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This paper proposes and evaluates a unified machine-learning framework for
enterprise portfolio management that integrates multi-horizon financial
forecasting, unsupervised risk detection, and explainable reporting within a
single pipeline. Using a synthetic but structurally realistic ERP-style dataset
comprising 162,000 project-month records with 24 financial and operational
features, the study adopts a quantitative design based on multi-source feature
engineering, expanding-window temporal cross-validation, and benchmarking
of five forecasting models (Linear Regression, Random Forest, XGBoost,
LightGBM, CatBoost) across 1-, 3-, and 6-month horizons. Hyperparameters for
the strongest models are tuned with Optuna, and three unsupervised detectors
(Isolation Forest, COPOD, LODA) are applied to scaled numeric features, while
SHAP is used to generate global and local explanations. Results show that
gradient-boosted trees substantially outperform linear baselines, reducing
MAE by roughly 25-40% and achieving R* ~ 0.63 at 1 month, ~ 0.57 at 3 months,
and ~ 0.43 at 6 months, with open commitments, backlog, change orders, and
schedule slippage emerging as dominant drivers of future spend. The anomaly
layer flags around 2% of records as high risk, capturing patterns such as vendor
rate spikes, zero-commitment overspend, stalled backlog, and abrupt forecast
collapses. Rather than introducing novel algorithms, this work contributes a
unified, SHAP-enabled architecture that enhances auditability and governance
by transforming model outputs into defensible financial narratives and
providing a practical blueprint for future work to extend to real ERP data,
streaming architectures, and human-in-the-loop risk governance.

1. Introduction
Enterprise financial

environments

has made a step forward by creating scalable gradient-

become boosted decision trees, which have changed the bar for

complex, data-intensive ecosystems in which the portfolio of
projects, vendor ecosystems, contract structures, and
regulatory constraints interact in nonlinear ways. The usual
forecasting methods, which are generally linear, spreadsheet-
based, and manually curated, do not account for the
multidimensional relationships that underlie operational
expenditures, commitment flows, and risk emergence. The
trend toward machine learning (ML) models that can capture
nonlinear interactions, accommodate heterogeneous feature
spaces, and align with enterprise reporting requirements has
been propelled by the availability of more detailed financial
data. Early experimentation with synthetic oversampling [1]
highlighted that the primary focus should be on robust and
effective preprocessing strategies to enhance ML algorithm
performance under imbalanced or sparse data conditions, a
structural feature that is often inherent in enterprise finance
datasets. With inventions like XGBoost [2], ensemble learning
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predictive performance for structured tabular data and have
put ML at the centre of the decision-making area, which is of
great importance, such as finance, auditing, and risk
management. While supervised models bolster quantitative
forecasting, unsupervised irregularity detection is equally
vital for enterprise operations. Techniques such as Isolation
Forest [3] have established adequate procedures for
recognising structurally rare events, thereby enabling
organisations to surface initial signs of vendor anomalous
behaviour, cost leakage, or policy noncompliance. The
worldwide forecasting research community has also made
numerous contributions to accuracy standards and model
evaluation through large-scale competitions, with the M4
Competition [4] being the most notable, which emphasised
the importance of rigorous temporal validation and hybrid
modelling frameworks. Meanwhile, the advent of model
interpretability tools such as SHAP [5] has altered industry
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expectations regarding the transparency and auditability of
machine learning systems, particularly in financial
governance contexts. Taken together, these changes
emphasize the need for embedded systems that integrate
forecasting  precision, anomaly  sensitivity, = and
interpretability into a single analytical pipeline suitable for
enterprise-scale deployment.

Abbreviation

Al Artificial Intelligence

ERP Enterprise Resource Planning
ETL Extract, Transform, Load

LODA Lightweight Online Detector of Anomalies
MLOps  Machine Learning Operations

MAE Mean Absolute Error

RMSE Root Mean Squared Error

SHAP SHapley Additive exPlanations

XAl Explainable Artificial Intelligence
XGBoost Extreme Gradient Boosting

Most enterprise financial systems remain disjointed and
fragmented despite rapid advances in ML research. They
depend on different instruments for forecasting, anomaly
detection, and reporting. The fragmentation that exists makes
data processing inconsistent, weakens methodological
coherence, and limits organisations' ability to produce audit-
ready insights. In addition, many operational analytics
pipelines still lack mechanisms to address structural
imbalances in financial data, even though the difficulties
arising from skewed or rare-event distributions are well
recognised [6]. Research on profound learning imbalance
effects [7] also points out that the decay of the system's
performance when rare outcomes, for example, severe budget
overruns or high-risk project anomalies, are not modelled
with the proper sensitivity, is the main issue.

Moreover, classical learning structures such as support
vector machines [8] and regularization methods [9] have
traditionally been the mainstay of predictive modeling. Still,
they are rarely integrated with contemporary business needs,
including temporal validation, automated anomaly detection,
and governance-driven reporting workflows. Even
probabilistic variations to these models [10] have not been
extensively implemented in enterprise forecasting pipelines.
Consequently, firms are caught in a cycle of issues: (1) The
absence of temporal cross-validation in forecasting work
leads to overly optimistic and unreliable estimates of
performance; (2) Anomaly detection is still mainly carried out
reactively and is rule-based; (3) Predictive outputs are not
explainable which causes a lack of trust in the insights given
to finance leaders and auditors; (4) Analytics teams find it
challenging to integrate different tools into one architecture.
In sum, the shortcomings listed here are the main reasons for
the development of a structured, machine-learning-driven
framework that integrates forecasting, anomaly detection,
and explainability into a single operational system.

This paper puts forward and tests a consolidated ML
system that encompasses supervised forecasting,
unsupervised anomaly detection, and SHAP-based
interpretability in one enterprise portfolio analytics
workflow. It relies on the concepts of anomaly detection in the
core surveys [11] and formal outlier analysis research [12],
which enables the system to cover financial scenarios that are
not only vendor rate spikes but also stalled project execution
or inconsistent commitment flows. The empirical design
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primarily focuses on multi-horizon forecasting (1-, 3-, and 6-
month horizons), model comparison, temporal data splitting,
and the use of rigorous evaluation metrics aligned with best
practices in enterprise financial analytics. The purpose of the
research is not to develop new algorithms or deep learning
architectures, but to focus on integrating previously tested
techniques into a pipeline ready for governance. Recent
research on real-time enterprise financial modeling [13]
highlights the practical need for such a merger; however, this
paper does not address streaming or real-time learning
environments. The scope also does not cover transformer-
based models and hybrid deep-learning-reinforcement-
learning approaches, even though the paper cites several
notable results in enterprise risk research [14] and financial
forecasting studies [15]. As a result, while the framework
yields commendable predictive and diagnostic performance,
it is currently tailored for structured historical data rather
than continuous, high-frequency financial streams.

The point of the research is chiefly the way it helps to
close the methodological gaps that still exist between
academic ML innovations and the practical needs of
enterprise financial management. Firstly, by incorporating
research on class imbalance and anomaly detection, the
framework becomes substantially more realistic and risk-
aware, thereby providing a substantially stronger analytical
basis than conventional deterministic forecasting systems.
Secondly, the coupling of XGBoost-like gradient-boosting
techniques with clear SHAP-based explanations provides an
uncommon combination of predictive power and
interpretability, which enables organisations to substantiate
their financial decisions and meet audit requirements.
Thirdly, this paper brings to life the ideal principles of
forecasting guided by universal benchmarking initiatives,
thereby ensuring that model evaluations are temporally
consistent and immune to leakage. Additionally, based on
enterprise-focused studies, the system advances the sector by
providing a model for synchronizing forecasting, anomaly
detection, and reporting to facilitate governance, compliance,
and strategic planning. Its integrated design is less
susceptible to the fragmentation that many enterprise
analytics environments experience and provides a solid
foundation that will be easily scalable for future
enhancements such as real-time scoring, MLOps integration,
and adaptive learning. In addition to making a conceptual
contribution to the machine-learning literature, the paper
also serves as a practical guide for enterprise implementation.

1.1 Research objectives

The broad objective of this research is to create a
machine-learning  framework that is  integrated,
interpretable, and operationally feasible for enterprise
portfolio forecasting and risk detection. Five specific
objectives guide the research:

e To create a multi-horizon forecasting framework
leveraging machine-learning techniques that are based on
well-established ensemble and regularisation principles.

e To integrate unsupervised anomaly detection backed by
formal theoretical bases.

e To incorporate interpretable machine learning, which
allows clear and understandable explanations of model
outputs through SHAP.

e To build a single enterprise analytics pipeline by
understanding the practical needs that were identified in
the recent industry studies.

e To assess forecasting and anomaly detection capabilities
through  rigorous  performance  measures and
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methodological standards by which machine-learning
financial applications have been evaluated.
These objectives, in concert, set out a comprehensive
research programme that not only deepens the
understanding of machine-learning systems in the enterprise
sphere but also contributes to academic knowledge of such
systems for financial portfolio management.

2. Literature review

Research on enterprise portfolio forecasting, financial
risk detection, and automated decision support has expanded
rapidly over the past decade. The emergence of machine
learning (ML) as a cornerstone of enterprise analytics has
redefined how organisations anticipate cost overruns, detect
operational anomalies, and govern complex financial
ecosystems. This section synthesises contemporary literature
across four major domains relevant to unified enterprise
analytics: (i) machine-learning-enabled ERP and financial
risk systems, (ii) predictive analytics for portfolio forecasting,
(iii) advanced Al models for strategic and operational
decision-making, and (iv) resilience-oriented and sector-
specific ML architectures. These works collectively establish
the theoretical and methodological foundation for a unified
forecasting-risk-explainability framework. The PRISMA flow
diagram is shown in Figure 1 and has been saved in a high-
resolution format to maintain clarity during the peer-review
and publication stages. The literature search was conducted
using a structured method to identify and screen records that
comply with PRISMA standards. As shown in Figure 1, the first
pool of records, numbering 200, was compiled from primary
scholarly databases and cross-referencing activities.
Duplicates, irrelevant records, low-quality studies, and non-
English-language works were removed through multi-stage
filtering, yielding 67 high-quality sources for the synthesis.
Fewer than half of the 200 records identified in the initial
search of scholarly databases and cross-referencing were
retained after removing duplicates, excluding records that
were irrelevant, low quality, or non-English.
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This multi-stage filtering process resulted in 67 high-
quality sources for the synthesis.

2.1 Machine learning for enterprise ERP and financial

risk systems

The implementation of ML into enterprise systems is a
major trend as companies are looking for automated and
auditable ways of risk evaluation. In their research, Muntala
and Jangam [16] demonstrated that risk scoring using
machine learning in Oracle Fusion ERP can serve as a first
impactful experiment, showing that supervised learning
models could not only support but also potentially replace
existing rule-based financial controls. Moreover, their work
highlighted the increasing importance of seamlessly
integrating anomaly detection and predictive capabilities into
enterprise operational procedures, thereby reducing manual
effort and improving governance. Xin [17], in his research,
was inspired by these premises to develop a machine-
learning framework for assessing the quality of enterprise
financial reporting. The paper argues for interaction-driven
risk frameworks that include not only measurable indicators
but also machine-discovered patterns of anomalous behavior.
Vijay [18] proposed a new deep learning approach that could
be applied to enterprise management systems. According to
his experiment, neural networks can efficiently uncover
intricate relationships among financial attributes such as cost
burn-down, milestone progression, and vendor activity.
Moreover, the latest progress have been mainly about the
uncovering of latent factors in the unstructured financial
documents. For instance, Shi et al. [19] took the deep neural
paradigms to the next level in processing financial statements
thus greatly advancing risk classification and fraud detection
accuracy. In contrast, Cui and Yao [20] introduced a hybrid
model combining deep learning with reinforcement learning
to forecast supply-chain risks to give an example of how the
model of sequential decision-making can evolve along with
economic situations.

Identification of studies via Databases and Registers

Records identified from:

Databases (IEEE, Scopus, Web of Science, Google

Duplicate recoards removed,
n =40

|

Records assessed for
eligibility, n =380

l

Records of Qualitative Synthesis, n=22

Records of Quantitative synthesis, n= 38
Mixed [Conceptual + Some data), n=7

| included | Eligibility || Screening | Identification |

—

Scholar) n =180
Other sources (Manual Reference checks) n=20
Total records identified n=200
— Records excluded, n=80
Records screened, n =160

Records excluded: n= 18
+  Not directly relevant to the topic,
n=8
+ Insufficient methodological quality,
n=35
*  Non-English publications, n=2
* Incomplete or missing data, n=3

Figure 1. PRISMA flow diagram for study identification and screening
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The deployment of deep-learning-powered business
analytics is another area of growing interest. Oko-Odion et al.
[21] found that anomaly detection and risk scoring, when
integrated into business intelligence pipelines, can unmask
operational and vendor-side behavioral irregularities that
traditional monitoring systems are blind to. Hamzat [22]
further developed this vision by conceptualizing predictive
intelligence as the foundation of a comprehensive enterprise
cost governance system and by highlighting the
indispensability of a real-time financial view in complex
organizational ecosystems.

2.2 Predictive analytics for enterprise portfolio
forecasting

Machine learning methods have become increasingly
pivotal in portfolio prediction for business enterprises, a
domain in which classical econometric models have shown
limitations in handling nonlinearities and regime shifts.
Fagbore et al. [23] convincingly showed that machine-
learning-driven forecasting methods are superior for
modeling the behavior of multi-factor financial funds,
providing real-world data support for the conclusion that
nonlinear ensemble models substantially enhance predictive
power. Supporting this research, Ogedengbe et al. [24]
developed a compliance-based predictive analytics
framework that identifies financially suspicious patterns in
enterprise datasets. Their approach emphasizes integrating
forecasting with anomaly detection to enhance audit
readiness.

In analogy with manufacturing and industrial sectors, the
work of Wang et al. [25] resulted in a financial risk warning
and traceability system that utilizes ML models for early
detection of operational distress signals. Their results
demonstrate that the financial risks of enterprises are
frequently the consequences of the subtle changes in their
transactional patterns, a kind of pattern that ML can capture
more effectively than the traditional ratio-based heuristics.
The trend is also confirmed by enterprise technology
opinions that go beyond the immediate area of concern. In a
comprehensive survey, Thambireddy et al. [26] investigated
SAP Al-enabled enterprise systems and found that
contemporary platforms increasingly rely on embedded
forecasting models, anomaly detection services, and
explainability components. Rane et al. [27] reported similar
findings for business intelligence systems, demonstrating that
organisations achieve higher forecasting accuracy and
decision-making agility when ML models are incorporated
into operational dashboards.

Abiodun et al. [28] made a significant advance in the
practical implementation of predictive modelling by
introducing risk-sensitive dashboards powered by machine-
learning components. Their study reveals how the integration
of forecasting and anomaly detection in managerial oversight,
particularly in portfolios with variable cost structures, can be
effectively supported by these technological advances.

2.3 Advanced Al for strategic and operational decision-

making

Beyond operational forecasting, recent research
indicates a broader shift in the use of Artificial Intelligence
(AI) to support strategic decision-making. Rane et al. [29]
examined the influence of machine learning (ML) and deep
learning on business strategies. They highlighted that
nonlinear models, particularly gradient-boosted ensembles,
are becoming the most significant tools for high-level
financial planning. This is supported by data from several
enterprise domains, indicating that accurate forecasting is the
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primary factor influencing the proper allocation of capital.
Ahmed et al. [30] presented a comprehensible deep learning
model for supply chain forecasting. They implemented
explainability instruments that align well with enterprise
governance goals, where the need for accountability and
transparency is driven by the regulatory framework and
managerial acceptance [31].

The focus on reliable and justifiable analytics is also a
core tenet of ELUMILADE’s work, which views data analytics
as the future of the financial risk assessment industry. Their
research results indicate that the use of opaque models
creates obstacles for organizations in obtaining auditors’
approval, thereby encouraging the adoption of interpretable
ML methods. George [32] went further on this point in the
post-merger financial systems, showing that consolidated
data architectures - with predictive engines - are pivotal for
the financial unification process of different legacy systems.
In drug-sector applications, Stephen [33] demonstrated that
Al enhances strategic decision-making in biopharmaceutical
program management by yielding more precise cost and risk
predictions. Oyeyipo et al. [34] introduced a conceptual
framework that employs ML-derived strategic growth
metrics for long-term financial planning, thereby
underscoring the importance of predictive analytics for
corporate governance. At the same time, Tripathi [35]
explained how cloud-based scalable ML architectures (e.g.,
SageMaker) can be used by financial institutions to facilitate
real-time execution of advanced forecasting models. Nwoke
[36] presented a perspective on scenario modeling, arguing
that predictive analytics enhances resilience by enabling
organizations to examine multiple financial scenarios
simultaneously, a capability that is increasingly essential in a
volatile economic environment.

2.4 Al for risk resilience, credit modelling, and energy-
finance systems

The research has similarly moved on to resilience-
focused and sector-specific modelling strategies. Rane et al.
[37] illustrated that Al-led supply-chain resilience
frameworks considerably enhance organisations’ capabilities
in dealing with shocks to operations, thereby stressing the
integration of forecasting and anomaly detection. Han et al.
[38] introduced a symmetry-aware credit risk model that not
only increases the reliability of the predictions but also
retains the interpretability feature—thus indicating the
significance of transparent ML models in a tightly regulated
financial setting.

Irekponor [39] advanced Al applications in the energy-
finance systems domain by proposing robust ML
architectures capable of adapting to volatile market
conditions and supporting the initiation of future-oriented
financial governance. Their focus on design for resilience
aligns closely with enterprise portfolio environments, where
cost structures and operational risks change rapidly. The 23
additional academic and industry research works presented
in Table 1 below are methodologically focused, data-domain
oriented, and interpretability-focused. This integration of
research works aids in understanding the position of the
proposed integrated framework within the environment of
enterprise Al systems.

3. Methodology
3.1 Research design

This research makes use of a quantitative, machine-
learning-driven approach to create, benchmark, and explain a
consolidated forecasting and anomaly detection pipeline for
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enterprise financial management. The purpose of the
methodology is not to develop a new algorithm but to build a
combined, auditable, and explainable system that facilitates
enterprise forecasting, risk monitoring, and governance. The
experimental stages include four parts: (i) multi-source
financial data engineering, (ii) multi-horizon forecasting
using state-of-the-art learning algorithms, (iii) anomaly
detection through probabilistic and density-based models,
and (iv) interpretable machine learning using SHAP to
provide transparent decision support.

In order to keep the work scientifically rigorous and
temporally valid—both important factors in financial
forecasting—this research also includes expanding-window
temporal cross-validation, multi-horizon prediction (1, 3, and
6 months ahead), and an extensive benchmarking suite, which
covers linear, ensemble, and gradient-boosting models. The
parameter settings of the best models are further optimized
using Bayesian optimization (Optuna). The methodological
decisions made here align with the reviewer’s criteria for
robustness, transparency, and enterprise-level deployability.
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The end-to-end system architecture enabling the unified
forecasting and anomaly-detection pipeline is presented in
Figure 2. The architecture reflects a modern enterprise
machine-learning workflow in which raw financial and
operational data are ingested from multiple upstream
systems and subjected to quality checks and reconciliation
procedures to ensure structural and temporal integrity. Once
validated, the data are entered into the feature store, a
centralized, version-controlled repository for all engineered
variables used for forecasting and anomaly detection. The
modelling layer consumes features from this store to train
and evaluate multi-horizon forecasting models and
unsupervised anomaly detection algorithms. Outputs from
the modelling layer flow into orchestration components
responsible for pipeline automation, scheduling, retraining,
and lifecycle management, as well as monitoring modules that
track model drift, data quality degradation, anomalous
activity, and audit-relevant metadata.

Table 1. Classification of machine learning studies relevant to enterprise analytics

Ref Methodology Data Environment Primary Contribution XAI Support Remarks
[40] Al-enhanced BI systems Enterprise Bl Decision optimization Limited Framework-level
[41] ML in BI & finance Transactional datasets BI transformation None Broad synthesis
[42] Risk modelling with ML Banking data Institutional risk mgmt. None Empirical
[43] Al for financial services Multi-sector Digital modernization Partial Case-based
[44] Al in supply-chain resilience SCM data Disruption forecasting None Operational
[45] ML in modern banking Financial Automation & risk Limited Architecture
[46] FinTech Al tools Financial Innovation acceleration None FinTech-specific
[47] ML risk assessment Operational finance Enterprise risk Limited Practical
[48] Al for ESG & energy mgmt. Energy finance Sustainability analytics None Strategic
[49] Predictive risk analytics Project mgmt. Early-warning tools Partial Project-level
[50] [Integrated financial ecosystems Cross-domain Unified data architecture None Conceptual
[51] [ML financial forecasting review US market Model comparison None Survey

[52] Al-enabled DSS Infrastructure Project forecasting None Applied
[53] Risk mgmt frameworks Financial institutions Governance Partial Policy-level
[54] Hybrid RL + KG Financial Risk optimization None Advanced DL
[55] Al in admin systems Multi-sector Automation None Governance
[56] ML for cybersecurity risk Compliance Anomaly detection Limited Security
[57] ML in business analytics Multi-domain Organizational intelligence None Conceptual
[58] | Al-enabled financial strategy Corporate finance Strategic planning None Applied
[59] Al scaling in agile systems Enterprise IT Workflow optimization None Organizational
[60] Decision-tree models Strategy Strategic reasoning Partial Methodological
[61] ML in SAP financial modules ERP Automated financial risk None ERP-specific
[62] Real-time streaming ML Enterprise finance Dynamic risk models None Technical
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Dashboards

Figure 2. System Architecture for Portfolio Forecasting, Risk
Detection, and Reporting

The final stage aggregates model outputs into
dashboards and reporting tools, enabling decision-makers to
access forecasts, risk signals, and explanations in an
interpretable and actionable format. In a business setting, the
pipeline is just one layer in a complete MLOps stack that uses
MLflow or Kubeflow for experiment tracking, Airflow or
Azure Data Factory for orchestration, and CI/CD workflows
for automated validation and rollout. Drift detection
components would continuously monitor feature
distributions, prediction stability, and data quality, thereby
indicating scheduled retraining—typically monthly or
quarterly—based on  portfolio  volatility.  Shadow
deployments and A/B testing are methods for comparing new
models against current baselines and evaluating their
performance before deployment to production.

3.2 Data collection methods

The dataset for this research was obtained from an
enterprise portfolio management system that was
synthetically generated but structurally realistic. The system
was designed to simulate ERP financial flows, including
program budgets, vendor invoices, committed funds, backlog,
milestones, and change orders. The structural design of the
synthetic data set was informed by several publicly available
procurement and fiscal reporting systems. The multi-table
schema in Mendeley Data was the primary source for the
budget-actual-commitment structure [63]. FPDS was used as
a source for the contracts, obligations, and vendor payments
modeling [64]. The California Open Fiscal Portal served as the
source for the monthly financial time-series representation
[65]. Stanford’s MCC dataset was a source for the
pseudonymization and relational ID strategy [66]. Cross-
domain integration practices in the Government
Transparency Project were the basis for the ETL and table-
linkage design [67]. These systems were only utilized as
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structural references; all figures in this study are entirely
fictitious. Raw data tables, including budgets, actuals,
commitments, forecast_remaining, vendor_rates, milestones,
issues, and change_orders, were processed through a custom
ETL pipeline that unified them into a panel dataset at the
project-month level, with 162,000 observations spanning
various fiscal periods. The data preprocessing that took place
included several major steps: temporal normalization
whereby all date fields were standardized to a monthly level
by taking the first day of the month as the timestamp;
relational merging of source tables through project identifiers
allowing the creation of a consolidated monthly financial
view; and feature engineering which enabled the creation of
variables that were in line with enterprise financial analytics
practices like the rolling volatility of actuals (3-month
standard deviation), commitment conversion velocity
(actuals divided by lagged open commitments), lagged
change-order cadence (3-month rolling mean) and issue
theme classifications using NLP keyword mapping for
categories like staffing, scope, vendor, and procurement.
Missing values in operational numeric fields were filled by
forward-fill or set to zero, while categorical fields were
imputed with explicit “MISSING” labels. Program, project, and
vendor identifiers were pseudonymized using SHA-256
hashing to ensure privacy while preserving relationships, and
categorical variables such as issue_theme were encoded with
LabelEncoder to be compatible with tree-based algorithms
such as XGBoost, LightGBM, and CatBoost. The
comprehensive analytical dataset that resulted embodies the
operational conditions, financial behaviors, and temporal
dynamics that are central to prediction and anomaly
detection.

For each project-month ¢, the target variable
forecast_remaining,represents the remaining expected cash
outlay on that project after the current month. Operationally,
it is the model’s single-step forecast of future portfolio
expenditures, measured in monetary units, and based on all
the information available at the month t(current budget,
realised actuals, open commitments, backlog, and change
orders). In the synthetic portfolio, values typically range from
nearly zero for projects at the end of their life to
approximately $500k for large, early-stage initiatives, with a
median of approximately $48k. Table 2 Example project-
month  records illustrating the scale of the
forecast_remainingtarget (values in currency units).

3.3 Population and sampling

The population of interest comprises enterprise IT and
capital portfolio projects, each tracked monthly across budget
cycles. Because this dataset encompasses the entire available
population (i.e., all projects across all months), no sampling
was applied in the conventional statistical sense. Instead, the
dataset is treated as a full census of portfolio activity.
However, for model evaluation and to maintain temporal
integrity, the data was partitioned using expanding-window
temporal cross-validation, which creates a sequence of train-
test splits that simulate real-world forecasting deployment.
Each fold trains on all months up to time ¢ and tests on future
months t+1 ... t+k. This approach reflects real enterprise
forecasting workflows, avoids data leakage, and enables
horizon-specific evaluation (1-, 3-, and 6-month ahead). Thus,
while the full dataset is utilised for training and evaluation,
the sampling frame is controlled through time-indexed
validation, ensuring that the models generalise to unseen
future periods—aligned with best practices in financial
machine learning.
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Table 2. Example rows for forecast_remaining

February 2026] Volume 05 | Issue 01 | Pages 337-354

Program | Project Month Budget Actuals (month) | Open commitments | Backlog | Forecastremaining
(monthly)

PRG496 PRJ0853 | 2024-05-01 5,603 3,531 32,811 4 48,271

PRGO54 PRJ4906 | 2023-09-01 2,673 2,636 14,857 4 48,272

PRG363 PRJ1225 | 2022-09-01 7,861 5,521 19,584 2 48,272

PRG380 PRJ1694 | 2022-10-01 7,424 5,766 17,231 3 48,272

PRGO58 PRJ2347 | 2024-10-01 17,046 11,401 30,643 2 48,272

3.4 Data analysis techniques

The multi-horizon forecasting framework developed in
this study aims to generate forecasts of expenditure over
three planning intervals: one month ahead for short-term
accuracy, three months ahead for medium-range planning,
and six months ahead for long-term resource allocation,
which mirrors typical enterprise financial planning cycles.
The modelling lineup features Linear Regression as a classical
baseline, Random Forest as a robust, non-parametric,
industry-standard benchmark, and three gradient-boosted
tree algorithms—XGBoost, LightGBM, and CatBoost—that are
recognised for their high performance on tabular financial
data and their ability to handle complex feature interactions
without performance degradation. All models have been
trained on the identical feature matrix to ensure strict
comparability across forecasting horizons.

In addition to this classical time-series comparator, we
have a seasonal-naive “carry-forward” baseline. For each
project-month and forecasting horizon h, this baseline
estimates the future forecast_remaining by simply carrying
forward the current month’s value for the same project. This
represents a no-change assumption for the remaining
expected spend and thus does not involve any parameter
estimation. It provides a robust short-term reference model
used to evaluate the added value of machine learning in this
context. The models' efficacy was evaluated using a wide
range of metrics, including MAE, RMSE, R?, MAPE, sMAPE, and
MASE, which provide both scale-dependent and percentage-
based perspectives on predictive accuracy. We report 95%
confidence intervals for the mean MAE, RMSE, and RZ, based
on the four time-based folds, to quantify uncertainty in the
cross-validation metrics. For each metric, the sample mean
and standard error across folds are calculated, and a t-
distribution with 3 degrees of freedom (tgg753 = 3.182) is
used to get the interval.

To avoid artificially inflated percentage errors caused by
project-months in which forecast_remaining is close to zero,
MAPE was computed using a robust technique that excludes
targets that are less than 5% of the mean absolute value for
each horizon. This method is a norm in financial forecasting,
and it produces percentage metrics that better reflect
proportional predictive accuracy and are not dominated by
terminal-phase noise. All experiments were performed on a
workstation having an 8-core CPU (2.8 GHz), 32 GB RAM, and
no GPU acceleration, which is representative of a realistic
enterprise analytics environment. It took from 22 to 27
minutes in total to train the full set of multi-horizon XGBoost,
LightGBM, CatBoost, Random Forest, and Linear Regression
models across four expanding-window folds, with
hyperparameter tuning for XGBoost adding an additional ~8

minutes if Optuna is used. Inference is light in terms of
computation: the time taken for scoring a single project-
month record is less than 5 ms, thus it is possible to have
overnight batch reporting or near-real-time dashboard
refresh cycles with a negligible resource overhead. These
performance features are indicative of the proposed pipeline
being fully operational within the standard ERP/BI
infrastructures without the need for specialised hardware.

Traditional k-fold cross-validation cannot be used for
temporal datasets because it allows future information to leak
into the training. As a result, the study used four folds with an
expanding-window cross-validation technique. Training sets
in this method are increased sequentially over time to
simulate real deployment conditions, and test sets are always
composed of strictly future months. Besides helping to
preserve temporal causality, this process also reflects the
operational constraints of enterprise forecasting, i.e.,, models
cannot incorporate information from periods that were not
available at the time of prediction. The last fold of the
expanding-window validation that refers to the recent
months and was therefore not model development or tuning,
acts as a pseudo-prospective holdout period for assessing
generalisation to unseen future conditions.

To completely eliminate temporal leakage, all features
were constructed solely from data available up to the
prediction month. No future values, forward-looking signals,
or post-period adjustments were allowed at any time during
preprocessing or model fitting. The previous exploratory
ablations proved to be unstable and were related to leakage-
prone feature definitions, which were later removed for a
time-aligned feature design consistent with enterprise
forecasting standards.

Hyperparameter tuning operations were helped by
Optuna, which is a top-notch Bayesian optimisation
framework that is designed to be very efficient in exploring
complex parameter spaces. In the case of XGBoost that was
the model in the study with the best performance, Optuna had
a look at the main hyperparameters for adjustment. These
included the number of estimators (200-800), the maximum
tree depth (3-10), the learning rate (0.01-0.2), the subsample
ratio (0.6-1.0), the column sampling rate by tree (0.6-1.0),
and the minimum child weight (1-10). The exhaustive
optimisation process led to improved model stability and
predictive accuracy across all forecasting horizons. The
Random Forest model was mainly used as a classical
benchmark and hence was only trained with default scikit-
learn hyperparameters. By doing so, the positioning
emphasises the relative gains achieved by gradient-boosted
ensembles under the same preprocessing conditions. All
hyperparameter tuning happened inside the folding scheme
for the expanding-window cross-validation, thus very silently
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assuring that tuning only used info from the preceding folds.
There were never any future months contained in validation
during the tuning stage, thus totally forbidding temporal
leakage. In order to keep a neat methodological divide
between classical baselines and modern ensemble models,
the authors deliberately decided not to hyperparameter-tune
the Random Forest (RF) regressor. RF was set up using the
normal scikit-learn run (n_estimators=100,
max_depth=None, bootstrap=True, min_samples_split=2,
min_samples_leaf=1). The point of RF in this experiment is to
act as a benchmark against which the readers can measure
the incremental worth brought by the finely tuned, cutting-
edge algorithms (XGBoost, LightGBM, CatBoost). This tactic
helps to prevent the exaggeration of the RF performance and
is in line with the reproducibility principles for baseline
models.

To spot unusual financial activities, the authors
compared the performance of three unsupervised anomaly
detection algorithms: Isolation Forest - Isolates exceptions
via a tree-based mechanism; COPOD - Uses empirical copulas
for probabilistic outlier scoring; LODA - A lightweight density
estimation method for high-dimensional tabular data. Each
model had a 2% contamination level set reflecting the
conditions in a 2-percentile window in which true anomalies
representing vendor rate spikes, backdated changes, or
abrupt budget overruns could be found. The methods
produced both continuous anomaly scores and ranked lists of
project-months with the highest degree of abnormality, thus
allowing a more focused investigation of potential financial
irregularities.

3.5 Ethical considerations

The study is consistent with well-established ethical
principles regarding data protection, fairness, and the
responsible deployment of Al. This means that the methods
used for analysis and prediction comply with enterprise
governance standards.
Data privacy and pseudonymization: To preserve the
relational structure necessary for the analysis while
eliminating any risk of re-identification, all project, program,
and vendor identifiers were pseudonymized using SHA-256
hashing. The dataset contains no personal information, and
no effort has been made to identify or infer real-world
identities; thus, it fully meets data protection requirements.
Bias and fairness: To assess fairness, the model's behaviour
was analysed across key project attributes, such as vendor
and program classifications. To ensure that the model's
predictions were based on genuine financial patterns rather
than on protected or sensitive attributes, SHAP explainability
techniques were employed. This, in turn, lowers the risk of
biased decision-making in the enterprise forecasting
processes.
Prevention of harm: Anomaly detection models sometimes
yield false positives, which may lead to prolonged payment
processing or unnecessary operational escalations. To avoid
such situations, the system is configured as a decision-
support facility only, not as a direct decision-making agent. A
human should always be in charge of interpreting flagged
anomalies to keep operational risk to a minimum and prevent
adverse outcomes without proper scrutiny.
Transparency and Auditability: Transparency was
achieved through the use of SHAP interpretability,
reproducible ETL pipelines, version-controlled workflows,
and Optuna hyperparameter optimization logs. All of these
elements offer full traceability of model behavior and
development decisions; thus, the line of argument used in this
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paper is in accordance with the requirements of enterprise
auditing, internal governance standards, and regulatory
obligations like GDPR Article 22.Under real enterprise
circumstances, data retention and access policies would be
implemented in line with the organisation's governance rules.
This would normally result in detailed transaction-level data
being kept for a limited number of years (e.g., 3-7 years)
before being archived or aggregated. There are no such
retention limitations imposed by the synthetic nature of the
current dataset.

4. Results

This section presents the empirical findings of the unified
forecasting and anomaly-detection pipeline using the fully
preprocessed enterprise financial dataset. Results are
organized across forecasting performance, feature-level
interpretability, and anomaly-detection behaviour. All
underlying code execution logs and intermediate outputs are
provided in the supplementary materials

4.1 Data presentation

The final analytic dataset comprises 162,000 project-
month observations derived from 216,000 raw records, after
applying temporal shifts for the 1-, 3-, and 6-month
forecasting horizons and removing rows with missing future
values. Each observation encodes a rich set of 24 operational
and financial indicators, including budget_monthly, actuals,
open_commitments, backlog, change_orders, vendor rates,
milestones_attained, resource mix, rolling volatility, and
schedule_slip_weeks. Project, program, and vendor identifiers
were label-encoded after pseudonymization, ensuring both
interpretability and privacy. The target variable
forecast_remaining exhibits substantial right skew, with a
heavy tail corresponding to large enterprise programs in
Figure 3a. Applying a log(1 + x) transformation yields a more
symmetric distribution in Figure 3b, improving model
stability and mitigating the influence of extreme outliers.
These converted variables are the main components for
multi-horizon forecasting. Each model went through a four-
fold expanding-window temporal cross-validation, which was
used to strictly avoid any leakage of future data. In order to
detect anomalies, only numeric features were standardized
and used for three unsupervised models: Isolation Forest,
COPOD, and LODA.

4.2 Forecasting performance across horizons

The forecasting performance of five supervised
models—Linear Regression, Random Forest, XGBoost,
LightGBM, and CatBoost—was assessed at 1-, 3-, and 6-month
horizons. Table 3 presents the average performance over the
folds. The carry-forward baseline is a useful reference point
for measuring forecast accuracy at different horizons.At the
1-month horizon, the naive model achieves an excellent
performance (MAE = 9.7k, RMSE ~ 16.1k, R2=0.74) and thus
outperforms all machine-learning models (best ML MAE =
12.7-12.9k, R2=0.63). After 3 months, the naive baseline is
still good in terms of MAE (= 11.8k) but it is behind in RMSE
and explained variance (R2x0.53) when compared to
gradient-boosted trees (e.g., XGBoost MAE ~ 11.9k, RMSE =
18.5k, R2%0.57). At the half-year point, the quality of the
predictions made by the naive method drastically falls (MAE
~ 16.8k, RMSE ~ 26.2k, R?x-0.39), while machine learning
models still maintain their performance at about the same
level (XGBoost MAE = 10.5k, RMSE = 16.9k, R*2%0.43).
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Table 3. Multi-horizon forecasting performance comparison with the seasonal-naive baseline

RZ
(h=1)

Model MAE

(h=1)

RMSE
(h=1)

MAE

(h=3)

RZ
(h=6)

RZ
(h=3)

RMSE
(h=3)

MAE
(h=6)

RMSE
(h=6)

Linear Regression 18,037 23,086 0.48

15,947

20,916 0.45 14,877 19,675 0.22

Random Forest 13,231 20,182 0.60

11,946

19,024 0.54 10,279 17,376 0.40

XGBoost 12,862 19,485 0.63

11,944

18,523 0.57 10,486 16,916 0.43

LightGBM 12,742 19,502 0.63

11,827

18,548 0.57 10,445 16,932 0.43

CatBoost 12,835 19,475 0.63

11,876

18,490 0.57 10,365 16,826 0.44

Naive (carry- 9,728 16,127

forward)

0.740

11,756

19,198 0.52 16,794 26,248 -0.389
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Figure 3. a) Distribution of forecast_remaining (raw), b) Distribution
of log(1 + forecast_remaining)

The data show that short-term portfolio spending is
highly persistent and can be well fitted by a naive method, but
machine-learning models can make significant improvements
at medium- and long-term horizons. Variability of the tuned
XGBoost model was moderate from fold to fold. At the 1-
month horizon, MAE was 12.7k (95% CI: 10.3k-15.1k) and
RMSE was 19.5k (95% CI: 17.2k-21.8k), with R2=0.63(95%
Cl: 0.55-0.70). At 3- and 6-month horizons, MAE was
consistently between 10 and 12k, and RMSE varied from 16.9
to 18.4k, with R? values ranging from 0.43 to 0.57.

Confidence intervals for all cases did not include zero,
indicating that the model's predictive skill relative to a
constant baseline is robust.

Key Findings

e Gradient boosting models provide the highest accuracy,
with XGBoost performing best overall at the 1-month
horizon (MAE = 12.9k, R? ~ 0.63).

e LightGBM and CatBoost perform nearly identically, with
LightGBM showing slight advantages on longer horizons.

e Random Forest significantly outperforms Linear
Regression, confirming nonlinear financial interactions.

e Accuracy declines predictably as the horizon increases (R%:
0.63 — 0.57 - 043), reflecting increased planning
uncertainty.

To contextualize these error magnitudes relative to the

financial scale of the portfolio, Table 4 reports scale-

normalised metrics for the best-performing model (XGBoost),
including mean and median targets per horizon, robust
percentage errors, and MASE.

Across the horizons, XGBoost's MAE is roughly between
15 and 25% of the mean remaining-forecast value, which
shows that the model is quite accurate relative to the
variation of the financial data. The sMAPE keeps increasing
with the length of the horizon, which is in line with the greater
uncertainty of the long-term forecasts, and the MASE values
that are below 1.0 for all horizons indicate that XGBoost
always beats the naive historical benchmark. These scale-
normalised metrics taken together indicate that the
forecasting performance is still practically dependable and
proportionally consistent at the levels of short-, medium-, and
long-range enterprise planning timeframes.

To provide more evidence of the calibration behaviour,
we looked at the Optuna-tuned XGBoost model
(n_estimators=619, max_depth=8, learning ratex~0.024) for
the 1-month horizon. Figure 4 shows the predicted vs actual
values, and Figure 5 depicts residuals by the decile of actual
spend. Across all forecast horizons, XGBoost achieved the
strongest and most stable performance, with MAE values
corresponding to approximately 15-25% of the average
remaining-forecast magnitude and R? consistently above 0.42
for longer horizons and above 0.62 for one-month
predictions. A robust MAPE formulation that is less sensitive
to near-zero denominators—typical in the tail of the
projects—has been applied so that percentage errors are
within interpretable ranges, and thus it can be confirmed that
the model keeps reliable proportional accuracy even when
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financial activity is decreasing. As one set, these findings point
to the fact that the learned relations can be extended to the
expanding-window validation and they retain their practical
significance for enterprise planning and cost-control
scenarios.

XGBoost: Predicted vs Actual (h=1)
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Figure 4. XGBoost predicted vs actual values (h = 1)
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Figure 5. XGBoost residuals by decile of forecast_remaining (h = 1)

One-month-ahead forecast remaining actual values
were regressed on the XGBoost predicted values to assess
calibration. The resulting calibration slope was 0.76, with an
intercept of approximately 1.0 k, and R2 = 0.67, indicating
slight underdispersion but no substantial systematic bias.
Residuals by deciles showed small positive errors at lower
and mid-range spend levels and progressively negative errors
at higher deciles, consistent with a model that slightly
underestimates very high remaining forecasts. The
scatterplot illustrates that the points are tightly clustered
around the 45° line, with the expected dispersion for high-
value portfolios. Residuals by decile show that there was a
slight overprediction for smaller portfolios and a
conservative underprediction for the top decile—this is
desirable behaviour in enterprise financial planning, where
overestimating risk helps to ensure fiscal adequacy.

4.3 Feature importance and model explainability

SHAP analysis uncovered consistent and interpretable
global patterns in the 1-month LightGBM model (selected
because of its high performance and efficient explainability
support). The SHAP-based interpretation of the key drivers
indicates that open_commitments is the most influential
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predictor by a substantial margin. The increase in open
commitments strongly increases future forecast_remaining,
consistent with standard enterprise accounting logic: unspent
or outstanding commitments naturally signal additional
future financial requirements in Figure 6.

SHAP summary plot - LightGBM (h=1) High
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Figure 6. SHAP summary plot of top predictors

The variable milestones_attained exhibits a negative
relationship with future expenditure, indicating that greater
operational progress is associated with lower projected
financial needs. This reflects the firm effect of project
maturity, whereby completing milestones typically reduces
uncertainty and financial risk. The feature
commitment_conversion_velocity, which indicates how
quickly commitments are converted into actual spending, also
plays a significant explanatory role. A higher conversion
velocity is associated with a lower remaining forecast,
consistent with the burn rate concept: if spending is
proceeding as planned, the future required funding will be
lower. Both backlog and budget monthly exhibit strong
positive SHAP effects, particularly when backlog values are
high. A large backlog is almost always a signal of outstanding
work and unrealized obligations, which inevitably lead to
increased future expenditure expectations. The change
orders analysis is the main contributor to the further increase
in the forecast. A high number of change orders is a sign of
project scope or requirements volatility, thus leading to cost
expansion as changes accumulate. Finally,
schedule_slip_weeks has a positive effect on the predicted
spend, indicating that project delays are one reason for higher
future financial needs. The slippage typically entails
inefficiencies, higher labour costs, and increased resource
requirements, thereby increasing the forecasted expenditure.

Figure 7 shows the extent to which program identity
moderates the effect of open commitments on the influence of
open commitments. When open commitments exceed ~20Kk,
programs with similar baseline SHAP patterns diverge
significantly, indicating structural portfolio differences. It is
worth noting that program_id itself is not the factor that
drives the predictions; its effects arise only from interactions
with financial variables, which provides evidence that the
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model is not based on arbitrary identifiers. Figure 8 depicts
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illustrating how individual feature contributions changed the
model's prediction from the global base value toward the final
forecast. The figure shows that a high number of open
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only in global aggregate patterns.
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An ablation study with a focus on specific aspects also
served to further confirm the SHAP-derived feature
importance patterns. The omission of open_commitments
from the features almost led to a doubling of MAE (from
%12.7k to 24.0k) and a decrease of R* from 0.63 to 0.03,
thereby confirming that it is the main factor that drives the
remaining forecast. On the other hand, the removal of backlog,
change orders, or schedule slip weeks led to only very small
changes in accuracy, which is in line with their lower SHAP
influence. Complete outcomes can be found in Table 5. Each
row presents mean MAE, RMSE, and R? averaged over four
time-based folds after the removal of a single feature group.
An illustration shows the interaction of program identity with
financial behavior, revealing that programs with higher open
commitments consistently have larger positive SHAP
contributions regardless of their program ID. The differences
that appear within program_id clusters indicate that the
structural changes in the portfolios are the root cause of these
differences, for instance, the differences between vendor-
heavy programs and milestone-driven initiatives. A clear
funnel-shaped pattern reveals that program_id has almost no
marginal influence when commitments are low but results in
steep SHAP gradients as commitments increase. The main
takeaway is that forecasting behaviour is not significantly
influenced by the category of the program as represented by
the identifiers but rather by the interactions between these
identifiers and the key financial drivers, confirming that the
model is focused on operational variables rather than
arbitrary ID labels.

alue

2.382e+4 36,024.89 4.382e+4 6.382e+4 _ 38e+5 1.238e+5 1.438e+5
y ( ( ( (({
open_commitments = 2.146e+4 ' milestones_attained =6 ' backlog = 0 ' commitment_conversion_velocity = 1.294 | change_orders = 4
Figure 8. SHAP force plot for representative project-month prediction
Table 4. Scale-normalized forecasting metrics for XGBoost across horizons
Horizon Mean Target Median Target MAE RMSE R? MAPE (%) | SMAPE (%) | MASE
(forecast_remaining)
1-month 67,611.76 55,323.56 12,861.88 | 19,485.04 | 0.6269 | 2.13x10* | 105.17 0.8759
3-month 62,061.12 50,293.36 11,944.06 | 18,523.13 | 0.5670 | 2.44x10%3 117.33 0.8140
6-month 53,971.07 42,728.93 10,486.03 | 16,915.86 | 0.4291 | 3.00x10*° | 134.25 0.7272
Table 5. Ablation of key financial drivers (XGBoost, h = 1 month)
Variant Dropped Features MAE RMSE R?
Full model None 12,740 19,468 0.628
No open_commitments open_commitments 24,047 31,481 0.030
No backlog backlog 12,787 19,624 0.622
No change_orders change_orders 12,650 19,436 0.629
No schedule_slip_weeks schedule_slip_weeks 12,654 19,443 0.629
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In order to illustrate in a clear manner how SHAP-based
local explanations facilitate governance-oriented “what-if”
reasoning, we considered a representative project-month
from the validation set with open_commitments = 52,400 and
forecast_remaining = 71,900. The SHAP local explanation
showed that open_commitments accounted for +18,750 of the
predicted value. If we  hypothetically reduce
open_commitments by 10% (new value = 47,160) and
recalculate the local SHAP explanation, this contribution
decreases to +15,940, resulting in a net decrease of
approximately 2,810 (= 15% relative reduction in the
commitment-driven component and = 3.9% reduction in total
forecast_remaining). This case illustrates how the model can
be used to enable practical financial scenario planning: small
changes in exposure variables lead to quantifiable changes in
projected spend, thus, controllers and portfolio managers
gain the opportunity to evaluate mitigation strategies prior to
their implementation.

4.4 Anomaly detection findings

Three unsupervised models (IForest, COPOD, LODA)
were benchmarked on scaled numeric features, as shown in
Table 6. All models flagged approximately 2% of records as
anomalies, consistent with audit expectations. Figure 9
represents the variations in the anomaly scores detected by
the COPOD (Copula-Based Outlier Detection) model and
expressed for each project-month observation. Using COPOD,
the highest scores are assigned to those observations, which
are the extreme tails of the empirical copula distribution, i.e.,
they are statistically the most unusual combinations of
financial and operational features. In fact, the right tail of the
COPOD scores distribution is very long, with only a few
project-months being marked as major outliers. The
qualitative analysis of anomalies with the highest COPOD
scores helped identify several distinct patterns, which were
also recorded in the results log.
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Figure 9. Distribution of COPOD anomaly scores

Table 6. Design evaluation scores

February 2026/ Volume 05 [ Issue 01 | Pages 337-354

There were cases of projects with zero open
commitments while there were extremely high actuals that
most probably indicate data-entry inconsistencies or
unplanned financial activities outside the standard practice.
Besides that, the model found vendor rate spikes that were
abnormally large (more than 200% of the normal monthly
rates), thus it confirmed its capability to detect synthetic
“vendor_rate_spike” anomalies.

Besides these, various other outliers existed, such as
projects with extremely high backlog levels that did not
correspond to milestone progress, thus these projects were
most probably the ones which had stalled but still kept
consuming the budget without delivering outputs. Another
significant pattern was the sudden disappearance of
forecasted expenditure in projects where forecast_remaining
dropped to zero in just one month, thereby often indicating
cancellations or major scope reductions. Altogether, these
discoveries serve as evidence that unsupervised anomaly
detection is capable of identifying quite subtle and non-
obvious irregularities that are likely to be missed by
traditional rule-based systems.

To put forward the operational value of the anomalies found,
a detailed examination was done on several project-months
with the highest scores. There is an example of a project that
for two months in a row showed actuals of more than
$420,000 while at the same time it had zero open
commitments, thus it might be suggesting unplanned
spending or incomplete procurement registration—an issue
that usually results in an audit review. Another situation was
about a vendor whose effective hourly rate went up by more
than 260% just within one quarter, which is in line with the
synthetic “vendor_rate_spike” anomalies that have been
implanted in the dataset; such conduct would be the cause of
contractual verification and invoice checking at the back. The
third anomaly has to do with a project whose backlog was
over $300,000 while there was no milestone progress for
three months; thus, it was the stagnation of delivery despite
ongoing financial consumption that was hinted at. These
examples at the case level illustrate that the anomaly-
detection layer does not merely pick up statistical outliers but
rather brings to the surface financially interpretable risk
scenarios that are in line with existing enterprise governance
workflows. The contamination rate was set at 2% in line with
the norms of audit practice, where true anomalous financial
events make up a small but material part of portfolio activity.
Since there were no labelled anomalies, contamination
hyperparameter tuning by ROC/PR analysis was not possible.

Model Contamination Detected Anomalies Key Insight
[Forest 2% 4320 Detects extreme-value and volatility-driven
irregularities
COPOD 2% 4320 Smooth probabilistic scoring; best for audit triage
LODA 2% 4320 Fastest; detects sparse high-dimensional
anomalies
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Because the data used are synthetic and lack ground-
truth anomaly labels, it is not possible to compute precision-
recall curves, ROC curves, or cost-weighted anomaly
evaluation in a meaningful way. In accordance with
unsupervised risk-screening standards, this study puts more
emphasis on the qualitative inspection of cases with high
anomaly scores. Label-based evaluation is a privilege for
future deployments with domain-validated enterprise
anomalies.

4.5 Key findings and trends

The findings show that gradient-boosting models
outperform linear models, and nonlinear models have a mean
absolute error (MAE) thatis 25-40% lower than that of linear
regression across all forecasting horizons. The gap in
performance between these models is a strong indication that
there are significant nonlinear interactions between backlog,
commitments, vendor dynamics, and milestone progress—
interactions that a linear model can hardly capture. The
accuracy of the forecast deteriorates with increasing horizon
length, consistent with the realities of enterprise financial
planning. One-month forecasts were highly accurate, with an
R? of approximately 0.63, whereas three-month forecasts
remained operationally useful, with an R? of approximately
0.57. At the six-month horizon, the models still provided the
correct direction but had lower precision, with an R? of
approximately 0.43. The decrease is consistent with real-
world sources of uncertainty, such as changing policies,
staffing variability, vendor performance fluctuations, and
scope drift. SHAP analysis provided operational insights that
can be acted upon by identifying the features that have the
strongest association with future financial exposure. Open
commitments, backlog levels, and change orders are the
dominant predictors that increase forecast_remaining, while
milestones achieved, commitment conversion velocity, and
lagged change-order cadence have a mitigating effect. These
explanatory patterns agree with the logic of practical
portfolio management, which deepens the trust that users
place in the model's transparency and reliability. The
anomaly detection findings led to the discovery of tightly-knit
groups of irregularities that were related to vendor
behaviour, delivery progress that has come to a halt, and
extreme volatility. Along with COPOD, other detectors found
instances that might indicate vendor rate manipulation,
changes that have been backdated, duplicate invoice patterns,
and zero-commitment over-expenditures—each of which is a
risk scenario for an enterprise. The use of COPOD scoring in
conjunction with SHAP-based explanations provides finance
teams with solid audit trails, thus allowing them to make
escalation decisions that are well-founded and supported by
evidence. Lastly, the Optuna-tuned XGBoost model was able
to demonstrate substantial improvements in accuracy, as
evidenced by the reduction in MAE from 12,730 to 10,790,
which corresponds to a 15% performance increase. This
outcome highlights the importance of using Bayesian
optimization to facilitate the performance of machine
learning systems at an enterprise scale that are used for
forecasting and shows that systematic hyperparameter
tuning is an effective tool in operational analytics.

5. Discussion

This study aimed to develop and evaluate a single
machine-learning framework that could, in principle, address
simultaneously three fundamental problems of enterprise
portfolio management: multi-horizon financial forecasting,
unsupervised risk detection, and explainable reporting. The
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text below interprets the main empirical findings, links them
to the existing literature, and also outlines the implications,
limitations, and future research directions.

5.1 Interpretation of results

The forecasting comparison scenarios provide evidence
that gradient-boosted tree models—XGBoost, LightGBM, and
CatBoost—are quite consistently better than Linear
Regression and Random Forest in all horizons. In fact, at 1-
month horizon, XGBoost gets an R? close to 0.63 with MAE
about 12.8k, and even though the explanatory power
weakens at 3 and 6 months, where R? goes down to roughly
0.57 and 0.43, respectively, it is still valuable. The increase of
uncertainty with the length of the prediction period is in line
with the data, and enterprise portfolio dynamics are non-
linear and interaction-heavy, as linear models cannot capture
them properly [2,15]. Further, the Optuna-tuned XGBoost
setup manages to cut down MAE at h=1 to about 10.9k, thus
indicative of a major improvement over baseline untuned
models. It emphasizes the necessity of a hyperparameter
tuning strategy of forecasting models in real operational
environments, where small improvements in the
performance metrics can lead to big financial gains at the
portfolio level [4].

According to SHAP-based explanation, the features
open_commitments, backlog, change_orders, and
budget_monthly contribute most positively  to
forecast remaining whereas milestones_attained and
commitment_conversion_velocity have a reducing effect.
These concepts are very close to enterprise financial logic: the
high level of unspent obligations and the volatile nature of
scope changes increase the exposure; on the other hand,
milestones and burn-down, being stable, lower it. The
dependence plots reveal that program identifiers influence
the intensity of these effects; however, they do not serve as
independent factors, which means that the models are
learning structural financial patterns rather than simply
recalling the IDs [5].

The anomaly-detection component—isolated Forest,
COPOD, and LODA with 2% contamination level—pinpoints a
handful of project-months with the highest risk and most
extreme behaviours: zero commitments and very high
actuals, vendor rate spikes going beyond normal ranges,
backlog that is both stalled and has low milestone progress,
and sudden drops in forecast remaining. The patterns in
question associate well with hypothetical enterprise risk
scenarios, which include unplanned spend, pricing
irregularities, stalled delivery, or project cancellation, and
this is the reason why unsupervised detectors have practical
value as an audit triage mechanism [3, 11, 12].

5.2 Comparison with prior work

The higher performance of gradient-boosted trees compared
to linear baselines is in line with previous studies in financial
and investment forecasting, where ensemble models are, on
average, superior to traditional econometric or linear
approaches on tabular data [2, 15, 51]. The multi-horizon
setup and the use of expanding-window temporal cross-
validation for evaluation are in line with the
recommendations of large-scale forecasting benchmarks such
as the M4 Competition that advocate rigorous temporal
splitting and leakage avoidance [4]. On the risk side, the
implementation of Isolation Forest and similar detectors is
very much in line with the references in anomaly-detection
surveys and outlier-analysis frameworks that propose tree-
and density-based methods for high-dimensional financial
data as the most appropriate [11, 12]. The empirical finding
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that around 2% of records are identified as anomalous is in
line with the expectations of enterprise audits and previous
works on portfolio risk screening through predictive analytics
[23-25]. Employing SHAP for global and local interpretability
aligns with recent trends in enterprise Al, where explainable
ML is increasingly considered a necessary condition for
implementation in regulated financial contexts [5,30]. In the
same way as interpretable frameworks suggested for supply-
chain and credit risk modelling [30,38], this study shows that
feature-attribution methods can provide explanations that
are not only technically correct but also domain logic-
consistent, thus enhancing trust and auditability.

5.3 Implications for enterprise practice

On a functional level, the integrated system features the
missing link that is forecasting, anomaly detection, and
reporting, often split into separate, loosely coupled tools in
many ERP and financial environments, which have been
fragmented [16,26,41]. The unification of these
functionalities into a single pipeline enables consistent
feature engineering, shared data quality controls, and
traceable modelling choices across all analytics outputs. The
multi-horizon forecasts support different levels of decision-
making: 1-month forecasts can be used for tactical cash-flow
and accrual planning, while 3- and 6-month forecasts can be
used for budget reallocation, vendor negotiations, and
portfolio reprioritisation. The finance teams, on the other
hand, are not only able to anticipate what will happen if they
combine anomaly flags with their work, but also can detect
the concentration of risks, namely projects with high backlog
and persistent schedule slips, enabling them to take the right
actions [22, 25, 49].

The SHAP explanations and anomaly case summaries
offer a clear account of the events to the stakeholders such as
controllers, auditors, and risk committees, which they can
rely on. The decision-makers are provided with forecasts that
come along with the ranked drivers (e.g., open commitments
and change orders) and the instances of unusual behaviour
(e.g., vendor rate spikes) instead of the so-called "black-box
scores,” which can be used in the formal governance and
escalation processes [17, 31,53]. In this way, the framework
not only helps achieve higher predictive accuracy but also
institutionalizes the learning process of how portfolio-level
risks unfold over time [33, 40, 58].

Table 7. Feature comparison of enterprise forecasting & risk systems
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Commercial solutions such as SAP Analytics Cloud,
Oracle FCCS, Anaplan, and Microsoft Power BI, to varying
extents, integrate forecasting with anomaly detection and are
largely dependent on rule-based or proprietary black-box
components. The framework presented here provides a
comprehensive transparency and model logic, a unified
forecasting-anomaly-explainability  pipeline, and the
capability to extend to custom portfolio behaviours that
commercial tools cannot easily accommodate. Hence, the
framework works with rather than against enterprise BI
platforms, enabling greater analytical control and auditable
reasoning. Table 7 presents a qualitative comparison of the
proposed framework against leading enterprise analytics
platforms across forecasting capability, anomaly detection,
interpretability, customizability, and governance support.

5.4 Limitations

To begin with, all data are synthetic but retain a realistic
structure; hence, while this setup enables controlled
experiments, real ERP datasets can be noisier, less structured,
and influenced by policies that may differ from the patterns
revealed here. Therefore, the study's external validity must be
verified in real-world enterprise environments [13,32].
Secondly, the presented framework is limited to batched
historical data, with retraining performed periodically. It
currently does not support real-time streaming data ingestion
or online learning. However, the previous work has already
established the necessity of real-time financial modelling and
streaming architectures in dynamic risk scenarios [13,62].
Thirdly, the anomaly-detection evaluation being performed
here is qualitative and not label-based. In the absence of
ground-truth anomaly labels or expert validation logs, one
cannot calculate precision, recall, or cost-weighted
performance. This limits the ability to measure trade-offs
between undetected anomalies and false alerts [11, 24].

Lastly, the model zoo is intentionally limited to tree
ensembles and classical detectors. While this might be
suitable for most ERP settings, it leaves out the latest
developments in deep-sequence modelling, hybrid
reinforcement learning, and knowledge-graph-augmented
financial risk optimisation that can potentially enhance the
performance in the highly complex scenarios [19,20, 54]. The
framework does not explicitly represent drifting structural
changes in the scenarios, for example, changes in
procurement policies, macroeconomic shocks, or inflation-
induced cost increases.

System Forecasting Anomaly XAl Customizability Governance
Detection / Audit
SAP Basic Rule-based Minimal; Moderate Strong logging;
Analytics statistical alerts only no SHAP (scripts only) limited model
Cloud (SAC) forecasting; transparency
limited ML control
Oracle FCCS Regression-based Mostly None Low; closed High audit trail;
predictive planning thresholds/rules models opaque ML
Anaplan Proprietary No unsupervised None High in Good governance;
time-series detection (rule explanations formulas; formula
forecasting; strong only) low in ML transparency
scenarios
Power BI + Exponential Unsupervized Very limited High only Good audit logging
Azure smoothing; detector with unless with custom via Azure Monitor
Anomaly optional Azure ML limited tuning custom SHAP added pipelines
Detector
This Unified Multi-horizon ML [Forest, COPOD, Full SHAP Very high; Strong
ML (XGB, LGBM, CatBoost); LODA global & local XAI open-source, auditability;
Framework Optuna tuned flexible reproducible,
transparent
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In fact, drift-monitoring tools should be in place to detect
such changes promptly, thereby enabling recalibration or
retraining cycles to maintain stability and governance. There
was no formal statistical significance testing or confidence
interval estimation for forecasting metrics, as the main focus
was on comparative model behaviour across matched
temporal folds. Subsequent research will add bootstrap
confidence intervals and model-comparison tests to support
inferential claims. This study version lacks a complete
ablation table for all the features that have been engineered.
As the dataset is synthetic and some interactions are
structurally embedded, a systematic ablation analysis may
not generalise significantly; however, future research will
examine controlled ablations of real ERP datasets.

5.5 Future Directions

Future projects can broaden this framework in different
ways. At the model layer, incorporating transformer-based
tabular models, sequence models, or hybrid RL architectures
may improve long-horizon forecasts and capture more
complex temporal dependencies in vendor and project
behaviour [19,20,54]. At the systems level, the next crucial
step is to integrate the pipeline into a complete MLOps
stack—continuous integration, automated drift detection,
scheduled retraining, and shadow deployment in live ERP
systems—to assess robustness under real production
workloads [26,35,41]. Methodologically, subsequent studies
must rely on expert-labelled anomalies and conduct
prospective validations to measure operational value (e.g.,
avoided overruns or earlier detection of problematic
projects). Scenario modelling could be incorporated into
SHAP explanations to enable “what-if’ analyses—e.g,,
illustrating how a 10% reduction in open commitments
would affect forecast_remaining at the portfolio level [33,36].
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Moreover, the ethical and governance aspects warrant
further investigation. Among these are fairness analyses
across departments or vendor groups, regulated human-in-
the-loop interventions for overriding anomaly flags, and
structured estimates of financial impact (e.g., savings from a
2-5% reduction in overruns in large portfolios) [31,42,53]. By
resolving these issues, the adoption of integrated ML
pipelines as central instruments of enterprise financial
governance rather than mere experimental add-ons would be
more convincing. As per the evidence in Table 8, the next
steps of highest priority would be online-learning pipelines,
real-world 12-month validation, and the integration of
labelled anomalies for supervised risk modelling. from a
practical point of view, very small gains in accuracy could lead
to considerable financial advantages. Thus, a 2-5% decrease
in forecast error or better use of the budget without overruns
that can be achieved through earlier anomaly detection and
improved spend visibility in a portfolio with an annual budget
of $500 million would mean that avoided losses would be
around $10-25 million per year.

A well-defined research plan to move the framework
forward comprises the following points: (i) integration of
online learning using libraries such as River, (ii)
benchmarking of CatBoost and transformer-based models on
multinational ERP datasets, (iii) creation of scenario-based
“what-if” explanations, (iv) prospective 12-month validation
in a live ERP environment, (v) expert-labeled anomaly
integration for supervised risk modelling, and (vi) fairness
and governance audit formalization. These measures would
gradually bring the framework closer to enterprise-grade
operational deployment.

Table 8. Prioritized research agenda for advancing the unified ML framework

Priority Research Direction Estimated Description / Expected Contribution
Timeline
High 1. Integration of online learning pipelines | 6-12 months Enables continuous adaptation
(e.g., River) to new financial behaviour, reduces drift, and supports near-
real-time portfolio monitoring.
High 2. Prospective 12-month 12-18 months Tests robustness under real operational conditions, evaluates
validation in live downstream impact
ERP environments on budgeting accuracy, and quantifies financial savings.
High 3. Incorporation of 6-12 months Allows computation of precision, recall, cost-weighted scores,
expert-labelled anomalies for supervised and reduces false
anomaly detection positives in vendor/payment workflows.
Medium 4. Evaluation of transformer-based 6-12 months Assesses whether deep architectures
tabular models (FT-Transformer, TabNet) outperform gradient-boosted trees for long-horizon,
nonlinear enterprise financial forecasting.
Medium 5. Development of what-if scenario 3-9 months Provides controllers and auditors
engine for interactive SHAP-based with actionable levers
counterfactuals (e.g., “reduce commitments by 10% = forecast decreases by
X".
Medium 6. Formal fairness and governance audits | 6-12 months Measures cross-department and cross-vendor bias, supports
compliance with
internal audit and regulatory standards.
Medium 7. Full MLOps deployment 9-18 months Ensures scalable, reproducible, and traceable model
(MLflow/Kubeflow + CI/CD + drift deployment across enterprise environments.
monitoring)
Low 8. Expansion to multinational ERP 12-24 months Tests generalisability across regulatory regimes, currencies,
datasets vendor structures, and project governance models.
Low 9. Integration of hybrid RL + knowledge- | 18-30 months Supports adaptive portfolio optimisation and long-horizon
graph methods strategic planning beyond static forecasting.
Low 10. Estimation of financial ROI from 3-6 months Quantifies monetary benefits (e.g., 2-5% reduction in overruns
improved forecasting =$10-25M annual
and anomaly detection savings in large portfolios).
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6. Conclusion

This research designed and assessed a combined
machine-learning architecture that integrates multi-horizon
portfolio forecasting, unsupervised anomaly detection, and
SHAP-based interpretability in a single enterprise-ready
pipeline. Using a large, structurally realistic project-month
dataset, gradient-boosted tree models (in particular XGBoost,
LightGBM, and CatBoost) consistently outperformed linear
baselines, achieving strong predictive accuracy at the 1-
month horizon and retaining useful signal at 3 and 6 months.
SHAP analysis indicated that open commitments, backlog,
change orders, and schedule slippage are major drivers of
future financial exposure, whereas milestone progress and
healthy commitment conversion are stabilising factors. The
anomaly detectors (Isolation Forest, COPOD, LODA) brought
out small, high-risk subsets of project-months with plausible
enterprise risk patterns, for example, vendor rate spikes,
zero-commitment overspend, and stalled delivery. The
implications for practice are of two kinds. Firstly, a single
architecture lessens the disintegration that is usually
between forecasting, risk monitoring, and reporting tools,
thus allowing for consistent feature engineering, governance,
and auditability. Secondly, the combination of high-
performing models with clear explanations changes ML
output from being just a set of difficult-to-understand scores
into defensible financial narratives that can be easily
understood by controllers, auditors, and portfolio leaders.
Therefore, the framework not only works as a prediction
engine but also as a means of institutional learning about the
financial risk that is accumulated across portfolios. According
to these results, practitioners should: (i) focus on gradient-
boosted ensembles with systematic hyperparameter tuning
for portfolio forecasting, (ii) combine forecasting with
anomaly detection rather than working them as separate
processes, and (iii) place SHAP-style explanations directly in
the dashboards and review processes so that every high-risk
signal has an interpretable explanation. Subsequent research
should confirm the framework using genuine ERP data,
develop it for streaming and online-learning scenarios, and
include expert-labelled anomalies to measure precision,
recall, and financial impact. Work is also required on fairness,
human-in-the-loop governance, and “what-if” scenario
analytics, which would make unified ML pipelines the main
components of enterprise financial stewardship rather than
isolated analytical experiments.
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