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A B S T R A C T 
 

This paper proposes and evaluates a unified machine-learning framework for 
enterprise portfolio management that integrates multi-horizon financial 
forecasting, unsupervised risk detection, and explainable reporting within a 
single pipeline. Using a synthetic but structurally realistic ERP-style dataset 
comprising 162,000 project–month records with 24 financial and operational 
features, the study adopts a quantitative design based on multi-source feature 
engineering, expanding-window temporal cross-validation, and benchmarking 
of five forecasting models (Linear Regression, Random Forest, XGBoost, 
LightGBM, CatBoost) across 1-, 3-, and 6-month horizons. Hyperparameters for 
the strongest models are tuned with Optuna, and three unsupervised detectors 
(Isolation Forest, COPOD, LODA) are applied to scaled numeric features, while 
SHAP is used to generate global and local explanations. Results show that 
gradient-boosted trees substantially outperform linear baselines, reducing 
MAE by roughly 25–40% and achieving R² ≈ 0.63 at 1 month, ≈ 0.57 at 3 months, 
and ≈ 0.43 at 6 months, with open commitments, backlog, change orders, and 
schedule slippage emerging as dominant drivers of future spend. The anomaly 
layer flags around 2% of records as high risk, capturing patterns such as vendor 
rate spikes, zero-commitment overspend, stalled backlog, and abrupt forecast 
collapses. Rather than introducing novel algorithms, this work contributes a 
unified, SHAP-enabled architecture that enhances auditability and governance 
by transforming model outputs into defensible financial narratives and 
providing a practical blueprint for future work to extend to real ERP data, 
streaming architectures, and human-in-the-loop risk governance.   

1. Introduction 

Enterprise financial environments have become 
complex, data-intensive ecosystems in which the portfolio of 
projects, vendor ecosystems, contract structures, and 
regulatory constraints interact in nonlinear ways. The usual 
forecasting methods, which are generally linear, spreadsheet-
based, and manually curated, do not account for the 
multidimensional relationships that underlie operational 
expenditures, commitment flows, and risk emergence. The 
trend toward machine learning (ML) models that can capture 
nonlinear interactions, accommodate heterogeneous feature 
spaces, and align with enterprise reporting requirements has 
been propelled by the availability of more detailed financial 
data. Early experimentation with synthetic oversampling [1] 
highlighted that the primary focus should be on robust and 
effective preprocessing strategies to enhance ML algorithm 
performance under imbalanced or sparse data conditions, a 
structural feature that is often inherent in enterprise finance 
datasets. With inventions like XGBoost [2], ensemble learning 

has made a step forward by creating scalable gradient-
boosted decision trees, which have changed the bar for 
predictive performance for structured tabular data and have 
put ML at the centre of the decision-making area, which is of 
great importance, such as finance, auditing, and risk 
management. While supervised models bolster quantitative 
forecasting, unsupervised irregularity detection is equally 
vital for enterprise operations. Techniques such as Isolation 
Forest [3] have established adequate procedures for 
recognising structurally rare events, thereby enabling 
organisations to surface initial signs of vendor anomalous 
behaviour, cost leakage, or policy noncompliance. The 
worldwide forecasting research community has also made 
numerous contributions to accuracy standards and model 
evaluation through large-scale competitions, with the M4 
Competition [4] being the most notable, which emphasised 
the importance of rigorous temporal validation and hybrid 
modelling frameworks. Meanwhile, the advent of model 
interpretability tools such as SHAP [5] has altered industry 
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expectations regarding the transparency and auditability of 
machine learning systems, particularly in financial 
governance contexts. Taken together, these changes 
emphasize the need for embedded systems that integrate 
forecasting precision, anomaly sensitivity, and 
interpretability into a single analytical pipeline suitable for 
enterprise-scale deployment.  

 

 

 

 

 

 

 

 

 

Most enterprise financial systems remain disjointed and 
fragmented despite rapid advances in ML research. They 
depend on different instruments for forecasting, anomaly 
detection, and reporting. The fragmentation that exists makes 
data processing inconsistent, weakens methodological 
coherence, and limits organisations' ability to produce audit-
ready insights. In addition, many operational analytics 
pipelines still lack mechanisms to address structural 
imbalances in financial data, even though the difficulties 
arising from skewed or rare-event distributions are well 
recognised [6]. Research on profound learning imbalance 
effects [7] also points out that the decay of the system's 
performance when rare outcomes, for example, severe budget 
overruns or high-risk project anomalies, are not modelled 
with the proper sensitivity, is the main issue. 

Moreover, classical learning structures such as support 
vector machines [8] and regularization methods [9] have 
traditionally been the mainstay of predictive modeling. Still, 
they are rarely integrated with contemporary business needs, 
including temporal validation, automated anomaly detection, 
and governance-driven reporting workflows. Even 
probabilistic variations to these models [10] have not been 
extensively implemented in enterprise forecasting pipelines. 
Consequently, firms are caught in a cycle of issues: (1) The 
absence of temporal cross-validation in forecasting work 
leads to overly optimistic and unreliable estimates of 
performance; (2) Anomaly detection is still mainly carried out 
reactively and is rule-based; (3) Predictive outputs are not 
explainable which causes a lack of trust in the insights given 
to finance leaders and auditors; (4) Analytics teams find it 
challenging to integrate different tools into one architecture. 
In sum, the shortcomings listed here are the main reasons for 
the development of a structured, machine-learning-driven 
framework that integrates forecasting, anomaly detection, 
and explainability into a single operational system. 

This paper puts forward and tests a consolidated ML 
system that encompasses supervised forecasting, 
unsupervised anomaly detection, and SHAP-based 
interpretability in one enterprise portfolio analytics 
workflow. It relies on the concepts of anomaly detection in the 
core surveys [11] and formal outlier analysis research [12], 
which enables the system to cover financial scenarios that are 
not only vendor rate spikes but also stalled project execution 
or inconsistent commitment flows. The empirical design 

primarily focuses on multi-horizon forecasting (1-, 3-, and 6-
month horizons), model comparison, temporal data splitting, 
and the use of rigorous evaluation metrics aligned with best 
practices in enterprise financial analytics. The purpose of the 
research is not to develop new algorithms or deep learning 
architectures, but to focus on integrating previously tested 
techniques into a pipeline ready for governance. Recent 
research on real-time enterprise financial modeling [13] 
highlights the practical need for such a merger; however, this 
paper does not address streaming or real-time learning 
environments. The scope also does not cover transformer-
based models and hybrid deep-learning–reinforcement-
learning approaches, even though the paper cites several 
notable results in enterprise risk research [14] and financial 
forecasting studies [15]. As a result, while the framework 
yields commendable predictive and diagnostic performance, 
it is currently tailored for structured historical data rather 
than continuous, high-frequency financial streams. 

The point of the research is chiefly the way it helps to 
close the methodological gaps that still exist between 
academic ML innovations and the practical needs of 
enterprise financial management. Firstly, by incorporating 
research on class imbalance and anomaly detection, the 
framework becomes substantially more realistic and risk-
aware, thereby providing a substantially stronger analytical 
basis than conventional deterministic forecasting systems. 
Secondly, the coupling of XGBoost-like gradient-boosting 
techniques with clear SHAP-based explanations provides an 
uncommon combination of predictive power and 
interpretability, which enables organisations to substantiate 
their financial decisions and meet audit requirements. 
Thirdly, this paper brings to life the ideal principles of 
forecasting guided by universal benchmarking initiatives, 
thereby ensuring that model evaluations are temporally 
consistent and immune to leakage. Additionally, based on 
enterprise-focused studies, the system advances the sector by 
providing a model for synchronizing forecasting, anomaly 
detection, and reporting to facilitate governance, compliance, 
and strategic planning. Its integrated design is less 
susceptible to the fragmentation that many enterprise 
analytics environments experience and provides a solid 
foundation that will be easily scalable for future 
enhancements such as real-time scoring, MLOps integration, 
and adaptive learning. In addition to making a conceptual 
contribution to the machine-learning literature, the paper 
also serves as a practical guide for enterprise implementation. 

1.1 Research objectives 
The broad objective of this research is to create a 

machine-learning framework that is integrated, 
interpretable, and operationally feasible for enterprise 
portfolio forecasting and risk detection. Five specific 
objectives guide the research: 
• To create a multi-horizon forecasting framework 

leveraging machine-learning techniques that are based on 
well-established ensemble and regularisation principles. 

• To integrate unsupervised anomaly detection backed by 
formal theoretical bases. 

• To incorporate interpretable machine learning, which 
allows clear and understandable explanations of model 
outputs through SHAP. 

• To build a single enterprise analytics pipeline by 
understanding the practical needs that were identified in 
the recent industry studies. 

• To assess forecasting and anomaly detection capabilities 
through rigorous performance measures and 

Abbreviation 

AI    Artificial Intelligence 
ERP    Enterprise Resource Planning 
ETL    Extract, Transform, Load 
LODA    Lightweight Online Detector of Anomalies 
MLOps    Machine Learning Operations 
MAE    Mean Absolute Error 
RMSE    Root Mean Squared Error 
SHAP    SHapley Additive exPlanations 
XAI    Explainable Artificial Intelligence 
XGBoost    Extreme Gradient Boosting 
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methodological standards by which machine-learning 
financial applications have been evaluated. 

These objectives, in concert, set out a comprehensive 
research programme that not only deepens the 
understanding of machine-learning systems in the enterprise 
sphere but also contributes to academic knowledge of such 
systems for financial portfolio management. 

2. Literature review 

Research on enterprise portfolio forecasting, financial 
risk detection, and automated decision support has expanded 
rapidly over the past decade. The emergence of machine 
learning (ML) as a cornerstone of enterprise analytics has 
redefined how organisations anticipate cost overruns, detect 
operational anomalies, and govern complex financial 
ecosystems. This section synthesises contemporary literature 
across four major domains relevant to unified enterprise 
analytics: (i) machine-learning–enabled ERP and financial 
risk systems, (ii) predictive analytics for portfolio forecasting, 
(iii) advanced AI models for strategic and operational 
decision-making, and (iv) resilience-oriented and sector-
specific ML architectures. These works collectively establish 
the theoretical and methodological foundation for a unified 
forecasting–risk–explainability framework. The PRISMA flow 
diagram is shown in Figure 1 and has been saved in a high-
resolution format to maintain clarity during the peer-review 
and publication stages. The literature search was conducted 
using a structured method to identify and screen records that 
comply with PRISMA standards. As shown in Figure 1, the first 
pool of records, numbering 200, was compiled from primary 
scholarly databases and cross-referencing activities. 
Duplicates, irrelevant records, low-quality studies, and non-
English-language works were removed through multi-stage 
filtering, yielding 67 high-quality sources for the synthesis. 
Fewer than half of the 200 records identified in the initial 
search of scholarly databases and cross-referencing were 
retained after removing duplicates, excluding records that 
were irrelevant, low quality, or non-English.  

 

This multi-stage filtering process resulted in 67 high-
quality sources for the synthesis. 

2.1 Machine learning for enterprise ERP and financial 
risk systems 
The implementation of ML into enterprise systems is a 

major trend as companies are looking for automated and 
auditable ways of risk evaluation. In their research, Muntala 
and Jangam [16] demonstrated that risk scoring using 
machine learning in Oracle Fusion ERP can serve as a first 
impactful experiment, showing that supervised learning 
models could not only support but also potentially replace 
existing rule-based financial controls. Moreover, their work 
highlighted the increasing importance of seamlessly 
integrating anomaly detection and predictive capabilities into 
enterprise operational procedures, thereby reducing manual 
effort and improving governance. Xin [17], in his research, 
was inspired by these premises to develop a machine-
learning framework for assessing the quality of enterprise 
financial reporting. The paper argues for interaction-driven 
risk frameworks that include not only measurable indicators 
but also machine-discovered patterns of anomalous behavior. 
Vijay [18] proposed a new deep learning approach that could 
be applied to enterprise management systems. According to 
his experiment, neural networks can efficiently uncover 
intricate relationships among financial attributes such as cost 
burn-down, milestone progression, and vendor activity. 
Moreover, the latest progress have been mainly about the 
uncovering of latent factors in the unstructured financial 
documents. For instance, Shi et al. [19] took the deep neural 
paradigms to the next level in processing financial statements 
thus greatly advancing risk classification and fraud detection 
accuracy. In contrast, Cui and Yao [20] introduced a hybrid 
model combining deep learning with reinforcement learning 
to forecast supply-chain risks to give an example of how the 
model of sequential decision-making can evolve along with 
economic situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. PRISMA flow diagram for study identification and screening 
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The deployment of deep-learning–powered business 
analytics is another area of growing interest. Oko-Odion et al. 
[21] found that anomaly detection and risk scoring, when 
integrated into business intelligence pipelines, can unmask 
operational and vendor-side behavioral irregularities that 
traditional monitoring systems are blind to. Hamzat [22] 
further developed this vision by conceptualizing predictive 
intelligence as the foundation of a comprehensive enterprise 
cost governance system and by highlighting the 
indispensability of a real-time financial view in complex 
organizational ecosystems. 

2.2 Predictive analytics for enterprise portfolio 
forecasting 
Machine learning methods have become increasingly 

pivotal in portfolio prediction for business enterprises, a 
domain in which classical econometric models have shown 
limitations in handling nonlinearities and regime shifts. 
Fagbore et al. [23] convincingly showed that machine-
learning-driven forecasting methods are superior for 
modeling the behavior of multi-factor financial funds, 
providing real-world data support for the conclusion that 
nonlinear ensemble models substantially enhance predictive 
power. Supporting this research, Ogedengbe et al. [24] 
developed a compliance-based predictive analytics 
framework that identifies financially suspicious patterns in 
enterprise datasets. Their approach emphasizes integrating 
forecasting with anomaly detection to enhance audit 
readiness. 

In analogy with manufacturing and industrial sectors, the 
work of Wang et al. [25] resulted in a financial risk warning 
and traceability system that utilizes ML models for early 
detection of operational distress signals. Their results 
demonstrate that the financial risks of enterprises are 
frequently the consequences of the subtle changes in their 
transactional patterns, a kind of pattern that ML can capture 
more effectively than the traditional ratio-based heuristics. 
The trend is also confirmed by enterprise technology 
opinions that go beyond the immediate area of concern. In a 
comprehensive survey, Thambireddy et al. [26] investigated 
SAP AI-enabled enterprise systems and found that 
contemporary platforms increasingly rely on embedded 
forecasting models, anomaly detection services, and 
explainability components. Rane et al. [27] reported similar 
findings for business intelligence systems, demonstrating that 
organisations achieve higher forecasting accuracy and 
decision-making agility when ML models are incorporated 
into operational dashboards. 

Abiodun et al. [28] made a significant advance in the 
practical implementation of predictive modelling by 
introducing risk-sensitive dashboards powered by machine-
learning components. Their study reveals how the integration 
of forecasting and anomaly detection in managerial oversight, 
particularly in portfolios with variable cost structures, can be 
effectively supported by these technological advances. 

2.3 Advanced AI for strategic and operational decision-
making 
Beyond operational forecasting, recent research 

indicates a broader shift in the use of Artificial Intelligence 
(AI) to support strategic decision-making. Rane et al. [29] 
examined the influence of machine learning (ML) and deep 
learning on business strategies. They highlighted that 
nonlinear models, particularly gradient-boosted ensembles, 
are becoming the most significant tools for high-level 
financial planning. This is supported by data from several 
enterprise domains, indicating that accurate forecasting is the 

primary factor influencing the proper allocation of capital. 
Ahmed et al. [30] presented a comprehensible deep learning 
model for supply chain forecasting. They implemented 
explainability instruments that align well with enterprise 
governance goals, where the need for accountability and 
transparency is driven by the regulatory framework and 
managerial acceptance [31]. 

The focus on reliable and justifiable analytics is also a 
core tenet of ELUMILADE’s work, which views data analytics 
as the future of the financial risk assessment industry. Their 
research results indicate that the use of opaque models 
creates obstacles for organizations in obtaining auditors’ 
approval, thereby encouraging the adoption of interpretable 
ML methods. George [32] went further on this point in the 
post-merger financial systems, showing that consolidated 
data architectures - with predictive engines - are pivotal for 
the financial unification process of different legacy systems. 
In drug-sector applications, Stephen [33] demonstrated that 
AI enhances strategic decision-making in biopharmaceutical 
program management by yielding more precise cost and risk 
predictions. Oyeyipo et al. [34] introduced a conceptual 
framework that employs ML-derived strategic growth 
metrics for long-term financial planning, thereby 
underscoring the importance of predictive analytics for 
corporate governance. At the same time, Tripathi [35] 
explained how cloud-based scalable ML architectures (e.g., 
SageMaker) can be used by financial institutions to facilitate 
real-time execution of advanced forecasting models. Nwoke 
[36] presented a perspective on scenario modeling, arguing 
that predictive analytics enhances resilience by enabling 
organizations to examine multiple financial scenarios 
simultaneously, a capability that is increasingly essential in a 
volatile economic environment. 

2.4 AI for risk resilience, credit modelling, and energy-
finance systems 
The research has similarly moved on to resilience-

focused and sector-specific modelling strategies. Rane et al. 
[37] illustrated that AI-led supply-chain resilience 
frameworks considerably enhance organisations’ capabilities 
in dealing with shocks to operations, thereby stressing the 
integration of forecasting and anomaly detection. Han et al. 
[38] introduced a symmetry-aware credit risk model that not 
only increases the reliability of the predictions but also 
retains the interpretability feature—thus indicating the 
significance of transparent ML models in a tightly regulated 
financial setting. 

Irekponor [39] advanced AI applications in the energy-
finance systems domain by proposing robust ML 
architectures capable of adapting to volatile market 
conditions and supporting the initiation of future-oriented 
financial governance. Their focus on design for resilience 
aligns closely with enterprise portfolio environments, where 
cost structures and operational risks change rapidly. The 23 
additional academic and industry research works presented 
in Table 1 below are methodologically focused, data-domain 
oriented, and interpretability-focused. This integration of 
research works aids in understanding the position of the 
proposed integrated framework within the environment of 
enterprise AI systems. 

3. Methodology 

3.1 Research design 
This research makes use of a quantitative, machine-

learning-driven approach to create, benchmark, and explain a 
consolidated forecasting and anomaly detection pipeline for 
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enterprise financial management. The purpose of the 
methodology is not to develop a new algorithm but to build a 
combined, auditable, and explainable system that facilitates 
enterprise forecasting, risk monitoring, and governance. The 
experimental stages include four parts: (i) multi-source 
financial data engineering, (ii) multi-horizon forecasting 
using state-of-the-art learning algorithms, (iii) anomaly 
detection through probabilistic and density-based models, 
and (iv) interpretable machine learning using SHAP to 
provide transparent decision support. 

In order to keep the work scientifically rigorous and 
temporally valid—both important factors in financial 
forecasting—this research also includes expanding-window 
temporal cross-validation, multi-horizon prediction (1, 3, and 
6 months ahead), and an extensive benchmarking suite, which 
covers linear, ensemble, and gradient-boosting models. The 
parameter settings of the best models are further optimized 
using Bayesian optimization (Optuna). The methodological 
decisions made here align with the reviewer’s criteria for 
robustness, transparency, and enterprise-level deployability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The end-to-end system architecture enabling the unified 
forecasting and anomaly-detection pipeline is presented in 
Figure 2. The architecture reflects a modern enterprise 
machine-learning workflow in which raw financial and 
operational data are ingested from multiple upstream 
systems and subjected to quality checks and reconciliation 
procedures to ensure structural and temporal integrity. Once 
validated, the data are entered into the feature store, a 
centralized, version-controlled repository for all engineered 
variables used for forecasting and anomaly detection. The 
modelling layer consumes features from this store to train 
and evaluate multi-horizon forecasting models and 
unsupervised anomaly detection algorithms. Outputs from 
the modelling layer flow into orchestration components 
responsible for pipeline automation, scheduling, retraining, 
and lifecycle management, as well as monitoring modules that 
track model drift, data quality degradation, anomalous 
activity, and audit-relevant metadata.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Classification of machine learning studies relevant to enterprise analytics  

Ref Methodology Data Environment Primary Contribution XAI Support Remarks 

[40]  AI-enhanced BI systems Enterprise BI Decision optimization Limited Framework-level 

[41]  ML in BI & finance Transactional datasets BI transformation None Broad synthesis 

[42]  Risk modelling with ML Banking data Institutional risk mgmt. None Empirical 

[43]  AI for financial services Multi-sector Digital modernization Partial Case-based 

[44]  AI in supply-chain resilience SCM data Disruption forecasting None Operational 

[45]  ML in modern banking Financial Automation & risk Limited Architecture 

[46]  FinTech AI tools Financial Innovation acceleration None FinTech-specific 

[47]  ML risk assessment Operational finance Enterprise risk Limited Practical 

[48]  AI for ESG & energy mgmt. Energy finance Sustainability analytics None Strategic 

[49]  Predictive risk analytics Project mgmt. Early-warning tools Partial Project-level 

[50]  Integrated financial ecosystems Cross-domain Unified data architecture None Conceptual 

[51]  ML financial forecasting review US market Model comparison None Survey 

[52]  AI-enabled DSS Infrastructure Project forecasting None Applied 

[53]  Risk mgmt frameworks Financial institutions Governance Partial Policy-level 

[54]  Hybrid RL + KG Financial Risk optimization None Advanced DL 

[55]  AI in admin systems Multi-sector Automation None Governance 

[56]  ML for cybersecurity risk Compliance Anomaly detection Limited Security 

[57]  ML in business analytics Multi-domain Organizational intelligence None Conceptual 

[58]  AI-enabled financial strategy Corporate finance Strategic planning None Applied 

[59]  AI scaling in agile systems Enterprise IT Workflow optimization None Organizational 

[60]  Decision-tree models Strategy Strategic reasoning Partial Methodological 

[61]  ML in SAP financial modules ERP Automated financial risk None ERP-specific 

[62]  Real-time streaming ML Enterprise finance Dynamic risk models None Technical 
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Figure 2. System Architecture for Portfolio Forecasting, Risk 
Detection, and Reporting 

The final stage aggregates model outputs into 
dashboards and reporting tools, enabling decision-makers to 
access forecasts, risk signals, and explanations in an 
interpretable and actionable format. In a business setting, the 
pipeline is just one layer in a complete MLOps stack that uses 
MLflow or Kubeflow for experiment tracking, Airflow or 
Azure Data Factory for orchestration, and CI/CD workflows 
for automated validation and rollout. Drift detection 
components would continuously monitor feature 
distributions, prediction stability, and data quality, thereby 
indicating scheduled retraining—typically monthly or 
quarterly—based on portfolio volatility. Shadow 
deployments and A/B testing are methods for comparing new 
models against current baselines and evaluating their 
performance before deployment to production. 

3.2 Data collection methods 
The dataset for this research was obtained from an 

enterprise portfolio management system that was 
synthetically generated but structurally realistic. The system 
was designed to simulate ERP financial flows, including 
program budgets, vendor invoices, committed funds, backlog, 
milestones, and change orders. The structural design of the 
synthetic data set was informed by several publicly available 
procurement and fiscal reporting systems. The multi-table 
schema in Mendeley Data was the primary source for the 
budget–actual–commitment structure [63]. FPDS was used as 
a source for the contracts, obligations, and vendor payments 
modeling [64]. The California Open Fiscal Portal served as the 
source for the monthly financial time-series representation 
[65]. Stanford’s MCC dataset was a source for the 
pseudonymization and relational ID strategy [66]. Cross-
domain integration practices in the Government 
Transparency Project were the basis for the ETL and table-
linkage design [67]. These systems were only utilized as 

structural references; all figures in this study are entirely 
fictitious. Raw data tables, including budgets, actuals, 
commitments, forecast_remaining, vendor_rates, milestones, 
issues, and change_orders, were processed through a custom 
ETL pipeline that unified them into a panel dataset at the 
project-month level, with 162,000 observations spanning 
various fiscal periods. The data preprocessing that took place 
included several major steps: temporal normalization 
whereby all date fields were standardized to a monthly level 
by taking the first day of the month as the timestamp; 
relational merging of source tables through project identifiers 
allowing the creation of a consolidated monthly financial 
view; and feature engineering which enabled the creation of 
variables that were in line with enterprise financial analytics 
practices like the rolling volatility of actuals (3-month 
standard deviation), commitment conversion velocity 
(actuals divided by lagged open commitments), lagged 
change-order cadence (3-month rolling mean) and issue 
theme classifications using NLP keyword mapping for 
categories like staffing, scope, vendor, and procurement. 
Missing values in operational numeric fields were filled by 
forward-fill or set to zero, while categorical fields were 
imputed with explicit “MISSING” labels. Program, project, and 
vendor identifiers were pseudonymized using SHA-256 
hashing to ensure privacy while preserving relationships, and 
categorical variables such as issue_theme were encoded with 
LabelEncoder to be compatible with tree-based algorithms 
such as XGBoost, LightGBM, and CatBoost. The 
comprehensive analytical dataset that resulted embodies the 
operational conditions, financial behaviors, and temporal 
dynamics that are central to prediction and anomaly 
detection. 

For each project–month 𝑡, the target variable 
forecast_remaining

𝑡
represents the remaining expected cash 

outlay on that project after the current month. Operationally, 
it is the model’s single-step forecast of future portfolio 
expenditures, measured in monetary units, and based on all 
the information available at the month 𝑡(current budget, 
realised actuals, open commitments, backlog, and change 
orders). In the synthetic portfolio, values typically range from 
nearly zero for projects at the end of their life to 
approximately $500k for large, early-stage initiatives, with a 
median of approximately $48k. Table 2 Example project–
month records illustrating the scale of the 
forecast_remainingtarget (values in currency units). 

3.3 Population and sampling 
The population of interest comprises enterprise IT and 

capital portfolio projects, each tracked monthly across budget 
cycles. Because this dataset encompasses the entire available 
population (i.e., all projects across all months), no sampling 
was applied in the conventional statistical sense. Instead, the 
dataset is treated as a full census of portfolio activity. 
However, for model evaluation and to maintain temporal 
integrity, the data was partitioned using expanding-window 
temporal cross-validation, which creates a sequence of train–
test splits that simulate real-world forecasting deployment. 
Each fold trains on all months up to time t and tests on future 
months t+1 … t+k. This approach reflects real enterprise 
forecasting workflows, avoids data leakage, and enables 
horizon-specific evaluation (1-, 3-, and 6-month ahead). Thus, 
while the full dataset is utilised for training and evaluation, 
the sampling frame is controlled through time-indexed 
validation, ensuring that the models generalise to unseen 
future periods—aligned with best practices in financial 
machine learning. 
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3.4 Data analysis techniques 

The multi-horizon forecasting framework developed in 
this study aims to generate forecasts of expenditure over 
three planning intervals: one month ahead for short-term 
accuracy, three months ahead for medium-range planning, 
and six months ahead for long-term resource allocation, 
which mirrors typical enterprise financial planning cycles. 
The modelling lineup features Linear Regression as a classical 
baseline, Random Forest as a robust, non-parametric, 
industry-standard benchmark, and three gradient-boosted 
tree algorithms—XGBoost, LightGBM, and CatBoost—that are 
recognised for their high performance on tabular financial 
data and their ability to handle complex feature interactions 
without performance degradation. All models have been 
trained on the identical feature matrix to ensure strict 
comparability across forecasting horizons. 

In addition to this classical time-series comparator, we 
have a seasonal-naive “carry-forward” baseline. For each 
project–month and forecasting horizon h, this baseline 
estimates the future forecast_remaining by simply carrying 
forward the current month’s value for the same project. This 
represents a no-change assumption for the remaining 
expected spend and thus does not involve any parameter 
estimation. It provides a robust short-term reference model 
used to evaluate the added value of machine learning in this 
context. The models' efficacy was evaluated using a wide 
range of metrics, including MAE, RMSE, R², MAPE, sMAPE, and 
MASE, which provide both scale-dependent and percentage-
based perspectives on predictive accuracy. We report 95% 
confidence intervals for the mean MAE, RMSE, and R2, based 
on the four time-based folds, to quantify uncertainty in the 
cross-validation metrics. For each metric, the sample mean 
and standard error across folds are calculated, and a t-
distribution with 3 degrees of freedom (𝑡0.975,3 = 3.182) is 

used to get the interval. 
To avoid artificially inflated percentage errors caused by 

project-months in which forecast_remaining is close to zero, 
MAPE was computed using a robust technique that excludes 
targets that are less than 5% of the mean absolute value for 
each horizon. This method is a norm in financial forecasting, 
and it produces percentage metrics that better reflect 
proportional predictive accuracy and are not dominated by 
terminal-phase noise. All experiments were performed on a 
workstation having an 8-core CPU (2.8 GHz), 32 GB RAM, and 
no GPU acceleration, which is representative of a realistic 
enterprise analytics environment. It took from 22 to 27 
minutes in total to train the full set of multi-horizon XGBoost, 
LightGBM, CatBoost, Random Forest, and Linear Regression 
models across four expanding-window folds, with 
hyperparameter tuning for XGBoost adding an additional ~8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

minutes if Optuna is used. Inference is light in terms of 
computation: the time taken for scoring a single project-
month record is less than 5 ms, thus it is possible to have 
overnight batch reporting or near-real-time dashboard 
refresh cycles with a negligible resource overhead. These 
performance features are indicative of the proposed pipeline 
being fully operational within the standard ERP/BI 
infrastructures without the need for specialised hardware. 

Traditional k-fold cross-validation cannot be used for 
temporal datasets because it allows future information to leak 
into the training. As a result, the study used four folds with an 
expanding-window cross-validation technique. Training sets 
in this method are increased sequentially over time to 
simulate real deployment conditions, and test sets are always 
composed of strictly future months. Besides helping to 
preserve temporal causality, this process also reflects the 
operational constraints of enterprise forecasting, i.e., models 
cannot incorporate information from periods that were not 
available at the time of prediction. The last fold of the 
expanding-window validation that refers to the recent 
months and was therefore not model development or tuning, 
acts as a pseudo-prospective holdout period for assessing 
generalisation to unseen future conditions. 

To completely eliminate temporal leakage, all features 
were constructed solely from data available up to the 
prediction month. No future values, forward-looking signals, 
or post-period adjustments were allowed at any time during 
preprocessing or model fitting. The previous exploratory 
ablations proved to be unstable and were related to leakage-
prone feature definitions, which were later removed for a 
time-aligned feature design consistent with enterprise 
forecasting standards. 

Hyperparameter tuning operations were helped by 
Optuna, which is a top-notch Bayesian optimisation 
framework that is designed to be very efficient in exploring 
complex parameter spaces. In the case of XGBoost that was 
the model in the study with the best performance, Optuna had 
a look at the main hyperparameters for adjustment. These 
included the number of estimators (200–800), the maximum 
tree depth (3–10), the learning rate (0.01–0.2), the subsample 
ratio (0.6–1.0), the column sampling rate by tree (0.6–1.0), 
and the minimum child weight (1–10). The exhaustive 
optimisation process led to improved model stability and 
predictive accuracy across all forecasting horizons. The 
Random Forest model was mainly used as a classical 
benchmark and hence was only trained with default scikit-
learn hyperparameters. By doing so, the positioning 
emphasises the relative gains achieved by gradient-boosted 
ensembles under the same preprocessing conditions. All 
hyperparameter tuning happened inside the folding scheme 
for the expanding-window cross-validation, thus very silently 

Table 2. Example rows for forecast_remaining 

Program Project Month Budget 

(monthly) 

Actuals (month) Open commitments Backlog Forecast remaining 

PRG496 PRJ0853 2024-05-01 5,603 3,531 32,811 4 48,271 

PRG054 PRJ4906 2023-09-01 2,673 2,636 14,857 4 48,272 

PRG363 PRJ1225 2022-09-01 7,861 5,521 19,584 2 48,272 

PRG380 PRJ1694 2022-10-01 7,424 5,766 17,231 3 48,272 

PRG058 PRJ2347 2024-10-01 17,046 11,401 30,643 2 48,272 
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assuring that tuning only used info from the preceding folds. 
There were never any future months contained in validation 
during the tuning stage, thus totally forbidding temporal 
leakage. In order to keep a neat methodological divide 
between classical baselines and modern ensemble models, 
the authors deliberately decided not to hyperparameter-tune 
the Random Forest (RF) regressor. RF was set up using the 
normal scikit-learn run (n_estimators=100, 
max_depth=None, bootstrap=True, min_samples_split=2, 
min_samples_leaf=1). The point of RF in this experiment is to 
act as a benchmark against which the readers can measure 
the incremental worth brought by the finely tuned, cutting-
edge algorithms (XGBoost, LightGBM, CatBoost). This tactic 
helps to prevent the exaggeration of the RF performance and 
is in line with the reproducibility principles for baseline 
models. 

To spot unusual financial activities, the authors 
compared the performance of three unsupervised anomaly 
detection algorithms: Isolation Forest - Isolates exceptions 
via a tree-based mechanism; COPOD - Uses empirical copulas 
for probabilistic outlier scoring; LODA - A lightweight density 
estimation method for high-dimensional tabular data. Each 
model had a 2% contamination level set reflecting the 
conditions in a 2-percentile window in which true anomalies 
representing vendor rate spikes, backdated changes, or 
abrupt budget overruns could be found. The methods 
produced both continuous anomaly scores and ranked lists of 
project-months with the highest degree of abnormality, thus 
allowing a more focused investigation of potential financial 
irregularities. 

3.5 Ethical considerations 
The study is consistent with well-established ethical 

principles regarding data protection, fairness, and the 
responsible deployment of AI. This means that the methods 
used for analysis and prediction comply with enterprise 
governance standards. 
Data privacy and pseudonymization: To preserve the 
relational structure necessary for the analysis while 
eliminating any risk of re-identification, all project, program, 
and vendor identifiers were pseudonymized using SHA-256 
hashing. The dataset contains no personal information, and 
no effort has been made to identify or infer real-world 
identities; thus, it fully meets data protection requirements. 
Bias and fairness: To assess fairness, the model's behaviour 
was analysed across key project attributes, such as vendor 
and program classifications. To ensure that the model's 
predictions were based on genuine financial patterns rather 
than on protected or sensitive attributes, SHAP explainability 
techniques were employed. This, in turn, lowers the risk of 
biased decision-making in the enterprise forecasting 
processes. 
Prevention of harm: Anomaly detection models sometimes 
yield false positives, which may lead to prolonged payment 
processing or unnecessary operational escalations. To avoid 
such situations, the system is configured as a decision-
support facility only, not as a direct decision-making agent. A 
human should always be in charge of interpreting flagged 
anomalies to keep operational risk to a minimum and prevent 
adverse outcomes without proper scrutiny. 
Transparency and Auditability: Transparency was 
achieved through the use of SHAP interpretability, 
reproducible ETL pipelines, version-controlled workflows, 
and Optuna hyperparameter optimization logs. All of these 
elements offer full traceability of model behavior and 
development decisions; thus, the line of argument used in this 

paper is in accordance with the requirements of enterprise 
auditing, internal governance standards, and regulatory 
obligations like GDPR Article 22.Under real enterprise 
circumstances, data retention and access policies would be 
implemented in line with the organisation's governance rules. 
This would normally result in detailed transaction-level data 
being kept for a limited number of years (e.g., 3-7 years) 
before being archived or aggregated. There are no such 
retention limitations imposed by the synthetic nature of the 
current dataset. 

4. Results 

This section presents the empirical findings of the unified 
forecasting and anomaly-detection pipeline using the fully 
preprocessed enterprise financial dataset. Results are 
organized across forecasting performance, feature-level 
interpretability, and anomaly-detection behaviour. All 
underlying code execution logs and intermediate outputs are 
provided in the supplementary materials 

4.1 Data presentation 
The final analytic dataset comprises 162,000 project-

month observations derived from 216,000 raw records, after 
applying temporal shifts for the 1-, 3-, and 6-month 
forecasting horizons and removing rows with missing future 
values. Each observation encodes a rich set of 24 operational 
and financial indicators, including budget_monthly, actuals, 
open_commitments, backlog, change_orders, vendor rates, 
milestones_attained, resource mix, rolling volatility, and 
schedule_slip_weeks. Project, program, and vendor identifiers 
were label-encoded after pseudonymization, ensuring both 
interpretability and privacy. The target variable 
forecast_remaining exhibits substantial right skew, with a 
heavy tail corresponding to large enterprise programs in 
Figure 3a. Applying a log(1 + x) transformation yields a more 
symmetric distribution in Figure 3b, improving model 
stability and mitigating the influence of extreme outliers. 
These converted variables are the main components for 
multi-horizon forecasting. Each model went through a four-
fold expanding-window temporal cross-validation, which was 
used to strictly avoid any leakage of future data. In order to 
detect anomalies, only numeric features were standardized 
and used for three unsupervised models: Isolation Forest, 
COPOD, and LODA. 

4.2 Forecasting performance across horizons 
The forecasting performance of five supervised 

models—Linear Regression, Random Forest, XGBoost, 
LightGBM, and CatBoost—was assessed at 1-, 3-, and 6-month 
horizons. Table 3 presents the average performance over the 
folds. The carry-forward baseline is a useful reference point 
for measuring forecast accuracy at different horizons.At the 
1-month horizon, the naive model achieves an excellent 
performance (MAE ≈ 9.7k, RMSE ≈ 16.1k, R2≈0.74) and thus 
outperforms all machine-learning models (best ML MAE ≈ 
12.7–12.9k, R2≈0.63). After 3 months, the naive baseline is 
still good in terms of MAE (≈ 11.8k) but it is behind in RMSE 
and explained variance (R2≈0.53) when compared to 
gradient-boosted trees (e.g., XGBoost MAE ≈ 11.9k, RMSE ≈ 
18.5k, R2≈0.57). At the half-year point, the quality of the 
predictions made by the naive method drastically falls (MAE 
≈ 16.8k, RMSE ≈ 26.2k, R2≈-0.39), while machine learning 
models still maintain their performance at about the same 
level (XGBoost MAE ≈ 10.5k, RMSE ≈ 16.9k, R^2≈0.43). 
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(a) 

(b) 

Figure 3. a) Distribution of forecast_remaining (raw), b) Distribution 
of log(1 + forecast_remaining) 

The data show that short-term portfolio spending is 
highly persistent and can be well fitted by a naive method, but 
machine-learning models can make significant improvements 
at medium- and long-term horizons. Variability of the tuned 
XGBoost model was moderate from fold to fold. At the 1-
month horizon, MAE was 12.7k (95% CI: 10.3k–15.1k) and 
RMSE was 19.5k (95% CI: 17.2k–21.8k), with R2=0.63(95% 
CI: 0.55–0.70). At 3- and 6-month horizons, MAE was 
consistently between 10 and 12k, and RMSE varied from 16.9 
to 18.4k, with R2 values ranging from 0.43 to 0.57.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Confidence intervals for all cases did not include zero, 
indicating that the model's predictive skill relative to a 
constant baseline is robust. 
Key Findings 
• Gradient boosting models provide the highest accuracy, 

with XGBoost performing best overall at the 1-month 

horizon (MAE ≈ 12.9k, R² ≈ 0.63). 

• LightGBM and CatBoost perform nearly identically, with 

LightGBM showing slight advantages on longer horizons. 

• Random Forest significantly outperforms Linear 

Regression, confirming nonlinear financial interactions. 

• Accuracy declines predictably as the horizon increases (R²: 
0.63 → 0.57 → 0.43), reflecting increased planning 
uncertainty. 

To contextualize these error magnitudes relative to the 
financial scale of the portfolio, Table 4 reports scale-
normalised metrics for the best-performing model (XGBoost), 
including mean and median targets per horizon, robust 
percentage errors, and MASE. 

Across the horizons, XGBoost's MAE is roughly between 
15 and 25% of the mean remaining-forecast value, which 
shows that the model is quite accurate relative to the 
variation of the financial data. The sMAPE keeps increasing 
with the length of the horizon, which is in line with the greater 
uncertainty of the long-term forecasts, and the MASE values 
that are below 1.0 for all horizons indicate that XGBoost 
always beats the naïve historical benchmark. These scale-
normalised metrics taken together indicate that the 
forecasting performance is still practically dependable and 
proportionally consistent at the levels of short-, medium-, and 
long-range enterprise planning timeframes. 

To provide more evidence of the calibration behaviour, 
we looked at the Optuna-tuned XGBoost model 
(n_estimators=619, max_depth=8, learning_rate≈0.024) for 
the 1-month horizon. Figure 4 shows the predicted vs actual 
values, and Figure 5 depicts residuals by the decile of actual 
spend. Across all forecast horizons, XGBoost achieved the 
strongest and most stable performance, with MAE values 
corresponding to approximately 15–25% of the average 
remaining-forecast magnitude and R² consistently above 0.42 
for longer horizons and above 0.62 for one-month 
predictions. A robust MAPE formulation that is less sensitive 
to near-zero denominators—typical in the tail of the 
projects—has been applied so that percentage errors are 
within interpretable ranges, and thus it can be confirmed that 
the model keeps reliable proportional accuracy even when 

Table 3. Multi-horizon forecasting performance comparison with the seasonal-naive baseline 

Model MAE 

(h=1) 

RMSE 

(h=1) 

R² 

(h=1) 

MAE 

(h=3) 

RMSE 

(h=3) 

R² 

(h=3) 

MAE 

(h=6) 

RMSE 

(h=6) 

R² 

(h=6) 

Linear Regression 18,037 23,086 0.48 15,947 20,916 0.45 14,877 19,675 0.22 

Random Forest 13,231 20,182 0.60 11,946 19,024 0.54 10,279 17,376 0.40 

XGBoost 12,862 19,485 0.63 11,944 18,523 0.57 10,486 16,916 0.43 

LightGBM 12,742 19,502 0.63 11,827 18,548 0.57 10,445 16,932 0.43 

CatBoost 12,835 19,475 0.63 11,876 18,490 0.57 10,365 16,826 0.44 

Naive (carry-

forward) 

9,728 16,127 0.740 
 

11,756 19,198 0.52 16,794 26,248 -0.389 
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financial activity is decreasing. As one set, these findings point 
to the fact that the learned relations can be extended to the 
expanding-window validation and they retain their practical 
significance for enterprise planning and cost-control 
scenarios.  

 
Figure 4. XGBoost predicted vs actual values (h = 1) 

 

 
Figure 5. XGBoost residuals by decile of forecast_remaining (h = 1) 

One-month-ahead forecast_remaining actual values 
were regressed on the XGBoost predicted values to assess 
calibration. The resulting calibration slope was 0.76, with an 
intercept of approximately 1.0 k, and R2 = 0.67, indicating 
slight underdispersion but no substantial systematic bias. 
Residuals by deciles showed small positive errors at lower 
and mid-range spend levels and progressively negative errors 
at higher deciles, consistent with a model that slightly 
underestimates very high remaining forecasts. The 
scatterplot illustrates that the points are tightly clustered 
around the 45° line, with the expected dispersion for high-
value portfolios. Residuals by decile show that there was a 
slight overprediction for smaller portfolios and a 
conservative underprediction for the top decile—this is 
desirable behaviour in enterprise financial planning, where 
overestimating risk helps to ensure fiscal adequacy. 

4.3 Feature importance and model explainability 
SHAP analysis uncovered consistent and interpretable 

global patterns in the 1-month LightGBM model (selected 
because of its high performance and efficient explainability 
support). The SHAP-based interpretation of the key drivers 
indicates that open_commitments is the most influential 

predictor by a substantial margin. The increase in open 
commitments strongly increases future forecast_remaining, 
consistent with standard enterprise accounting logic: unspent 
or outstanding commitments naturally signal additional 
future financial requirements in Figure 6. 

 
Figure 6. SHAP summary plot of top predictors 

The variable milestones_attained exhibits a negative 
relationship with future expenditure, indicating that greater 
operational progress is associated with lower projected 
financial needs. This reflects the firm effect of project 
maturity, whereby completing milestones typically reduces 
uncertainty and financial risk. The feature 
commitment_conversion_velocity, which indicates how 
quickly commitments are converted into actual spending, also 
plays a significant explanatory role. A higher conversion 
velocity is associated with a lower remaining forecast, 
consistent with the burn rate concept: if spending is 
proceeding as planned, the future required funding will be 
lower. Both backlog and budget_monthly exhibit strong 
positive SHAP effects, particularly when backlog values are 
high. A large backlog is almost always a signal of outstanding 
work and unrealized obligations, which inevitably lead to 
increased future expenditure expectations. The change 
orders analysis is the main contributor to the further increase 
in the forecast. A high number of change orders is a sign of 
project scope or requirements volatility, thus leading to cost 
expansion as changes accumulate. Finally, 
schedule_slip_weeks has a positive effect on the predicted 
spend, indicating that project delays are one reason for higher 
future financial needs. The slippage typically entails 
inefficiencies, higher labour costs, and increased resource 
requirements, thereby increasing the forecasted expenditure. 

Figure 7 shows the extent to which program identity 
moderates the effect of open commitments on the influence of 
open commitments. When open commitments exceed ~20k, 
programs with similar baseline SHAP patterns diverge 
significantly, indicating structural portfolio differences. It is 
worth noting that program_id itself is not the factor that 
drives the predictions; its effects arise only from interactions 
with financial variables, which provides evidence that the 



Ashutosh Agarwal /Future Technology                                                                            February 2026| Volume 05 | Issue 01 | Pages 337-354 

347 

 

model is not based on arbitrary identifiers. Figure 8 depicts 
the local SHAP force plot for a typical project-month, 
illustrating how individual feature contributions changed the 
model's prediction from the global base value toward the final 
forecast. The figure shows that a high number of open 
commitments was the factor that increased projected 
expenditure most strongly, whereas milestones attained, zero 
backlog, and healthy commitment-conversion velocity 
together decreased the predicted remaining spend. This 
localized explanation confirms that the model behaves in 
accordance with financial logic at the case-by-case level, not 
only in global aggregate patterns. 

 
Figure 7. SHAP Dependence Plot (program_id vs SHAP, colored by 
open_commitments) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An ablation study with a focus on specific aspects also 
served to further confirm the SHAP-derived feature 
importance patterns. The omission of open_commitments 
from the features almost led to a doubling of MAE (from 
≈12.7k to 24.0k) and a decrease of R² from 0.63 to 0.03, 
thereby confirming that it is the main factor that drives the 
remaining forecast. On the other hand, the removal of backlog, 
change orders, or schedule slip weeks led to only very small 
changes in accuracy, which is in line with their lower SHAP 
influence. Complete outcomes can be found in Table 5. Each 
row presents mean MAE, RMSE, and R² averaged over four 
time-based folds after the removal of a single feature group. 
An illustration shows the interaction of program identity with 
financial behavior, revealing that programs with higher open 
commitments consistently have larger positive SHAP 
contributions regardless of their program ID. The differences 
that appear within program_id clusters indicate that the 
structural changes in the portfolios are the root cause of these 
differences, for instance, the differences between vendor-
heavy programs and milestone-driven initiatives. A clear 
funnel-shaped pattern reveals that program_id has almost no 
marginal influence when commitments are low but results in 
steep SHAP gradients as commitments increase. The main 
takeaway is that forecasting behaviour is not significantly 
influenced by the category of the program as represented by 
the identifiers but rather by the interactions between these 
identifiers and the key financial drivers, confirming that the 
model is focused on operational variables rather than 
arbitrary ID labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. SHAP force plot for representative project-month prediction 

Table 4. Scale-normalized forecasting metrics for XGBoost across horizons 

Horizon Mean Target 

(forecast_remaining) 

Median Target MAE RMSE R² MAPE (%) SMAPE (%) MASE 

1-month 67,611.76 55,323.56 12,861.88 19,485.04 0.6269 2.13×10¹³ 105.17 0.8759 

3-month 62,061.12 50,293.36 11,944.06 18,523.13 0.5670 2.44×10¹³ 117.33 0.8140 

6-month 53,971.07 42,728.93 10,486.03 16,915.86 0.4291 3.00×10¹³ 134.25 0.7272 

 

Table 5. Ablation of key financial drivers (XGBoost, h = 1 month) 

Variant Dropped Features MAE RMSE R² 

Full model None 12,740 19,468 0.628 

No open_commitments open_commitments 24,047 31,481 0.030 

No backlog backlog 12,787 19,624 0.622 

No change_orders change_orders 12,650 19,436 0.629 

No schedule_slip_weeks schedule_slip_weeks 12,654 19,443 0.629 
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In order to illustrate in a clear manner how SHAP-based 
local explanations facilitate governance-oriented “what-if’’ 
reasoning, we considered a representative project-month 
from the validation set with open_commitments = 52,400 and 
forecast_remaining = 71,900. The SHAP local explanation 
showed that open_commitments accounted for +18,750 of the 
predicted value. If we hypothetically reduce 
open_commitments by 10% (new value = 47,160) and 
recalculate the local SHAP explanation, this contribution 
decreases to +15,940, resulting in a net decrease of 
approximately 2,810 (≈ 15% relative reduction in the 
commitment-driven component and ≈ 3.9% reduction in total 
forecast_remaining). This case illustrates how the model can 
be used to enable practical financial scenario planning: small 
changes in exposure variables lead to quantifiable changes in 
projected spend, thus, controllers and portfolio managers 
gain the opportunity to evaluate mitigation strategies prior to 
their implementation. 

4.4 Anomaly detection findings 
Three unsupervised models (IForest, COPOD, LODA) 

were benchmarked on scaled numeric features, as shown in 
Table 6. All models flagged approximately 2% of records as 
anomalies, consistent with audit expectations. Figure 9 
represents the variations in the anomaly scores detected by 
the COPOD (Copula-Based Outlier Detection) model and 
expressed for each project-month observation. Using COPOD, 
the highest scores are assigned to those observations, which 
are the extreme tails of the empirical copula distribution, i.e., 
they are statistically the most unusual combinations of 
financial and operational features. In fact, the right tail of the 
COPOD scores distribution is very long, with only a few 
project-months being marked as major outliers. The 
qualitative analysis of anomalies with the highest COPOD 
scores helped identify several distinct patterns, which were 
also recorded in the results log.  

 
Figure 9. Distribution of COPOD anomaly scores 

 

 

 

 

 

 

There were cases of projects with zero open 
commitments while there were extremely high actuals that 
most probably indicate data-entry inconsistencies or 
unplanned financial activities outside the standard practice. 
Besides that, the model found vendor rate spikes that were 
abnormally large (more than 200% of the normal monthly 
rates), thus it confirmed its capability to detect synthetic 
“vendor_rate_spike” anomalies. 

Besides these, various other outliers existed, such as 
projects with extremely high backlog levels that did not 
correspond to milestone progress, thus these projects were 
most probably the ones which had stalled but still kept 
consuming the budget without delivering outputs. Another 
significant pattern was the sudden disappearance of 
forecasted expenditure in projects where forecast_remaining 
dropped to zero in just one month, thereby often indicating 
cancellations or major scope reductions. Altogether, these 
discoveries serve as evidence that unsupervised anomaly 
detection is capable of identifying quite subtle and non-
obvious irregularities that are likely to be missed by 
traditional rule-based systems. 
To put forward the operational value of the anomalies found, 
a detailed examination was done on several project-months 
with the highest scores. There is an example of a project that 
for two months in a row showed actuals of more than 
$420,000 while at the same time it had zero open 
commitments, thus it might be suggesting unplanned 
spending or incomplete procurement registration—an issue 
that usually results in an audit review. Another situation was 
about a vendor whose effective hourly rate went up by more 
than 260% just within one quarter, which is in line with the 
synthetic “vendor_rate_spike’’ anomalies that have been 
implanted in the dataset; such conduct would be the cause of 
contractual verification and invoice checking at the back. The 
third anomaly has to do with a project whose backlog was 
over $300,000 while there was no milestone progress for 
three months; thus, it was the stagnation of delivery despite 
ongoing financial consumption that was hinted at. These 
examples at the case level illustrate that the anomaly-
detection layer does not merely pick up statistical outliers but 
rather brings to the surface financially interpretable risk 
scenarios that are in line with existing enterprise governance 
workflows. The contamination rate was set at 2% in line with 
the norms of audit practice, where true anomalous financial 
events make up a small but material part of portfolio activity. 
Since there were no labelled anomalies, contamination 
hyperparameter tuning by ROC/PR analysis was not possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Design evaluation scores 

Model Contamination Detected Anomalies Key Insight 

IForest 2% 4320 Detects extreme-value and volatility-driven 

irregularities 

COPOD 2% 4320 Smooth probabilistic scoring; best for audit triage 

LODA 2% 4320 Fastest; detects sparse high-dimensional 

anomalies 
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Because the data used are synthetic and lack ground-
truth anomaly labels, it is not possible to compute precision–
recall curves, ROC curves, or cost-weighted anomaly 
evaluation in a meaningful way. In accordance with 
unsupervised risk-screening standards, this study puts more 
emphasis on the qualitative inspection of cases with high 
anomaly scores. Label-based evaluation is a privilege for 
future deployments with domain-validated enterprise 
anomalies. 

4.5 Key findings and trends 
The findings show that gradient-boosting models 

outperform linear models, and nonlinear models have a mean 
absolute error (MAE) that is 25–40% lower than that of linear 
regression across all forecasting horizons. The gap in 
performance between these models is a strong indication that 
there are significant nonlinear interactions between backlog, 
commitments, vendor dynamics, and milestone progress—
interactions that a linear model can hardly capture. The 
accuracy of the forecast deteriorates with increasing horizon 
length, consistent with the realities of enterprise financial 
planning. One-month forecasts were highly accurate, with an 
R² of approximately 0.63, whereas three-month forecasts 
remained operationally useful, with an R² of approximately 
0.57. At the six-month horizon, the models still provided the 
correct direction but had lower precision, with an R² of 
approximately 0.43. The decrease is consistent with real-
world sources of uncertainty, such as changing policies, 
staffing variability, vendor performance fluctuations, and 
scope drift. SHAP analysis provided operational insights that 
can be acted upon by identifying the features that have the 
strongest association with future financial exposure. Open 
commitments, backlog levels, and change orders are the 
dominant predictors that increase forecast_remaining, while 
milestones achieved, commitment conversion velocity, and 
lagged change-order cadence have a mitigating effect. These 
explanatory patterns agree with the logic of practical 
portfolio management, which deepens the trust that users 
place in the model’s transparency and reliability. The 
anomaly detection findings led to the discovery of tightly-knit 
groups of irregularities that were related to vendor 
behaviour, delivery progress that has come to a halt, and 
extreme volatility. Along with COPOD, other detectors found 
instances that might indicate vendor rate manipulation, 
changes that have been backdated, duplicate invoice patterns, 
and zero-commitment over-expenditures—each of which is a 
risk scenario for an enterprise. The use of COPOD scoring in 
conjunction with SHAP-based explanations provides finance 
teams with solid audit trails, thus allowing them to make 
escalation decisions that are well-founded and supported by 
evidence. Lastly, the Optuna-tuned XGBoost model was able 
to demonstrate substantial improvements in accuracy, as 
evidenced by the reduction in MAE from 12,730 to 10,790, 
which corresponds to a 15% performance increase. This 
outcome highlights the importance of using Bayesian 
optimization to facilitate the performance of machine 
learning systems at an enterprise scale that are used for 
forecasting and shows that systematic hyperparameter 
tuning is an effective tool in operational analytics. 

5. Discussion 

This study aimed to develop and evaluate a single 
machine-learning framework that could, in principle, address 
simultaneously three fundamental problems of enterprise 
portfolio management: multi-horizon financial forecasting, 
unsupervised risk detection, and explainable reporting. The 

text below interprets the main empirical findings, links them 
to the existing literature, and also outlines the implications, 
limitations, and future research directions. 

5.1 Interpretation of results 
The forecasting comparison scenarios provide evidence 

that gradient-boosted tree models—XGBoost, LightGBM, and 
CatBoost—are quite consistently better than Linear 
Regression and Random Forest in all horizons. In fact, at 1-
month horizon, XGBoost gets an R² close to 0.63 with MAE 
about 12.8k, and even though the explanatory power 
weakens at 3 and 6 months, where R² goes down to roughly 
0.57 and 0.43, respectively, it is still valuable. The increase of 
uncertainty with the length of the prediction period is in line 
with the data, and enterprise portfolio dynamics are non-
linear and interaction-heavy, as linear models cannot capture 
them properly [2,15]. Further, the Optuna-tuned XGBoost 
setup manages to cut down MAE at h=1 to about 10.9k, thus 
indicative of a major improvement over baseline untuned 
models. It emphasizes the necessity of a hyperparameter 
tuning strategy of forecasting models in real operational 
environments, where small improvements in the 
performance metrics can lead to big financial gains at the 
portfolio level [4].  

According to SHAP-based explanation, the features 
open_commitments, backlog, change_orders, and 
budget_monthly contribute most positively to 
forecast_remaining whereas milestones_attained and 
commitment_conversion_velocity have a reducing effect. 
These concepts are very close to enterprise financial logic: the 
high level of unspent obligations and the volatile nature of 
scope changes increase the exposure; on the other hand, 
milestones and burn-down, being stable, lower it. The 
dependence plots reveal that program identifiers influence 
the intensity of these effects; however, they do not serve as 
independent factors, which means that the models are 
learning structural financial patterns rather than simply 
recalling the IDs [5].  

The anomaly-detection component—isolated Forest, 
COPOD, and LODA with 2% contamination level—pinpoints a 
handful of project-months with the highest risk and most 
extreme behaviours: zero commitments and very high 
actuals, vendor rate spikes going beyond normal ranges, 
backlog that is both stalled and has low milestone progress, 
and sudden drops in forecast_remaining. The patterns in 
question associate well with hypothetical enterprise risk 
scenarios, which include unplanned spend, pricing 
irregularities, stalled delivery, or project cancellation, and 
this is the reason why unsupervised detectors have practical 
value as an audit triage mechanism [3, 11, 12]. 

5.2 Comparison with prior work 
The higher performance of gradient-boosted trees compared 
to linear baselines is in line with previous studies in financial 
and investment forecasting, where ensemble models are, on 
average, superior to traditional econometric or linear 
approaches on tabular data [2, 15, 51]. The multi-horizon 
setup and the use of expanding-window temporal cross-
validation for evaluation are in line with the 
recommendations of large-scale forecasting benchmarks such 
as the M4 Competition that advocate rigorous temporal 
splitting and leakage avoidance [4]. On the risk side, the 
implementation of Isolation Forest and similar detectors is 
very much in line with the references in anomaly-detection 
surveys and outlier-analysis frameworks that propose tree- 
and density-based methods for high-dimensional financial 
data as the most appropriate [11, 12]. The empirical finding 
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that around 2% of records are identified as anomalous is in 
line with the expectations of enterprise audits and previous 
works on portfolio risk screening through predictive analytics 
[23-25]. Employing SHAP for global and local interpretability 
aligns with recent trends in enterprise AI, where explainable 
ML is increasingly considered a necessary condition for 
implementation in regulated financial contexts [5,30]. In the 
same way as interpretable frameworks suggested for supply-
chain and credit risk modelling [30,38], this study shows that 
feature-attribution methods can provide explanations that 
are not only technically correct but also domain logic-
consistent, thus enhancing trust and auditability. 

5.3 Implications for enterprise practice 
On a functional level, the integrated system features the 

missing link that is forecasting, anomaly detection, and 
reporting, often split into separate, loosely coupled tools in 
many ERP and financial environments, which have been 
fragmented [16,26,41]. The unification of these 
functionalities into a single pipeline enables consistent 
feature engineering, shared data quality controls, and 
traceable modelling choices across all analytics outputs. The 
multi-horizon forecasts support different levels of decision-
making: 1-month forecasts can be used for tactical cash-flow 
and accrual planning, while 3- and 6-month forecasts can be 
used for budget reallocation, vendor negotiations, and 
portfolio reprioritisation. The finance teams, on the other 
hand, are not only able to anticipate what will happen if they 
combine anomaly flags with their work, but also can detect 
the concentration of risks, namely projects with high backlog 
and persistent schedule slips, enabling them to take the right 
actions [22, 25, 49]. 

The SHAP explanations and anomaly case summaries 
offer a clear account of the events to the stakeholders such as 
controllers, auditors, and risk committees, which they can 
rely on. The decision-makers are provided with forecasts that 
come along with the ranked drivers (e.g., open commitments 
and change orders) and the instances of unusual behaviour 
(e.g., vendor rate spikes) instead of the so-called "black-box 
scores," which can be used in the formal governance and 
escalation processes [17, 31,53]. In this way, the framework 
not only helps achieve higher predictive accuracy but also 
institutionalizes the learning process of how portfolio-level 
risks unfold over time [33, 40, 58]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Commercial solutions such as SAP Analytics Cloud, 
Oracle FCCS, Anaplan, and Microsoft Power BI, to varying 
extents, integrate forecasting with anomaly detection and are 
largely dependent on rule-based or proprietary black-box 
components. The framework presented here provides a 
comprehensive transparency and model logic, a unified 
forecasting–anomaly–explainability pipeline, and the 
capability to extend to custom portfolio behaviours that 
commercial tools cannot easily accommodate. Hence, the 
framework works with rather than against enterprise BI 
platforms, enabling greater analytical control and auditable 
reasoning. Table 7 presents a qualitative comparison of the 
proposed framework against leading enterprise analytics 
platforms across forecasting capability, anomaly detection, 
interpretability, customizability, and governance support. 

5.4 Limitations 
To begin with, all data are synthetic but retain a realistic 

structure; hence, while this setup enables controlled 
experiments, real ERP datasets can be noisier, less structured, 
and influenced by policies that may differ from the patterns 
revealed here. Therefore, the study's external validity must be 
verified in real-world enterprise environments [13,32]. 
Secondly, the presented framework is limited to batched 
historical data, with retraining performed periodically. It 
currently does not support real-time streaming data ingestion 
or online learning. However, the previous work has already 
established the necessity of real-time financial modelling and 
streaming architectures in dynamic risk scenarios [13,62]. 
Thirdly, the anomaly-detection evaluation being performed 
here is qualitative and not label-based. In the absence of 
ground-truth anomaly labels or expert validation logs, one 
cannot calculate precision, recall, or cost-weighted 
performance. This limits the ability to measure trade-offs 
between undetected anomalies and false alerts [11, 24]. 

Lastly, the model zoo is intentionally limited to tree 
ensembles and classical detectors. While this might be 
suitable for most ERP settings, it leaves out the latest 
developments in deep-sequence modelling, hybrid 
reinforcement learning, and knowledge-graph–augmented 
financial risk optimisation that can potentially enhance the 
performance in the highly complex scenarios [19,20, 54]. The 
framework does not explicitly represent drifting structural 
changes in the scenarios, for example, changes in 
procurement policies, macroeconomic shocks, or inflation-
induced cost increases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7. Feature comparison of enterprise forecasting & risk systems 

           System Forecasting Anomaly  
Detection 

                   XAI     Customizability Governance  
/ Audit 

SAP 
Analytics 

Cloud (SAC) 

Basic 
statistical 

forecasting; 
limited ML control 

Rule-based 
alerts only 

Minimal; 
no SHAP 

Moderate 
(scripts only) 

Strong logging; 
limited model 
transparency 

Oracle FCCS Regression-based 
predictive planning 

Mostly       
thresholds/rules 

None Low; closed 
models 

High audit trail; 
opaque ML 

Anaplan Proprietary 
time-series 

forecasting; strong 
scenarios 

No unsupervised 
detection 

None 
(rule explanations 

only) 

High in 
formulas; 
low in ML 

Good governance; 
formula 

transparency 

Power BI +  
Azure 

Anomaly 
Detector 

Exponential 
smoothing; 

optional Azure ML 

Unsupervized 
detector with 
limited tuning 

Very limited 
unless 

custom SHAP added 

High only 
with custom 

pipelines 

Good audit logging 
via Azure Monitor 

This Unified 
ML 

Framework 

Multi-horizon ML 
(XGB, LGBM, CatBoost); 

Optuna tuned 

IForest, COPOD, 
LODA 

Full SHAP 
global & local XAI 

Very high; 
open-source, 

flexible 

Strong 
auditability; 

reproducible, 
transparent 
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In fact, drift-monitoring tools should be in place to detect 
such changes promptly, thereby enabling recalibration or 
retraining cycles to maintain stability and governance. There 
was no formal statistical significance testing or confidence 
interval estimation for forecasting metrics, as the main focus 
was on comparative model behaviour across matched 
temporal folds. Subsequent research will add bootstrap 
confidence intervals and model-comparison tests to support 
inferential claims. This study version lacks a complete 
ablation table for all the features that have been engineered. 
As the dataset is synthetic and some interactions are 
structurally embedded, a systematic ablation analysis may 
not generalise significantly; however, future research will 
examine controlled ablations of real ERP datasets. 

5.5 Future Directions 
Future projects can broaden this framework in different 

ways. At the model layer, incorporating transformer-based 
tabular models, sequence models, or hybrid RL architectures 
may improve long-horizon forecasts and capture more 
complex temporal dependencies in vendor and project 
behaviour [19,20,54]. At the systems level, the next crucial 
step is to integrate the pipeline into a complete MLOps 
stack—continuous integration, automated drift detection, 
scheduled retraining, and shadow deployment in live ERP 
systems—to assess robustness under real production 
workloads [26,35,41]. Methodologically, subsequent studies 
must rely on expert-labelled anomalies and conduct 
prospective validations to measure operational value (e.g., 
avoided overruns or earlier detection of problematic 
projects). Scenario modelling could be incorporated into 
SHAP explanations to enable “what-if” analyses—e.g., 
illustrating how a 10% reduction in open commitments 
would affect forecast_remaining at the portfolio level [33,36]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Moreover, the ethical and governance aspects warrant 
further investigation. Among these are fairness analyses 
across departments or vendor groups, regulated human-in-
the-loop interventions for overriding anomaly flags, and 
structured estimates of financial impact (e.g., savings from a 
2–5% reduction in overruns in large portfolios) [31,42,53]. By 
resolving these issues, the adoption of integrated ML 
pipelines as central instruments of enterprise financial 
governance rather than mere experimental add-ons would be 
more convincing. As per the evidence in Table 8, the next 
steps of highest priority would be online-learning pipelines, 
real-world 12-month validation, and the integration of 
labelled anomalies for supervised risk modelling. from a 
practical point of view, very small gains in accuracy could lead 
to considerable financial advantages. Thus, a 2-5% decrease 
in forecast error or better use of the budget without overruns 
that can be achieved through earlier anomaly detection and 
improved spend visibility in a portfolio with an annual budget 
of $500 million would mean that avoided losses would be 
around $10-25 million per year.  

A well-defined research plan to move the framework 
forward comprises the following points: (i) integration of 
online learning using libraries such as River, (ii) 
benchmarking of CatBoost and transformer-based models on 
multinational ERP datasets, (iii) creation of scenario-based 
“what-if’’ explanations, (iv) prospective 12-month validation 
in a live ERP environment, (v) expert-labeled anomaly 
integration for supervised risk modelling, and (vi) fairness 
and governance audit formalization. These measures would 
gradually bring the framework closer to enterprise-grade 
operational deployment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8. Prioritized research agenda for advancing the unified ML framework 

     Priority Research Direction Estimated 
Timeline 

Description / Expected Contribution 

High 1. Integration of online learning pipelines 
(e.g., River) 

  6–12 months Enables continuous adaptation 
 to new financial behaviour, reduces drift, and supports near–
real-time portfolio monitoring. 

High 2. Prospective 12-month 
 validation in live 

 ERP environments 

  12–18 months Tests robustness under real operational conditions, evaluates 
downstream impact 

 on budgeting accuracy, and quantifies financial savings. 

High 3. Incorporation of  
expert-labelled anomalies for supervised 

anomaly detection 

  6–12 months Allows computation of precision, recall, cost-weighted scores, 
and reduces false 

 positives in vendor/payment workflows. 

     Medium    4. Evaluation of transformer-based 
tabular models (FT-Transformer, TabNet) 

  6–12 months Assesses whether deep architectures 
 outperform gradient-boosted trees for long-horizon, 

 nonlinear enterprise financial forecasting. 

     Medium    5. Development of what-if scenario 
engine for interactive SHAP-based 

counterfactuals 

3–9 months Provides controllers and auditors 
 with actionable levers  

(e.g., “reduce commitments by 10% ⇒ forecast decreases by 
X”). 

     Medium   6. Formal fairness and governance audits   6–12 months Measures cross-department and cross-vendor bias, supports 
compliance with  

internal audit and regulatory standards. 

     Medium 7. Full MLOps deployment 
(MLflow/Kubeflow + CI/CD + drift 

monitoring) 

  9–18 months Ensures scalable, reproducible, and traceable model 
deployment across enterprise environments. 

Low 8. Expansion to multinational ERP 
datasets 

   12–24 months Tests generalisability across regulatory regimes, currencies, 
vendor structures, and project governance models. 

Low 9. Integration of hybrid RL + knowledge-
graph methods 

   18–30 months    Supports adaptive portfolio optimisation and long-horizon 
strategic planning beyond static forecasting. 

Low    10. Estimation of financial ROI from   
improved forecasting 

 and anomaly detection 

  3–6 months Quantifies monetary benefits (e.g., 2–5% reduction in  overruns 
= $10–25M annual 

 savings in large portfolios). 
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6. Conclusion 

This research designed and assessed a combined 
machine-learning architecture that integrates multi-horizon 
portfolio forecasting, unsupervised anomaly detection, and 
SHAP-based interpretability in a single enterprise-ready 
pipeline. Using a large, structurally realistic project-month 
dataset, gradient-boosted tree models (in particular XGBoost, 
LightGBM, and CatBoost) consistently outperformed linear 
baselines, achieving strong predictive accuracy at the 1-
month horizon and retaining useful signal at 3 and 6 months. 
SHAP analysis indicated that open commitments, backlog, 
change orders, and schedule slippage are major drivers of 
future financial exposure, whereas milestone progress and 
healthy commitment conversion are stabilising factors. The 
anomaly detectors (Isolation Forest, COPOD, LODA) brought 
out small, high-risk subsets of project-months with plausible 
enterprise risk patterns, for example, vendor rate spikes, 
zero-commitment overspend, and stalled delivery. The 
implications for practice are of two kinds. Firstly, a single 
architecture lessens the disintegration that is usually 
between forecasting, risk monitoring, and reporting tools, 
thus allowing for consistent feature engineering, governance, 
and auditability. Secondly, the combination of high-
performing models with clear explanations changes ML 
output from being just a set of difficult-to-understand scores 
into defensible financial narratives that can be easily 
understood by controllers, auditors, and portfolio leaders. 
Therefore, the framework not only works as a prediction 
engine but also as a means of institutional learning about the 
financial risk that is accumulated across portfolios. According 
to these results, practitioners should: (i) focus on gradient-
boosted ensembles with systematic hyperparameter tuning 
for portfolio forecasting, (ii) combine forecasting with 
anomaly detection rather than working them as separate 
processes, and (iii) place SHAP-style explanations directly in 
the dashboards and review processes so that every high-risk 
signal has an interpretable explanation. Subsequent research 
should confirm the framework using genuine ERP data, 
develop it for streaming and online-learning scenarios, and 
include expert-labelled anomalies to measure precision, 
recall, and financial impact. Work is also required on fairness, 
human-in-the-loop governance, and “what-if” scenario 
analytics, which would make unified ML pipelines the main 
components of enterprise financial stewardship rather than 
isolated analytical experiments. 
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