a higher level, operationalizing the
mechanism of “perception-analysis-response” through
conditional effects analysis (Equation 4). Variable operational
definitions and measurement sources are detailed in Table 2.

Table 2 systematically lists the concept definitions,
specific measurement methods, and data-acquisition
channels for each variable, providing a complete operational
path for the reproducibility of the research. In particular, the
construction method of technical synergy variables reflects
the contribution of this research to measurement innovation.

2.4 Analytical method

In the current study, a mixed-methods approach
integrating hierarchical regression analysis and structural
equation modeling was employed to test theoretical
hypotheses and comprehensively examine mechanisms of
technological synergy. Research on the information
technology transformation process of manufacturing
enterprises illustrates that the structural equation model is
capable of effectively and accurately distinguishing direct
effect, indirect effect, and regulatory effect [18]. The process
of analysis consisted of three stratified levels: descriptive
statistics and correlation analysis to validate the distribution
features and preliminary correlation between variables,
hierarchical regression analysis to examine core hypotheses
by adding control variables, main effect terms of independent
variables, interaction terms, and moderating terms
sequentially, and robustness check to validate the reliability
of conclusions with the help of instrumental variable
approach, subsample analysis, and surrogate index test. To
interpret interaction effects, simple slope analysis calculates
conditional slopes via:

SCR = 3, + BloT + 3,Edgecondition + B,(IoT x Edgecondition) ~ (4)

The regression analysis followed a nested logic, in which
the baseline model contained only control variables to define
the baseline of explanation capability, the main effect model
sequentially incorporated IoT and Edge Computing to
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examine their independent effects, the interaction effect
model added the interaction term to validate synergy, and the
full model considered regulatory variables to examine
boundary conditions. The general equation form of the
regression equation is:

SCR; = By + p1Controls; + B,10T; + f3Edge; + Bo(IoT X
Edge); + fsModerators; + f¢(IoT X Edge X
Moderators); + ¢; (5)

where SCR; is supply chain resilience for firm i; Controls;
includes firm size, supply chain length, and region;
Moderators; includes complexity and industry type; ¢; is the
error term. The third-order terms test H4 and H5:

(I0T x Edge x Complexity); (B=0.118, P<0.01) and
(I0T x Edge X Industry); , reported in Table 5 Model 5. The
structural equation model examines technological synergy
effects on resilience across dimensions. The measurement
model tests the fit of the latent variable through Confirmatory
Factor Analysis, whereas the structural model focuses on the
path coefficients and total effects. The model fit indices
indicated acceptable fit: x2/df=2.37, CFI=0.946, TLI=0.938,
RMSEA=0.062, SRMR=0.048, all at or below recommended
thresholds (see Table 4 Panel C for details). Robustness tests
include three aspects: instrumental variables method based
on the regional average adoption rate of technology control,
endogeneity using two-stage least squares techniques. Its [V
validity is assessed through: (1) relevance test-first-stage
F>10; (2) exclusion restriction-the regional rates affect the
firm adoption but do not directly affect resilience since
regional policies target technology diffusion and not
operational outcomes; (3) overidentification test, Hansen J-
statistic. Sub-sample analysis to test synergy effect
consistency across enterprises and regions; and alternative
index testing to examine whether the results of resilience
measurement are affected. For outlier detection, we applied
multiple complementary criteria: standardized residuals
>+3.5 SD, Cook's D >4/n, and DFITS >2v/(k/n). This multi-
criteria approach balances sensitivity and specificity. For
transparency, we report both: baseline Model 4 (full sample,
n=892) and Model 1 (outliers excluded, n=24 removed, 2.7%).
Coefficients remained stable (IoT x Edge: 3=0.176 vs. 0.184,
<5% change), confirming robustness to influential
observations. All model analyses were conducted using Stata
17.0 and Mplus 8.3 software. The significance level was set at
P<0.05, with robust standard errors clustered at the
enterprise level.

3. Results
3.1 Descriptive statistics and correlation analysis

A descriptive statistical analysis of 892 sample
enterprises examines the distributional characteristics of
variables to ensure the reliability of parameter estimates.
Correlation analysis uses Pearson coefficients, while VIF
analysis (cutoff=10) assesses multicollinearity risks. Supply
chain resilience averaged 3.68 (SD=0.92), indicating
moderate but uneven levels. [oT application averaged 3.41
(SD=1.07), while edge computing averaged 2.87 (SD=1.13),
reflecting higher technical requirements for distributed
computation. The supply chain complexity included 47 direct
suppliers, 3.8 logistics tiers, and 6.2 country/region coverage,
confirming modern SC complexity. As shown in Table 3 Panel
A, supply chain resilience averaged 3.68 (SD=0.92), IoT
application averaged 3.41 (SD=1.07), and edge computing
averaged 2.87 (SD=1.13). Table 3, Panel B, presents the
correlation matrix, with correlations ranging from 0.39 to
0.62.
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Table 2. Variable definitions, measurement indicators, and data sources

Variable Type Variable Name Conceptual Definition Measurement Calculation Data Source
Indicator Method/Scale
Dependent Supply Chain The ability of the supply Comprehensive 3 Multi-source integration
. b ' Tt SCR=3"w,-Z,
Variable Resilience chain to warn, respond, and resilience index e
recover from disruptions
Early Warning Ability to identify supply Days of advance Actual value (days) Corporate annual
Capability chain disruption risks in detection for reports
advance disruption events
Response Speed Stability in responding to Coefficient of CV=oc/ y7, Bloomberg Database
demand fluctuations variation in order
delivery cycle
Recovery Ability Speed of resuming normal Time to recover Quarterly financial data Bloomberg Financial
operations after disruption revenue to pre- analysis (months) Data
shock level
Independent IoT Application Breadth and depth of IoT Composite indicator Equal-weighted sum of MIIT Digital
Variables Degree technology deployment in three dimensions Development Data Map
supply chain
Device Intensity of [oT device Standardized Z-score standardization MIIT Digital
Deployment investment devices/100 Development Data Map
Density employees
Node Coverage Breadth of technology Nodes with Percentage Enterprise Surveys
Rate application IoT/Total nodes x
100%
Data Collection Depth of technology Real-time collected Percentage Corporate technology
Ratio application data/Total data x reports
100%
Edge Computing Scale and maturity of edge Composite indicator | Factor analysis MIIT Digital
Deployment Level computing deployment in dimensionality reduction Development Data Map
supply chain
Edge Node Computing resource Standardized edge Z-score standardization MIIT Digital
Quantity distribution density nodes/SC tiers Development Data Map
Local Processing Edge computing penetration Edge-processed Percentage Corporate technology
Ratio degree data/Total data x reports
100%
Edge-Cloud Sophistication of distributed Technology 5-point Likert scale Gartner Technology
Synergy Maturity computing architecture maturity rating Rating
Moderating Supply Chain Structural complexity of Composite indicator | Weighted combination Multi-source integration
Variables Complexity supply chain network
Number of Breadth of supply network Number of first-tier Actual value Bloomberg Supply Chain
Suppliers suppliers Data
Logistics Tiers Depth of supply chain Tiers from raw Actual value World Bank LPI
materials to finished Database
products
Geographic Spatial distribution Number of Actual value Enterprise Surveys
Dispersion complexity countries/regions
with suppliers
Industry Type Primary industry category of Dummy variable Manufacturing=1, Binary classification
the firm Service=0
Control Firm Size Operational scale of the firm Dual-dimension Logarithmic value Multi-source integration
Variables indicator
Employee Size Human resource scale In(Total employees) Natural logarithm Enterprise Surveys
Asset Size Capital scale In(Total Natural logarithm Bloomberg Database
assets/Million CNY)
Supply Chain Vertical span of supply chain Number of tiers Tiers from raw materials Actual value
Length structure to final products
Region Geographic location of the Dummy variable Eastern region=1, Binary classification
firm Others=0
Interaction Technology Interaction between IoT and Product term JToT x Edge Generated after
Terms Synergy Effect edge computing centering
IoT x Edge Core interaction term Product of centered (IoT —1oT) Computed generation
variables (Edge - Edge)
IoT x Edge x Three-way moderation term Three-variable Product of three centered Computed generation
Complex interaction terms
IoT x Edge x Industry moderation term Industry difference Interaction term x Computed generation
Industry in technology Industry dummy
synergy
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Table 3. Descriptive statistics and correlation matrix

Panel A: Descriptive statistics

February 2026] Volume 05 | Issue 01 | Pages 324-336

Variable N Mean SD Min Max VIF

1. Supply Chain Resilience (SCR) 892 3.68 0.92 1.24 5.00 -

2. 10T Application Degree (IoT) 892 3.41 1.07 1.00 5.00 1.89

3. Edge Computing Deployment (Edge) 892 2.87 1.13 1.00 5.00 2.13

4.10TxEdge 892 0.00 2.86 -6.42 7.15 2.34

5. Supply Chain Complexity (Complexity) 892 3.52 0.88 1.50 5.00 1.67

6. Firm Size (Size) 892 7.34 1.15 4.82 10.26 1.43

7. Supply Chain Length (Length) 892 3.78 1.24 1.00 7.00 1.31

8. Region (Region) 892 0.61 0.49 0.00 1.00 1.18
Panel B: Correlation matrix

Variable 1 2 3 4 5 6 7 8

1.SCR 1.000

2. 10T 0.457*** 1.000

3.Edge 0.392%** 0.623*** 1.000

4.10TxEdge 0.523%** 0.254%* 0.281%** 1.000

5. Complexity 0.286*** 0.347%** 0.297*** 0.218** 1.000

6. Size 0.234** 0.312%* 0.279%** 0.167* 0.245%* 1.000

7. Length -0.128* -0.093 -0.076 -0.112 0.203** -0.067 1.000

8. Region 0.187** 0.226%* 0.198** 0.143* 0.104 0.189** -0.082 1.000

Among the main variables, [oT and Edge were most
strongly correlated, at r=0.623 (P<0.001), indicating
technological complementarity rather than conceptual
redundancy since they measure different constructs, namely
data acquisition versus data processing. The moderate to high
correlations stem from independent data sources-loT/Edge
from MIIT and Resilience from Bloomberg-reducing common-
method bias. This is also confirmed by Harman's single-factor
test: the first factor explained 36.7% (<50%; see Table 4 Panel
D). Figure 2 presents uncentered marginal effects to help
interpret interactions. Finally, VIF values below 2.5 rule out
multicollinearity. Interaction terms showed higher but
acceptable VIF values: IoT x Edge (VIF=2.34), loTxEdge x
Complexity (VIF=3.17), all below the threshold of 5.

Table 3 Panel B reveals core variables demonstrated
positive correlations ranging from r=0.392 to 0.623,
supporting the expected theoretical hypothesis directions.
The correlation between Internet of Things and Edge
Computing was 0.623 (P<0.001), establishing both a technical
collaboration basis and construct independence between
these variables. All VIF diagnostic test values remained below
2.5, confirming the complete absence of multicollinearity
issues and ensuring stable and reliable regression parameter
estimates in the analytical model.

3.2 Measurement model verification

Measurement model reliability and validity were
assessed following two-step structural equation modeling
procedures. In Table 4 Panel A, reliability analysis employed
Cronbach's a and composite reliability (CR), with supply
chain resilience achieving «=0.876 and CR=0.882, IoT
application a=0.891 and CR=0.894, and edge computing

a=0.833 and CR=0.841, all exceeding the 0.70 threshold.
Convergent validity was confirmed through AVE values
(SCR=0.653, 10T=0.738, Edge=0.652, all >0.50) with factor
loadings ranging from 0.776 to 0.878. As presented in Table 4
Panel B, Discriminant validity met Fornell-Larcker criteria
with  VAVE (0.808-0.859) exceeding inter-construct
correlations (0.392-0.623). CFA demonstrated acceptable
model fit (Table 4 Panel C: x2/df=2.37, CF1=0.946, TLI=0.938,
RMSEA=0.062). As reported in Table 4 Panel D, Harman's
single-factor test indicated no serious common method bias
(36.7% variance explained, <50% threshold). Also, HTMT
ratios verified discriminant validity: IoT-Edge 0.71, IoT-SCR
0.52, Edge-SCR 0.45-all below the threshold of 0.85. These
results from the measurement model in Table 4 establish
construct validity before the estimation of the structural
model and hypothesis testing in Methodology 3.3. Table 4
consolidates all measurement model assessment results.

In Table 4, the discriminant validity test revealed that the
VAVE (0.808 to 0.859) of every latent factor was larger than
the correlation coefficient between constructs (.392 to .623),
thus ensuring full independence between constructs. The fit
criteria of the CFA model are x2/df = 2.37, CFI = 0.946, TLI =
0.938, RMSEA = 0.062, which were in accordance with the
guidelines. The Harman test accounted for 36.7% of the
explained variation in the first factor, while there was no
serious threat of common method bias.

3.3 Hypothesis testing results

Hierarchical regression with five nested models tested
main effects, interactions, and moderation. Model 1 (baseline
controls) yielded R?=0.089.
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Table 4. Reliability and validity test results of the measurement model

Panel A: Reliability and convergent validity
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Latent Variable Measurement Item Factor Loading | Cronbach's a CR AVE
Supply Chain Resilience (SCR) 0.876 0.882 0.653
Early Warning Capability | 0.834
Response Speed 0.812
Recovery Ability 0.776
IoT Application Degree (IoT) 0.891 0.894 0.738
Device Deployment 0.865
Density
Node Coverage Rate 0.878
Data Collection Ratio 0.834
Edge Computing Deployment 0.833 0.841 0.652
(Edge)
Edge Node Quantity 0.801
Local Processing Ratio 0.823
Edge-Cloud Synergy 0.827
Maturity
Panel B: Discriminant validity (fornell-larcker criterion)
Variable SCR IoT Edge
SCR 0.808
[oT 0.457 0.859
Edge 0.392 0.623 0.807
Panel C: Model fit indices
Fit Index Value Recommended Threshold Assessment
x2/df 2.37 <3.0 v Acceptable
CFI 0.946 >0.90 v Good fit
TLI 0.938 >0.90 v Good fit
RMSEA 0.062 <0.08 v Acceptable
SRMR 0.048 <0.08 v Good fit
Panel D: Common method bias test
Method Result Interpretation
Harman's Single-Factor The first factor explains 36.7% of the variance < 50%, no serious common method bias
Test

To isolate individual technology effects, Model 2 added
only IoT ($=0.341, P<0.001, AR2=0.176 over Model 1), thus
supporting H1l. Meanwhile, Model 3 added only edge
computing ($=0.287, P<0.001, AR2=0.152 over Model 1),
therefore confirming H2. Model 4 included both technologies
and their interaction term (p=0.176, P<0.001, R2=0.412,
AR2=0.147), thus validating H3 about the mechanism of [oT-
edge computing synergy. Model 5 included the three-way
interaction term with supply chain complexity as a
moderator, demonstrating significant moderation effects and
providing comprehensive evidence for the hypothesized
technological synergy mechanisms in enhancing supply chain
resilience. The full regression results for all five nested
models are reported in Table 5.

Table 5 presents the multiple-level model of technology-
enabled resilience, in which R? values progress from 0.089 to
0.448, and R? increases to 0.147 after adding interaction
terms, demonstrating the significance of the interaction
effect.
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The coefficients for [oT and edge computing decrease
after adding interaction terms, consistent with the
assumption that interaction effects reduce the main effects to
some extent. The hypotheses are supported by empirical
evidence. To comprehensively interpret the dynamic
interaction effect, simple slope analysis was conducted
following Aiken and West's (1991) approach. Edge computing
deployment levels were stratified into three categories: 25th
percentile (low level: 2.13), 50th percentile (medium level:
2.87), and 75th percentile (high level: 3.68), representing
diverse technological maturity stages across the sample
distribution. Conditional slopes for 10T effects on supply chain
resilience were calculated using Equation 4. Results showed
that at low edge computing levels, $=0.29 (P<0.001); at
medium levels, $=0.42 (p<0.001, 44.8% increase); and at high
levels, B=0.50 (P<0.001, 72.4% increase). This gradual
increase shows the trend in the technology synergy
mechanism, in which the ability to process information

1



Zhicheng Yu & Zhixin Yu /Future Technology

significantly underscores the role of real-time sensing in
resilience.

Table 5. Hierarchical regression results: main, interaction, and
moderating effects

Variable Model1 | Model2 | Model 3 | Model 4

Model 5

Control Variables

Firm Size 0.123* [ 0.098* | 0.089* | 0.076* 0.071*
(0.041) | (0.038) | (0.039) | (0.035) (0.034)

Supply Chain | -0.087** | -0.065* | -0.058 | -0.042 -0.039
Length (0.038) | (0.035) | (0.036) | (0.032) (0.031)
Region 0.156* | 0.134** | 0.128"* | 0.112** | 0.105**

(Eastern=1) | (0.042) | (0.039) | (0.040) | (0.036) (0.035)

Main Effects

IoT — 0.341%* | — 0.278%** 0.265%**

Application (0.043) (0.046) (0.045)

Degree (IoT)

Edge — — 0.287*** | 0.219%** 0.203***

Computing (0.045) (0.047) (0.046)

Deployment

(Edge)

Interaction Effect

IoT x Edge — — — 0.176*** 0.167***
(0.041) (0.040)

Moderating Effects

Supply Chain | — — — — 0.089*

Complexity (0.037)

(Complexity)

IoT x Edge x | — — — — 0.118**

Complexity (0.043)

Model Statistics

R? 0.089 0.265 0.241 0.412 0.448

AR? — 0.176*** | 0.152%** | 0.147*** 0.036**

F-value 28.67%** | 79.43%%* | 70.18%** | 119.64*** | 106.82***

N 892 892 892 892 892

Figure 2 illustrates the results of the slope analysis, with
three curves representing the low, medium, and high levels of
edge computing, indicating that as edge computing maturity
increases, the marginal effect of [oT on supply chain resilience
is continuously amplified.

Figure 2 presents the interaction effects via simple slope
analysis across three levels of edge computing deployment
stratification. At the 25th percentile (low: 2.13), IoT's effect
on resilience exhibited B=0.29 (P<0.001); at the 50th
percentile (medium: 2.87), the coefficient increased to =0.42
(P<0.001, representing 44.8% enhancement); at the 75th
percentile (high: 3.68), the effect reached $=0.50 (P<0.001,
reflecting 72.4% amplification). The fan-shaped divergence
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pattern demonstrates that edge computing capabilities
progressively strengthen IoT's resilience-enhancing effects,
validating the technological synergy mechanism.

5| Slopeincrease: 44.8% (Low to Medium)
Slope increase: 72.4% (Low to High)

Supply Chain Resilience

------ Edge Computing: Low Level (beta=0.29***)
== Edge Computing: Medium Level (beta=0.42***)
2.5 Edge Computing: High Level (beta=0.50"")

T T T T T T T
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
loT Application Degree

Figure 2. The synergy of IoT and edge computing: a simple slope
analysis

To examine synergy benefits, the study divided samples
at the median into high-complexity and low-complexity
groups (n=446 each). Model 4 regression revealed
significantly stronger interaction effects in high-complexity
settings ($=0.253, P<0.001) versus low-complexity settings
(B=0.107, P<0.05), confirmed by the Chow test. Figure 3
illustrates technology synergy intensity differences: panel (a)
displays  fan-like  divergence in  high-complexity
environments, while panel (b) shows parallel patterns in low-
complexity contexts. These findings validate the supply chain
complexity's critical moderating role in the technology
synergy process, demonstrating enhanced benefits in
complex operational environments. In Figure 3, the
interaction effects on various levels of complexity are
contrasted via simple slope analysis. Subplots (a) reveal fan-
shaped divergence in the high complexity condition with
3=0.253*** while subplot (b) depicts parallel profiles in the
low complexity condition with $=0.107* in the low
complexity context, substantiating the premise that
complexity acts as a crucial boundary condition in
demarcating interaction effects on the graph.

3.4 Robustness check

Robustness tests addressed endogeneity, sample
heterogeneity, and measurement errors by using
instrumental variables regression based on regional
technology adoption rates. First-stage F-statistics: IoT
(F=41.3) and Edge (F=38.6), both considerably above the
threshold of 10, indicating strong instruments. Sanderson-
Windmeijer conditional F-tests: [oT (F=37.8), Edge (F=34.2).
Hansen J-statistic=2.14 (P=0.34), failing to reject instrument
validity. These results validate the 2SLS approach. Results
showed 10T B=0.329*** Edge =0.274*** and IoT x Edge
=0.169**, with coefficients deviating less than 6% from
baseline model 4. Subsample analyses confirmed consistent
synergies across firm sizes (large corporations =0.192***
SMEs (=0.154**) and geographic regions (eastern areas
=0.186***).
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Table 6. Robustness tests and additional analyses
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Variables Model 1 Exclude Model 2 Alternative SCR Model 3 Large Firms Model 4 Small
Outliers Measure Subsample Firms Subsample
[IoT Application Degree 0.328*** (0.043) 0.312***(0.048) 0.341*** (0.061) 0.305*** (0.058)
Edge Computing 0.215***(0.038) 0.227***(0.041) 0.239*** (0.052) 0.198** (0.054)
IoT x Edge 0.184*** (0.032) 0.176*** (0.035) 0.206*** (0.047) 0.159** (0.049)

Supply Chain Complexity

0.142** (0.041)

0.138** (0.044)

0.167** (0.056)

0.121* (0.051)

IoT x Edge x Complexity

0.118** (0.036)

0.109* (0.039)

0.135* (0.051)

0.096* (0.047)

Control Variables v v v v
Industry Fixed Effects v v v v
Region Fixed Effects v v v/ v
Sample Size (N) 868 892 523 369
R? 0.581 0.548 0.598 0.536
Adjusted R? 0.512 0.530 0.579 0.512
F-statistic 47.32%** 41.85%*** 32.67%* 28.41%**
(a) High Supply Chain Complexity Table 6 demonstrates that the technological synergy
- o ] effect remains statistically significant and robust to
8 5 1 Interaction: beta=0.253 ’ s endogeneity concerns, sample variation, and measurement
ch 7 method differences. Interaction term values consistently
= 4.5 - range from 0.154 to 0.192, with all P-values below 0.01. The
3 robust consistency of these results convincingly confirms that
X 44 findings are not statistical artifacts and that the technology
£ collaboration mechanism exhibits strong theoretical
E 3.5 universality across diverse analytical contexts.
o~ . . 4. Discussion
> ~ IR ) . . . . .
o 3 .-t“"-'-'-'-'-'-“Edge Computing: Low Level This study employed hierarchical regression and simple
g' Sl ~——Edge Computing: Medium Level slope tests to validate the independent and synergistic effects
n = ==Edge Computing: High Level of Internet of Things and edge computing on supply chain
2.5 T T . . resilience. The empirical results offer new insights into

2 15 1 05 0 0.5 1 1.5 2
loT Application Degree

(b) Low Supply Chain Complexity

8 5 - Interaction: beta=0.107*
S ,
= 4.5 - , 7
()
[)
X 4-
£
2
0 3.5 | ¢‘n';u‘""..‘
_> .
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Figure 3. Moderating effect of supply chain complexity on technology
synergy

supply chain resilience. The adoption of IoT technology has a
significantly positive effect on organizational supply chain
resilience (B8 = 0.341, P < 0.001), thereby validating the
theoretical assumption that real-time perception technology
enhances organizational agility by improving information
transparency. This result aligns with the conclusions of a
logistics industry case study, which demonstrated that
integrating Radio Frequency Identification (RFID) and sensor
networks significantly extended the early warning window
for supply chain disruption risks [19]. Edge Computing shows
substantial direct effects (S = 0.287, P < 0.001),
demonstrating that distributed computing technology
supports supply chain resilience by eliminating decision-
making delays. These results complement theoretical studies
on blockchain-based edge computing architecture in the [oT
application setting industry, which confirmed that the data
processing capabilities of the local edge node significantly
reduce transaction confirmation time [20].

A framework study on Industry 4.0 and supply chain
sustainability has revealed critical implementation challenges
in achieving technological synergy, as organizations fail to
apply data governance effectively across different
technological platforms despite recognizing the importance
of technology to supply chain resilience [21]. The solution to
the bottleneck presented in the study on synergy effect
application in this work (f = 0.176, P < 0.001) fills this
knowledge gap. The empirical verification of the
technological synergy effect constitutes the most pivotal
theoretical contribution of this study. With an interaction
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term coefficient of B = 0.176 (P < 0.001) and fan-shaped
divergence observed in the simple slope test, the inherent
mechanism is clearly identified, whereby the Internet of
Things (IoT) and edge computing technologies complement
each other and enhance operational efficiency within the
"real-time perception - edge analysis - rapid response" loop.
Furthermore, this study demonstrates that as the level of edge
computing implementation gradually increases from low to
high, the resilience-enhancing effect of 10T is significantly
amplified by 72.4%. The amplification factor arises from the
complementarity of technology, where 1oT addresses data
integrity and edge computation overcomes the limitations of
handling emergency response scenarios in the conventional
cloud-computing model. Additionally, it provides
simultaneous optimization of information flow and decision
flow processes [22].

The feasibility and efficiency of the aforementioned
mechanism in complex supply chain networks have been
further validated through subsample analyses. The data show
marked differences in the intensity of interaction effects
between high-complexity subsets (§ = 0.253, P < 0.001) and
low-complexity subsets (f = 0.107, P < 0.05). This finding
aligns with the existing literature on supply chain network
risk prediction using machine learning algorithms, which
indicates that in environments characterized by high
uncertainty, integrating edge intelligence technology with IoT
sensors substantially enhances prediction accuracy [23]. The
intensity of the technological synergy effect shows significant
industrial heterogeneity. The interaction terms in the
manufacturing industry ( = 0.227, P < 0.001) are higher than
in the logistics industry (8 = 0.121, P < 0.05). This can be
associated with the level of technological maturity, where the
manufacturing industry has fully embraced Industry 4.0
technology, while service-related industries remain in the
technology experimentation phase. This shows that
technology promotion policy should avoid a one-size-fits-all
approach across industries, thereby preventing the
misallocation of resources.

Based on the dynamic capability theory, the
collaborative mechanism mainly shows that it is in
technological resource reconfiguration that organizations
exhibit “perception-grasping-reconstruction” capability, and
breakthrough achievements. The combined theoretical
studies on digital twin technology and disruption
countermeasures in supply chain management offer
additional explanations on the micro-mechanism level: “loT
data streams provide high-fidelity inputs to the digital twin
models, and the edge computation capability for local
simulation supports the efficient iteration of deduction and
optimization” [24]. The large-scale quantitative verification
shows that the intensity of the collaborative model is greater
in the manufacturing industry than in the service industry,
which can be attributed to higher physical properties and
node interdependency inherent in the former industry. The
study on artificial intelligence and machine learning applied
to post-disruption supply chain resilience showed that the
state-of-the art technological collaborative model combines
machine learning algorithms with edge computation nodes.
This integration enables autonomous learning from historical
disruption patterns, thereby enhancing decision-making
regarding optimized response mechanisms [25]. The
predictive and optimization capabilities of digital twin
technology in dynamic supply chain management define the
state-of-the-art technology integration principles proposed in
this study, which corresponds to the collaborative process
described in the previous section on theories and models [26].
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Research on the application of machine learning to supply
chain risk prediction and management has demonstrated the
real-time advantages of edge intelligence for anomaly
detection, explaining why edge computation is superior for
speed in such tasks [27].

Robustness and Limitations After addressing
endogeneity through employing instrumental variables, the
robustness of the core findings is confirmed, with the key
effect remaining statistically significant (§ = 0.169, P < 0.01).
Subgroup analyses further demonstrate the universality of
the technological synergy effect across firms of varying sizes
and geographic locations. Nevertheless, there are
considerable constraints: while methods of public data
measurement are unaffected by ethics, the microscopic
aspects of technology application are difficult to identify and
quantify, particularly given the five-year research timeframe
focused on Al-driven supply chain resilience in logistics
management and related technology empowerment effects.
Consequently, further quantitative research is needed to
explore the boundary conditions of the observed effects [28].
Best-practice analyses of [oT implementation in supply chain
management specifically emphasize the importance of
technology compatibility for synergy effectiveness [29].
While this study does not directly test and validate mediating
hypotheses, it provides an empirical basis for future theory
refinement. The studies on the roadmap for digital supply
chain resilience have revealed complexities in prioritizing
technology implementation amid constraints on investment
budgets [30]. The current study's synergy outcome provides
a quantitative basis for enterprise resource allocation
decisions to prioritize the implementation of IoT and edge
computing together rather than making large-scale, isolated
investments in individual technologies.

5. Conclusion

Based on dynamic capability theory, this study develops
an integrated model to examine the synergistic effects of [oT
and edge computing on supply chain resilience. Quantitative
analysis was conducted using multi-source open data from
892 enterprises. Results revealed significant positive
relationships between 10T, edge computing, and resilience (8
= 0.341, g = 0.287, P < 0.001), with a significant positive
interaction effect (f = 0.176, P < 0.001). Specifically, as the
level of edge computing implementation increases from low
to high, the positive effect of [oT on supply chain resilience is
significantly accentuated by 72.4%. The collaborative
mechanism is most pronounced in high-complexity supply
chains and the manufacturing industry. This study
investigates the synergistic process among "real-time
perception,” "edge analysis," and "rapid response” in a closed
loop, and highlights theoretical gaps in the mechanisms of
technology interaction. It identifies how supply chain
complexity and industry category regulate these effects. In
practice, the study provides data-driven guidance for
enterprises regarding their technology investment priorities,
with particular emphasis on the coordinated deployment of
IoT and edge computing technologies. It also provides
empirical evidence for policymakers in formulating
differentiated technology promotion strategies. Future
research should dynamically track synergistic mechanisms
over time and employ Al or digital twins to examine multi-
dimensional synergy effects across broader contexts.
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