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Deep Vein Thrombosis (DVT) demonstrates considerable treatment response
heterogeneity, with 40-60% of patients developing complications despite
standard anticoagulation therapy. Accurate prediction of individual treatment
outcomes remains an unmet clinical need. This study develops and validates a
machine learning-based model to predict symptom Improvement Rate (IPR)
using retrospective data from 403 hospitalized DVT patients (2018-2023). Six
predictive features are identified using Random Forest-based Recursive
Feature Elimination (RFE): age, white blood cell count, Activated Partial
Thromboplastin Time (APTT), Thrombin Time (TT), surgical intervention
status, and baseline symptom severity. The regularized eXtreme Gradient
Boosting (XGBoost) algorithm achieves optimal performance with a test
coefficient of determination (R?) of 0.60, Root Mean Square Error (RMSE) of
12.36, and five-fold cross-validation R* of 0.58 + 0.07. SHapley Additive
exPlanations (SHAP) analysis reveals that APTT and surgical intervention are
the strongest predictors of treatment response. The validated model is
deployed as a publicly accessible web-based clinical decision support tool,
enabling real-time outcome prediction at the point of care. This research
establishes a practical framework bridging predictive analytics and clinical
practice, facilitating evidence-based, personalized DVT management strategies.

1. Introduction

between 40% and 60% of DVT patients still have a risk of
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DVT = Deep Venous Thrombosis (DVT) refers to deep
vein thrombosis, a type of venous system disease. Most often,
it occurs in deep veins. It is mainly in the deep veins of the
limbs, especially the lower extremities, and can extend to the
pelvic veins and the lower half of the inferior vena cava [1].
DVT’s incidence among hospitalized patients rises
considerably, reaching 100 - 200 for every 100,000 persons
yearly all over the world, with much higher numbers in
certain populations, post-surgical patients (2-3%), critically
ill patients (5-10%), and those with malignancies (4-20 %) [2-
4]. The classical presentation includes unilateral limb
edema/pain, erythema, and warmth; however, ~30% are
clinically silent until complications [5,6]. Mature
anticoagulation therapy protocols have been established,
including low-molecular-weight heparin, direct oral
anticoagulants, and vitamin K antagonists. However, there are
still considerable differences in individual responses to the
therapy, which are related to different genetic variations,
comorbidities, and interactions with the medicine [7,8].
Clinical evidence shows that after standard treatment,
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complications like post-thrombotic syndrome. The symptoms
of this syndrome include chronic leg pain, swelling, skin
changes, and, in the worst cases, venous ulcers, all of which
can seriously reduce a person's quality of life and use more
medical resources [9]. This heterogeneity necessitates early
identification of treatment-resistant patients to enable timely
intervention with advanced therapies, including catheter-
directed thrombolysis, mechanical thrombectomy, or
extended anticoagulation regimens [10]. In recent years,
machine learning technology has made great progress in the
field of health care, especially in predicting disease prognosis
and evaluating symptom improvement [11]. The traditional
treatment response assessment for DVT mainly relies on
clinical experience and single-parameter judgment, without
sufficient consideration of individual patients and
multidimensional clinical data [12,13]. Machine learning
algorithms include the demographic aspect of laboratory
results, images, and therapy, and produce better forecast
models. Studies demonstrate that machine learning
approaches outperform conventional statistical methods in


mailto:ymlim@utar.edu.my
https://doi.org/10.55670/fpll.futech.5.1.22
https://fupubco.com/futech

N. Zhou et al. /Future Technology

predicting thrombotic events [14, 15]. The goal is to develop
a machine learning-based prediction model to assess the
response of DVT treatment with regard to symptom
improvement rate among hospitalized DVT patients. We
incorporate patients' clinical characteristics, laboratory
parameters, and treatment parameters to construct a multi-
dimensional model. The model aims to accurately predict an
individual patient's treatment improvement rate to assist
clinicians in personalizing treatment plans. Furthermore, this
study identifies key factors influencing symptom
improvement, providing evidence-based guidance for
therapeutic optimization.

2. Methods
2.1 Research design

This study was conducted in accordance with the
TRIPOD statement. The completed TRIPOD checklist is
provided as Supplementary File 2. This retrospective
observational study utilizes real-world data from the
comprehensive hospital information system of [Masked for
blind review] to evaluate treatment outcomes in patients
diagnosed with DVT from 2018 to 2023. Specific inclusion and
exclusion criteria were applied to ensure data completeness
and relevance. Inclusion criteria: (1) DVT is the main
diagnosis in medical records; (2) complete medical records
required for the study are available. Complete medical
records were defined as containing: (1) ultrasound-
confirmed DVT diagnosis; (2) baseline and discharge
symptom scores; (3) laboratory data within 24 hours of
admission; (4) therapeutic intervention records; and (5)
documented outcomes. Planned diagnostic and treatment
procedures referred to completion of the institutional
protocol without premature discontinuation. Exclusion
criteria: (1) Incomplete planned diagnostic and treatment
procedures during hospitalization due to reasons such as
transfer or treatment abandonment; (2) Unavailable data on
confounding factors in medical records due to attending
physician resignation or retirement.

Between January 2018 and December 2023, 658 patients
were identified. After excluding 215 patients (150 incomplete
records, 65 transfers), 443 remained eligible. Subsequently,
40 patients with missing confounding variables were
excluded, leaving 403 patients in the final cohort (Figure 1).
Cases meeting these criteria were systematically entered into
an electronic data collection form designed specifically for
this study. The data collection protocol encompasses a
comprehensive set of variables (Supplementary File Table 1),
including: patient hospitalization identification number
(utilized solely for Source Data Verification purposes),
demographic characteristics, hematological and coagulation
function parameters assessed on the initial day of admission,
duration of symptoms before admission, ultrasound-
confirmed thrombus localization, admission Wells score,
history of DVT and associated comorbidities, therapeutic
interventions for DVT and concomitant conditions
(encompassing both  pharmacological and physical
modalities), surgical management strategies and a reference
Diagnostic and Efficacy Criteria for Deep Venous Thrombosis
of the Lower Extremities (Revised in 2015) symptom
quantification assessment (Supplementary File Table 1) [16].
All patient identifiers were removed prior to analysis. Data
extraction and de-identification were performed by
personnel independent of the analytical team. This study was
approved by the Ethics Committee of The Sun Simiao Hospital
of Beijing University of Chinese Medicine (Approval number:
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SSMYY-KYPJ-2023-011). It conforms to the ethical standards
of medical research.
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Figure 1. Sequential patient selection flow diagram

2.2 Data preprocessing and exploratory analysis

Key variables included demographic data (age, sex),
laboratory parameters (WBC, APTT, TT), therapeutic
interventions, and symptom severity scores. Data cleaning
processes attended to natural missingness via systematic
imputation and deletion methods. Variables that had less than
30% missing values were subjected to KNN imputation. KNN
was implemented with k=5 neighbors using Euclidean
distance for numerical variables and Hamming distance for
categorical variables. Those above this figure were eliminated
to avoid any form of analytical bias. The 30% threshold
follows established guidelines for clinical prediction models.
No variables exceeded this threshold. The final six features all
demonstrated minimal missingness below the threshold.
Disease classifications were standardized using 1CD-10-CM
coding, and drug names were unified systematically (specific
formulations were converted to general names). The hospital
system used ICD-10-CM natively; no manual mapping was
required. Binary variables were coded as 0/1, ordinal
variables were retained with their natural ordering, and one-
hot encoding was avoided due to sample size constraints.
Continuous variables were standardized to avoid unit-based
changes. Descriptive statistics of the dataset characteristics,
with a summary of continuous variables including minimum
value, maximum value, and median value; and a summary of
categorical variables wusing frequency distributions.
Skewness, kurtosis, and the disparity ratio are computed to
evaluate the distribution of the data and identify potential
limitations of the models, laying the groundwork for
subsequent analytical activities.

2.3 Variable definition

This study used the Improvement Rate (IPR) to assess
symptom improvement. IPR = [(Day 1 symptom score -
discharge symptom score) / Day 1 symptom score)]| x 100%,
which indicates the percentage of symptom severity
reduction from onset to discharge. Symptom scores (0-12
points) were assessed using the 2015 DVT Diagnostic Criteria,
evaluating swelling, pain, skin changes, and function. Patients
with zero baseline scores were excluded; IPR was capped at
100%. This standard measurement allows objective
assessment of symptom resolution in the patient group.
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2.4 Model development and evaluation

The dataset was split 80 - 20 on the train-test sets. Five-
fold cross-validation was performed on the training set to
ensure robust performance estimation. A MinMax scaler was
applied to normalise the data to the range [0,1]. Feature
selection used the RFE from the random forest model,
checking model performance with 3-12 kept features to
determine the best feature set size. RFE employed Random
Forest with 100 estimators, using R? as the selection metric.
No significant multicollinearity was detected among retained
features (VIF < 5).

Four models were implemented: linear regression, SVR,
random forest and xgboost. Hyperparameter optimization
was conducted using the Optuna framework to optimize the
model. For XGBoost, the search space included: learning_rate
(0.01-0.3), max_depth (3-8), n_estimators (50-300),
subsample (0.6-1.0), colsample_bytree (0.6-1.0), reg alpha
(0-10), and reg lambda (1-10). Optimized parameters were:
learning_rate=0.01, max_depth=3, n_estimators=150,
subsample=0.8, colsample_bytree=0.8, reg_alpha=5.0,
reg_lambda=10.0. Early stopping with 30 rounds was applied
to prevent overfitting.

Model evaluation metrics included the coefficient of
determination (R?), Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Root Mean Squared Error (RMSE)
to evaluate the model’s performance across diverse modeling
strategies. Bootstrap resampling (1000 iterations) was used
to estimate 95% confidence intervals for all performance
metrics. Model calibration was assessed using calibration
plots (Figure 2). The calibration slope was 0.84, calibration-
in-the-large was 8.43, and the Brier score was 0.006,
indicating acceptable calibration with minor systematic bias.
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Figure 2. Calibration plot for XGBoost model

2.5 Model interpretation

SHAP (SHapley Additive exPlanations) analysis was
performed on the optimal performing model to explore
features. TreeExplainer was wused for SHAP value
computation, which is optimized for tree-based ensemble
methods including XGBoost. Values are calculated using
cooperative game theory and measure a feature's marginal
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contribution to model predictions by averaging the effects of
all possible feature combinations. It delivers both global
feature importance ratings and local understandability for
separate predictions. The SHAP framework assigns each
feature a value that reflects its importance for the model's
outputs. It shows how features interact and influence model
output without losing accuracy. It helps people see how
models make decisions. In this analysis of explainable results,
we gain essential knowledge of the patterns behind the
model's decisions, enabling us to transform those
mathematical results into useful information for clinics.

2.6 Model deployment

To make it easier for doctors to use, we made a simple
computer program using a tool called Gradio. This program is
like a window where doctors can see the results of our model
in a way that’s easy for them to understand. The interface was
deployed to the Hugging Face platform and is publicly
available to any healthcare practitioners. The model is
accessible at
https://huggingface.co/spaces/Curvature/DVT_Managemen
tSource code, trained model, and environment specifications
(Python 3.9, XGBoost 1.7.0, random seed 42) are available on
GitHub. Users must confirm healthcare professional status
before accessing. This deployment strategy overcomes
technical obstacles, allowing for immediate use of the model
without specialized programming skills. The whole project,
together with its source code and documentation, was
published under the MIT Ilicense, promoting open
collaboration and enabling everyone to freely modify and
distribute it. It ensures that the know-how is widely known,
so it can be easily used when caring for sick people,
connecting what researchers discover with how doctors
actually care for patients.

3. Results
3.1 Descriptive statistics

The study population comprised 403 patients with a
mean age of 61.32 + 14.84 years, and anthropometric
measurements were done for the same, with an average
height of 161.37 + 6.89 cm and weight of 61.43 + 10.77 kg.
Males accounted for 54.09% and females for 45.91%.
Comprehensive laboratory parameters revealed mean values
of WBC 9.90+2.15x10°/L, RBC 5.04+0.37x10'%/L, Hgb
15.03+1.07g/dL, PLT 165.20+64.74x10°/L, and HCT
45.10+1.42%, suggesting mild leukocytosis with otherwise
normal hematological profiles. Coagulation profiles showed
PT 13.29%#1.93s, INR 1.09+0.17, APTT 32.94+5.08s, TT
25.69+5.17s, Fibrinogen 3.53+£0.87g/L, D-dimer
12.30+4.91mg/L, and FDP 19.49+10.45mg/L, indicating
hypercoagulability with markedly elevated D-dimer and FDP
levels characteristic of venous thromboembolism.

Thrombus locations predominantly involved the
popliteal vein (55.58%), common femoral vein (52.36%), iliac
vein (45.16%), posterior tibial vein (43.92%), and inter-
muscular veins of the calf (37.97%). Percentages exceed
100% as patients frequently presented with multi-site
involvement, demonstrating extensive thrombosis of both
proximal and distal lower extremity vasculature. Therapeutic
Management was comprehensive. Enoxaparin 62.78% was
the most common medication, followed by Diosmin 44.67%,
and Rivaroxaban 37.22%. Treatment protocols followed
institutional guidelines; therapeutic variations were
accounted for in model development through inclusion of
intervention status as a predictor variable. Non-
pharmacological therapies were limb elevation at 30 degrees
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(73.70%), Bingxiao external application (46.65%), and
compression  stockings (35.73%). Most procedures
performed are Venography (70.97%), Therapeutic Treatment
(Thrombolysis, Thrombectomy) (70.47%), Filter
Placement/Retrieval ( 47.89%), Angioplasty / Stent (33.00).
The comorbidity analysis showed that essential hypertension
(28.54%), type 2 diabetes mellitus (14.64%), and other
venous disorders (11.91%) were the most common, with
13.65% of patients having no comorbidities. The occupational
distribution showed farmers (26.55%), unemployed
individuals (23.08%), and retired persons (11.41%) as the
major parts of the cohort, possibly indicating socio-economic
elements related to DVT creation and management.

3.2 Feature selection

RFE analysis was performed to improve feature
selection, and R? was evaluated across different feature
subsets. The R2 curve showed optimal performance between
6 and 8 features, with a maximum R2 of 0.58. 6 Key predictors
were selected. The final feature set comprised one
demographic parameter (age), three laboratory parameters
(white blood cell count, activated partial thromboplastin
time, thrombin time), one therapeutic parameter
(thrombolysis/thrombectomy), and one clinical parameter
(Day 1 symptom score). Feature definitions were as follows:
age (years), WBC (x10°/L), APTT (seconds), TT (seconds),
thrombolysis/thrombectomy (binary, 1=performed), and
Day 1 symptom score (0-12 points). These features were the
most influential predictors that kept the model efficient
(Figure 3).

R2 Score vs Number of Features

R2 Score

4 6 8 10 12
Number of Features

Figure 3. Feature selection optimization: R? performance analysis
across varying feature dimensions

3.3 Model evaluation

A comparison of the four machine learning models shows
different performances on both training and testing datasets.
The overall assessment of prediction accuracy via true-
versus-predicted scatter plots shows that XGBoost reached
the best alignment with the ideal diagonal line, meaning that
it has the strongest predictive ability and the least systematic
bias. After applying regularization to address overfitting,
XGBoost achieved a test R? of 0.60, RMSE of 12.36, and five-
fold cross-validation R? of 0.58 + 0.07. The second-best model
was Random Forest, and it had an R? of 0.573 and an RMSE of
12.77. The residuals were fairly spread out across all of the
predictions, but they were slightly more scattered than the
XGBoost model. On the other hand, both the Linear
Regression and Support Vector Machine models yielded much
worse results, with test R? values of 0.333 and 0.242,
respectively, indicating a poor ability to model the underlying
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pattern in the data. Their corresponding residual plots
showed obvious heteroscedasticity (Breusch-Pagan test,
p<0.05), especially in areas with high predictions, where large
deviations from the actual values were observed, suggesting
a systematic error in prediction that increases with the size of
the target. Detailed residual analysis again showed that
XGBoost has better prediction stability, with the most
concentrated and symmetrical residual distribution centered
on 0, few outliers, and consistent error variation across the
entire prediction range. This stability is quantified by
XGBoost’s test-set MAE of 7.82 and MSE of 152.80, the
smallest errors among all models. After regularization, the
gap between training R? (0.75) and test R? (0.60) was reduced
to 0.15, compared to 0.35 before regularization,
demonstrating effective mitigation of overfitting. This
improved generalization makes the model suitable for clinical
deployment. Random Forest showed a larger train-test gap
(training R? of 0.9396 versus test R? of 0.5729). Both the
quantitative performance metrics and the graphical
diagnostics from the scatter and residual plots support
selecting XGBoost as the best model to deploy in a clinical
setting for providing the most accurate predictions of
symptom improvement rate in DVT patients (Figure 4-7;
Table 1). Temporal validation was performed by training on
2018-2021 data and testing on 2022-2023 data, yielding
comparable performance (R?=0.61), supporting model
generalizability. Decision curve analysis demonstrated
positive net benefit across threshold probabilities of 30-70%,
indicating clinical utility compared to default strategies.

Table 1. Performance metrics comparison of machine learning
models for prediction across training and test sets

Model Dataset R? i‘l;(;:g MSE RMSE | MAE
XGBoost(re . 0.7500 | 0.58
gularized) Train N 0.07 104.05 10.20 6.85
Test 0.6000 - 152.80 12.36 7.82
Random . 0.52 +
Forest Train 0.9396 0.08 25.12 5.01 2.85
Test 0.5729 - 163.18 12.77 8.11
Linear Train | 04874 | %31% | 21331 | 1461 | 962
Regression 0.05
Test 0.3333 - 254.72 15.96 1%'5
. 0.22 + 10.9
SVM Train 0.3802 0.06 257.88 16.06 5
Test 0.2417 - 289.75 17.02 111'0

3.4 SHAP analysis

SHAP analysis showed different patterns of feature
importance and its impact on the model-predicted IPR. APTT
had the biggest impact on the model, with SHAP values going
between -15 and +15, high APTT values were associated with
lower [IPR predictions, which may reflect clinical
considerations regarding bleeding risk. Surgical intervention
(T&T) had a clear bimodal distribution. Positive T&T was
associated with greater IPR prediction (SHAP values +10 to
+15) as it indicated the benefit of early thrombus removal,
and negative T&T was associated with lesser IPR prediction
(SHAP values -10 to -15). WBC count had a moderate bilateral
impact: low counts (SHAP values -5 to 0) predicted good
outcomes by lowering inflammation, and high counts (SHAP
values 0 to +5) predicted poor outcomes.
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Figure 4. Linear regression: predictive accuracy assessment through
(a) true-predicted correlation, (b) residual distribution analysis
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analysis

XGBoost - True vs Predicted
80
70
60 P
”,
") L
5 504 el
€ ° s 8
£ -
® ~%
40 -
& ’,/
R4
30 .
-
L
20 ad
-
-
-
10 4 -7
-
10 20 30 40 50 60 70 80
True Values
(@
XGBoost - Residual Plot
20
104 ° w
& %
2 ¥ X
7 P S O SL._P -00% _go--5_ $0e-—-2
r
~101
T 204
= °
& _30
—40
_s0
601
20 30 40 50 60 70 80
Predictions

(b)

Figure 7. XGBoost: Predictive accuracy assessment through (a)

true-predicted correlation (b) residual distribution analysis



N. Zhou et al. /Future Technology

Age showed asymmetric SHAP values between -5 and
+10, with older age having a negative effect on IPR prediction,
as older patients have less tolerance for treatments and more
complications. The initial symptom scores displayed balanced
bidirectional impacts, with zero as the center, and severe
baseline symptoms indicating a larger possible margin of
improvement. TT has the most concentrated distribution,
indicating stabilization of the predictions. Parallel coordinate
visualization validated these associations; optimal IPR
predictions (80 - 100 %) showed low APTT, positive surgical
status, and moderate WBCs, poor outcomes (20 - 40 %) linked
to high APTT, negative surgical status, and poor inflammation
markers (Figures 8 and Figure 9).

SHAP Heatmap

High
APTT(s) = I
surgery: T&T —‘—F m
3
WBC(107/L) —— S
[
5
age - ©
U
Days 1 symptom score =
LA
TT(s) -
™
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SHAP value (impact on model output)

Figure 8. Feature impact distribution analysis through SHAP value
visualization

APTT(s)
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Figure 9. Model output response analysis with feature value
distribution

3.5 User interface development and deployment

Deployed DVT Symptom Improvement Management
System with Predictive Analytics into Clinical Workflow via a
Web-based  Platform. This implementation takes
multidimensional clinical parameters, labs, and standardized
symptom evaluation and creates a quantitative measure of
the rate of improvement. The system uses SHAP-based model
interpretation, and the clinicians can see which parameters
contribute the most to the model’s predictions. This evidence-
based decision-support framework aids risk stratification,
therapeutic strategy enhancement, and outcome prediction in
the management of DVT. Implementing the platform in
clinical assessment would lead to more consistentassessment
of the patient's current state, generating data-driven
information to build a tailored treatment plan. This
implementation bridges the translation gap between high-
end machine learning algorithms and clinical practice and
establishes a standard method for predicting evidence-based
DVT symptom improvement in routine medical care
(Supplementary File Figure 2).
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4. Discussion

This study developed and validated a machine learning-
based prediction model of DVT symptom improvement rates,
achieving good predictive performance in the test set (R? =
0.60). Among the four machine learning methods, the
XGBoost algorithm had the best performance with an RMSE
of 12.36 and an MAE of 7.82. By SHAP analysis, 6 key
predictive features were identified, with APTT and whether
surgery is performed being the most influential ones. It is
successfully applied as a web-based clinical decision support
system that can predict the improvement rate of symptoms in
real time. These findings provide a novel approach to
predicting individual treatment response in DVT patients by
integrating multiple clinical parameters into an accessible
decision support framework.

Deep vein thrombosis management is complicated by
disease complexity, variable treatment responses, and
potential serious complications. Treatment modalities
include anticoagulant therapy, thrombolysis, and mechanical
interventions, each producing different effects depending on
patient characteristics and treatment compliance. Low-
molecular-weight heparin (LMWH) is effective for both
proximal and isolated distal DVT [17]. However,
anticoagulation response varies considerably among
patients, influenced by age, weight, renal function, and
pharmacogenetic factors [18]. Elderly patients exhibit altered
pharmacokinetics, requiring careful monitoring and dose
adjustment to maintain therapeutic levels while minimizing
bleeding risk [19].

Surgical strategy significantly influences treatment
outcomes. Catheter-directed thrombolysis (CDT) is
recommended as first-line treatment for acute lower
extremity DVT in patients with high thrombus burden [20].
However, procedural complications, including bleeding and
embolization, may occur, potentially leading to post-
thrombotic syndrome (PTS) [21]. Clinical studies
demonstrate that multimodal intervention protocols achieve
significantly lower PTS rates compared to anticoagulation
alone [22, 23]. Treatment adherence is a critical prognostic
determinant;  sustained  anticoagulation = compliance
maintains therapeutic efficacy and reduces recurrent
thromboembolic risk [24]. However, treatment complexity,
adverse effects, and limited patient awareness often
compromise adherence [25]. These challenges underscore
the clinical significance of standardized decision support
tools to enhance physician-patient communication and
improve treatment compliance.

This study established a machine learning-based
symptom recovery prediction model within a web application
framework, creating a clinical decision support system. Using
the SHAP analysis methodology, the model displayed the
contributions of the clinical indicators and the mechanisms
that affected the results. From the SHAP value analysis, there
is a significant negative correlation between APTT and IPR,
suggesting that elevated APTT may be associated with
reduced treatment efficacy. This relationship may reflect
considerations in clinical decision-making, as elevated APTT
indicates increased bleeding risk, potentially leading
clinicians to adopt more conservative therapeutic approaches
[7, 26]. Surgical intervention (thrombolysis/thrombectomy)
emerged as a strong positive predictor, likely attributable to
the benefits of early thrombus removal. Existing studies have
shown that patients who underwent surgical interventions
had better symptom improvement than those who did not,
especially at earlier stages of the disease. This finding
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supports the clinical value of early, personalized surgical
decision-making [27].

WBC is an important inflammatory marker that
indicates the level of inflammation, which is an important
factor in the development of DVT clinical limb symptoms. This
study found that lower initial WBCs were associated with
better treatment response, which may be explained by
thrombus-inflammation interactions. After a thrombus is
formed, injured vascular endothelial cells and platelets will
produce pro-inflammatory cytokines to attract leucocytes
that invade the vessel wall. Activated leukocytes go on to
release more cytokines and proteases, which can make the
endothelial damage worse and lead to more reactions that
cause blood to clot. Moreover, the released NETs directly take
part in thrombosis and stimulate platelets to be activated,
thus forming a vicious circle of inflammation-thrombosis and
causing aggravated local tissue injury and continued clinical
manifestations. Thus, lower WBC levels may indicate milder
inflammatory  responses and lesser  thrombosis-
inflammation cycle, which explains its link to better treatment
response [28, 29].

Implementing a graphical user interface represents a
significant advancement in translating machine learning
algorithms into practical clinical tools [30]. The web-based
platform reduces implementation barriers by eliminating
requirements for specialized programming skills or
computational infrastructure [31]. Interactive SHAP
visualization transforms mathematical predictions into
clinically interpretable information, enabling clinicians to
understand both predictions and underlying reasoning [32].
This addresses the "black box" perception that undermines
clinician confidence by providing a clear visualization of each
parameter's influence through intuitive force plots [33]. The
dynamic interface allows variable adjustment with
immediate prediction updates, creating a simulation-like
experience for treatment planning [34]. The system
distinguishes modifiable from non-modifiable factors,
guiding clinical attention toward areas with the greatest
potential impact [35]. This transforms the model from a
passive assessment tool into an active decision aid supporting
personalized treatment optimization. This study has some
limitations. As a single-center retrospective study at The Sun
Simiao Hospital of Beijing University of Chinese Medicine, it is
uncertain if our findings are generalizable to other regions or
healthcare settings. Retrospective data collection may have
selection bias. It may impact the robustness of our results
even with thorough inclusion/exclusion criteria. In addition,
we examined only in-hospital outcomes at discharge. We did
not use long-term follow-up data to assess the model’s
forecasting performance for longer-term treatments and
complications.

5. Conclusion

This study develops a new machine learning approach to
predict DVT treatment response and demonstrates that this
method has a better predictive performance than other
methods through the XGBoost algorithm with an R2 of 0.60
and an RMSE of 12.36. Comprehensive SHAP analysis
revealed that APTT level and surgical intervention are major
factors determining the outcome of treatment, providing
essential information on the mechanism of DVT treatment
response. We have successfully deployed our model as a web-
based clinical decision support tool. This is a major advance
in taking complex algorithmic predictions and putting them
to practical use in a clinical setting. This implementation
connects theory with real-world medicine, providing doctors
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with a common, proven method to figure out how well their
patients will respond to treatment. Our findings help
understand how DVT is treated and set a basis for personal
ways to treat DVT.
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