May 2026| Volume 05 | Issue 02 | Pages 71-81

Future Technology

Open Access Journal

ISSN 2832-0379

Article

https://doi.org/10.55670/fpll.futech.5.2.8

Journal homepage: https://fupubco.com/futech

Al-driven digital transformation: a framework for
organizational capability assessment and strategic
decision-making in technology management

Wei Li*, Hj Sukesi, Bambang Raditya Purnomo

Universitas Dr. Soetomo, Surabaya 60118, Indonesia

ARTICLE INFO

ABSTRACT

Article history:

Received 27 September 2025
Received in revised form

29 November 2025
Accepted 16 January 2026

Keywords:

Agentic Al Digital transformation,

Dynamic capability assessment,

Deep reinforcement learning,

Technology management strategic decision-
making

*Corresponding author
Email address:
18519383413@163.com

DOI: 10.55670/fpll.futech.5.2.8

This study develops an Agentic Al-driven framework to address critical
challenges in digital transformation, including subjectivity. A Dynamic Weight
Adjustment algorithm, which is based on Deep Reinforcement Learning (DWA-
RL), enables adaptive updating of the weights assigned to each evaluation
indicator across four capability dimensions: Technology, Organizational,
Strategic, and Ecosystem. The empirical validation involved over 8,000
enterprise samples from the World Bank Enterprise Surveys and case studies
by MIT. For the training datasets, supplementary synthetic data has been
generated by Monte Carlo simulation and Generative Adversarial Networks.
The framework achieves 87.3% prediction accuracy, which is 15.8% higher
than MIT CISR and 17.5% higher than McKinsey, shows the best dynamic
adaptability of 4.6/5.0, and improves the quality of decisions by 28% compared
to the traditional experience-based approach. Under volatile environments, the
DWA-RL algorithm keeps the decline within 17.6 percentage points, while for
fixed-weight methods, the decline is as high as 25.5 points. Manufacturing
enterprise transformation trajectories prove balanced four-dimensional
capability development over three-year periods. The current study extends
dynamic capability theory by introducing mechanisms of autonomous agents
and redefining the agent-dominated human-supervised decision paradigm.

1. Introduction

systematic intelligence [3]. Such challenges are even more
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With the rapid evolution of artificial intelligence,
enterprises face unprecedented pressure to transform
digitally. Agentic Als are intelligent systems that can support
self-directed goal achievement, environmental sensing, and
optimal strategy adaptation without human support, unlike
traditional reactive systems that perform tasks only based on
predefined inputs. Agentic Al, anew generation of intelligence
systems characterized by self-directed goal orientation,
environmental perception, and learning, and strategy-driven
adaptation and optimization, transforms the basic paradigms
of management and decision-making within organizations
[1]. Unlike classical Al systems, which employ only passive
responses, the ability to actively recognize changes in the
environment, plan, and continually optimize decision-making
strategies makes autonomous agents distinctive. It introduces
a new technical potential in the form of an emergent human-
machine collaborative agency process [2]. However, the
current promotion of enterprise digital transformation
generally faces three core predicaments: the assessment of
capability is highly subjective; reliance on management
experience and judgment in strategic decision-making
remains excessive; and technology governance lacks
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pronounced in critical domains such as technology selection,
investment ranking, and architectural evolution. The ever-
changing technological environment continues to challenge
conventional assessment methods, resulting in delayed
responses and ineffective resource allocation for
organizations undergoing technological transformation [4].
Despite the accumulation of relevant studies in the literature
on digital transformation and organizational capabilities,
some gaps remain, particularly in the context of Al-driven
strategic decision-making. The current body of research on Al
and competitive advantage largely covers the extent to which
the technology has been adopted without clarifying how
organizational capabilities are shaped by self-autonomous
agents [5]. Although research on innovation management has
begun to explore its application potential for Al in business
innovation, most research on Al has regarded it only as an
auxiliary means rather than as a strategic driver of
innovation. It is regrettable that the fundamental changes in
the paradigm of organizational decision-making brought
about by agents' autonomy, learning ability, and adaptability
were overlooked [6]. Dynamic competence theory provides
an important perspective on how organizations maintain


mailto:18519383413@163.com
https://doi.org/10.55670/fpll.futech.5.2.8
https://fupubco.com/futech

Wei Li et al. /Future Technology

competitive advantages amid environmental change [7], and
recent studies further reveal the microfoundations of
organizational perceived competence in an emerging
technology ecosystem [8]. However, the above-cited
theoretical frameworks have not sufficiently addressed the
technical aspect of Agentic Al, which lacks an explanation of
how agents enable the transition from a static state to a
dynamic co-evolutionary process.

Four important gaps in current research require
immediate attention. First, most research on Al system
adoption focuses on technology diffusion at the system level,
instead of conducting a detailed investigation of autonomous
agent mechanisms [9]. Second, the existing method for
capability assessment depends almost exclusively on static
modeling and does not reflect the dynamic path of capability
configuration change over the process of digital
transformation [10]. Third, the decision support system lacks
a closed-loop feedback procedure from perception to action
execution that would serve for the optimization of the Al-
empowerment impact [11]. Fourth, the field of technology
management decision-making lacks a systematic framework,
and the applicability of existing tools is very limited in some
key scenarios, such as technology selection, investment
priorities, and architecture evolution [12]. These theoretical
and practical gaps limit enterprises from reaping the full
benefits of Agentic Al's strategic value in digital
transformation. There is an urgent need to develop a
comprehensive framework that can dynamically assess
organizational capabilities and support technology
management decisions.

The research seeks to provide a theoretical foundation
for assessing Agentic Al-based dynamic capabilities in
organizational management in relation to technological
management decisions, thereby filling a theoretical gap with
innovative concepts at multiple levels. At the theoretical level,
it presents an “Agentic Al - organizational capability co-
evolution model” that goes beyond traditional assessments
that treat capabilities as static concepts by explaining how
agents aid the dynamic evolution of organizational
capabilities through processes such as super-perception,
intelligent capture, and reconstruction. At the methodological
level, the Dynamic Weight Adjustment Algorithm based on
deep reinforcement learning (DWA-RL) was developed. This
enables dynamic adjustments to the weights assigned to
assessment indicators for capabilities, thereby overcoming
difficulties in analysis with fixed weights in dynamic
environments.

At the application level, a four-layer closed-loop
architecture covering “data perception- capability analysis -
decision recommendation- execution feedback” was
constructed, embedding Al agent autonomy throughout the
technical management process. In this way, a systematic
approach has been established primarily to integrate the
roles of CTOs and CIOs within the corporate environment,
encompassing the analysis of capabilities, the planning of
transformation paths, the optimization of investment
decisions, and continuous iterations. By combining the
principles of dynamic capabilities, the theory of artificial
intelligence agents, and decision science, this research
provides both theoretical and practical insights into how
Agentic Al transforms the management of strategy within the
organizational setting.
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2. Methodology
2.1 Design principles of an agentic Al-driven framework
for digital transformation

More specifically, the theory of dynamic capabilities
affects the assessment layer for capabilities in the following
manner: the three: sensing (perception layer), seizing
(recommendation layer), and transforming (feedback layer).
The DSR approach is used to develop the Agentic Al
framework, which can assess organizational capability. The
developed framework is based on an interdisciplinary
conceptual support system comprising dynamic capability
theory (Teece) and organizational decision-making theory,
combined with an Al agents' theory.

This framework adopts a four-layer progressive
architecture to enable intelligent empowerment throughout
the Agentic Al digital transformation process. Four layers
strike the right balance between granularity and modularity;
adding or removing layers would affect the segregation of
duties in decision-making and the evaluation of capabilities.
The data perception layer is the foundation of the framework
and is for acquiring real-time internal operational data of
enterprises, external industrial benchmark information, and
technological evolution trends. The data governance process
employs schema validation (to ensure format consistency),
temporal alignment (aligning multi-source timestamps
within £5 minutes), anomaly detection using Isolation Forest
(indicating values that lie beyond 30), and blockchain-based
audit trails for verification. Employ multi-source interfaces
such as REST APIs (real-time ERP and CRM integration), IoT
sensors (equipment status), and web scrapers (indicators of
industry best practices). The Al agents detect deviations from
thresholds (>2 ¢ ) and sudden capability drops (>15%). While
the agents continuously monitor and perform anomaly
detection, they independently identify the essential signals
that shape the configuration of organizational capability.
Based on data from the perception layer, the capability
assessment layer develops a four-dimensional framework
comprising Technology Capability (TC), Organizational
Capability (OC), Strategic Capability (SC), and Ecosystem
Capability (EC). Embed the Dynamic Weight Adjustment
Algorithm (DWA-RL) in this layer to achieve adaptive
updating of the weights of evaluation indicators. This
algorithm draws from the successful practice of hybrid
models proposed for financial risk assessment [13]. The
indicators have been selected by using: (1) literature scan to
identify 87 potential indicators, (2) Delphi technique to
shortlist (n=12, 3 rounds, consensus kappa=0.78), and (3)
principal component analysis to retain those explaining
>75% of variance, shortlisting 16 indicators in four
dimensions. The structure is consistent with existing
frameworks: TC and OC from digital business capability
frameworks, SC from the strategic sensing construct in
dynamic capability theory, and EC from the ecosystem
orchestration literature; each captures a different aspect of
digital transformation.

The decision recommendation layer designs dedicated
decision-support modules for the three core scenarios in
technology management: technology selection, technology
investment prioritization, and technology architecture
evolution path planning. This layer employs a Deep Q-
Network (DQN) to optimize strategy. It matches the current
status of capabilities to the action space to produce decision
plans. This is done to achieve maximum rewards. The model
can independently recognize decision patterns in data,
without human-intensive feature engineering, by developing
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an end-to-end learning framework [14]. In addition, this
research extends its application to the management of
organizational capabilities. The act of decision-making
transitions from experience-driven decision-making to
intelligent decision-making supported by algorithms. The
feedback loop for execution is designed to monitor the effects
of the execution decision on the execution itself. Therefore,
the perception-analysis-decision-execution-feedback loop
becomes a closed-loop system.

Reinforcement learning was preferred over the Genetic
Algorithms and the Bayesian Optimizer approaches, owing to
its effectiveness in managing sequential decision-making
(dynamic weighting of the iterations) and its capability to
learn from long-term transformation outcomes, though at a
higher computational cost, as it has introduced the paradigm
of reinforcement learning to the problem of weight
optimization in capability evaluation. The state space is
defined as the joint set of the current four-dimensional
capability evaluation score, the environmental change rate,
and the deviation from industry. The action space represents
the incremental weight adjustments for each dimension. The
reward function integrates three target dimensions:
prediction accuracy, decision quality, and computational cost,
with the form of expression as:

R(s,a) = - Accuracy(s,a) + f - Quality(s,a) —y - Cost(s,a) 1)

The trade-offs are solved for by Pareto optimization,
which ensures that , §, y are adjusted for adaptive weighting,
where prediction accuracy has priority in stable conditions
(a=0.5), while computational efficiency in constrained
conditions enhances (y=0.3). Inspired by multi-agent
reinforcement learning theory, this algorithm develops a
collaborative learning mechanism that allows multiple sub-
agents to explore the optimal weight configuration in parallel
in different dimensions of capability [15]. To be specific,
fairness constraints are used to ensure that the relative
importance of capability appraisal along each dimension is
not systematically overlooked in favor of an algorithmic
preference. It can prove to be an important design principle
to avoid imbalance in overall capability building through
digital transformation. Fairness is measured using the Gini
coefficient based on the weights of the dimensions
(target<0.25), and this is achieved using the penalty term of
the loss function (A-Gini?), and this is checked every 50
iterations with a rollback. Mathematically implemented as:

Ltota] = LRL + ﬂ“ : maX(O, Glnl _025)2

(2)
Where Lgy is the standard RL loss, A = 10 is the penalty
coefficient, and Gini = 2";’;—;‘:’" with w; denoting dimension

weights, ensuring balanced emphasis on capabilities. It
adopts a three-layer fully connected neural network as the Q-
value function approximator. The configured network
structure is 64-128-64 neurons. This architecture was
identified through Grid Search (tested: 32-64-32, 64-64-64,
128-256-128), tuning for validation loss, with the best RMSE
of 0.08 for the structure of 64-128-64, while preserving the
speed of prediction below 3 seconds. The activation function
uses ReLU to mitigate the vanishing-gradient problem. The
hyperparameters are set as follows: the learning rate is 0.001;
the discount factor is 0.95; the batch size is 32; the capacity of
the experience replay pool is set to 10,000. Training will
terminate when the reward variation falls below 0.5% for 50
consecutive rounds or when the maximum number of
iterations (500) is reached. Hyperparameters were then
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tuned using Bayesian optimization (for 100 trials) on a
validation set, with the learning rate ranging from [0.0001,
0.01] and the discount factor from [0.9, 0.99]; the selected
values proved robust against #10% variation (accuracy
variance <2%). The overall four-layer progressive
architecture, incorporating these components, is also
systematically represented in Result 3.1 (Figure 1), where the
design outcomes and verification results are provided in
detail in accordance with the Design Science Research
methodology. Whereas traditional Al decision-support tools
spit out fixed recommendations, this framework embeds
autonomous agent techniques. It can scan its environment
autonomously, readjusting weights sans human input, and
learn continuously from how it does so, effectively
capabilities not offered by any of the existing frameworks
(MIT CISR, McKinsey).

2.2 Digital transformation capability, data acquisition
strategies, and processing methods

This study adopts a multi-source data strategy that
combines public datasets with synthetic data to ensure that
the framework's empirical verification is adequately
supported while avoiding ethical review risks. The primary
data source is the World Bank Enterprise Surveys, which
include data on digital transformation practices from more
than 8,000 enterprises in over 130 countries worldwide,
including the key variables: technology adoption rate,
organizational change indicators, digital investment intensity,
and innovation performance. These sources set a standard
against which the capabilities across industries are measured.
Some auxiliary sources include the OECD Digital Economy
Statistics Database, which contains macro-level indicators
such as industry digitization, technology diffusion rates, and
environmental policies. Another auxiliary source is the 12-15
digital transformation case studies offered by MIT Sloan
Management Review, which cover manufacturing, finance,
retail, and healthcare industries and contain valuable insights
and evolutionary details apt for reverse validation through
backtracking.

Because the minimum training data requirement to train
most of the reinforcement machine learning techniques is
normally above 10,000 observations, and because the
available public datasets primarily contain descriptive
enterprise data without the dynamic trajectories to
characterize the capabilities, the research utilizes Monte
Carlo simulation and GAN modeling to create datasets that
statistically replicate the features of the real dataset. Monte
Carlo simulation conducts trajectory simulations for
capability development with diverse possibilities via random
sampling, and the GAN technology learns about the potential
distribution of actual data and creates plausible virtual data.
The architecture was a Wasserstein GAN with gradient
penalty, utilizing 5-layer generators and discriminators,
Adam optimizer (Ir=0.0002, $,=0.5), and training for 10,000
iterations until the Wasserstein distance converged (<0.05
change over 500 iterations). The Monte Carlo simulation
produces temporally consistent paths for capabilities,
reflecting the dynamics of evolutionary change, while GANs
create a cross-sectional representation that maintains
correlations between variables, which requires both
longitudinal and structural validity. The Generator converts
noise vectors from a dimensionality of 100 into fake
capability trajectories (16 features x 12 time steps), and the
Discriminator differentiates real and fake samples using 5
convolution layers with LeakyReLU activation functions
(a=0.2), obtaining the final discriminator loss <0.15. The
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process of generating synthetic data strictly follows three
validity verification criteria: The Kolmogorov-Smirnov tests
confirmed the consistency of the marginal distributions
(mean P-value=0.28, range: 0.12-0.47), while the Pearson
correlation analysis identified the preservation of structure
(mean deviation=2.8%, max=4.3%), and the cross-validation
analysis indicated the consistency of predictions accuracy
difference=1.7%), the comparison of Pearson correlation
coefficients verifies that the correlation structures of multiple
variables are preserved (the difference of the correlation
coefficient should be less than 5%), and cross-validation
experiments confirm the prediction consistency of models
trained with synthetic data on the real test sets (the difference
of accuracy should be less than 3%). Using such an approach
ensures support for algorithm training via data augmentation,
while also considering the impact on enterprise privacy and
ethics in the primary data collection. Synthetic data will be
used solely to train the algorithms and enhance learning of
generic patterns in the developing capabilities, whereas
validation and testing of the derived model will rely on public
data.

Three key steps are involved in data preprocessing:
standardization, handling missing values, and anomaly
detection. In the standardization process, the Z-score method
eliminates scale differences across variables of different
dimensions, ensuring comparability among capability
indicators within each dimension and improving the
numerical stability of neural network training. To handle
missing values, MICE is used, which builds a predictive model
for each missing variable via iterative regression procedures,
using other complete variables as predictors to estimate
missing values and create multiple imputed datasets. MICE
performed better than mean imputation in terms of RMSE
(0.42 vs. 0.67) and than KNN imputation in terms of both
RMSE (0.42 vs. 0.49, k=5) and correlation decay (3.2% vs.
12.5%). Compared with using a simple mean, this technique
better preserves the intrinsic data structure and the
uncertainty in statistical inference. The identification and
processing of abnormal observations rely on the Isolation
Forest algorithm. With tree=200, contamination=0.05
(anomaly ratio expectation), and max samples=256, the
algorithm identified 412 anomalies, comprising 5.2% of data
points, with scores of -0.18 for normal data and -0.52 for
anomalies; these results were subsequently improved
through robust regression. The algorithm is based on the fact
that most points with anomalous values are easily
discriminable. Anomaly levels are determined via a random
partitioning process in feature space, based on estimates of
mean path lengths between points, to address the difficulties
of using fixed threshold values to measure irregularity.
Robust regression methods are also utilized to adjust
irregular values rather than eliminating them. To counter the
overfitting issue, the following strategies are used: (1)
Training the model only on simulated data and testing only on
real data, (2) Use of the regularizer (L2 = 0.001), and (3) Early
stopping based on real data validation metrics.

2.3 Experimental design and performance evaluation

indicators

This research has four experimental groups. The
independent verification tasks for the four experiments are
defined, including multiple functional modules of the
framework. Experiment One focuses on the accuracy
evaluation of the organizational capability evaluation model.
This experiment uses 12 typical cases of digital
transformation sourced from the MIT Case Library and
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employs historical validation by entering enterprise
capability information from the outset to predict outcomes
after 6 to 12 months. The forecast results are validated by the
actual outcomes recorded in the case studies to calculate the
accuracy, RMSE, and correlation coefficients. The Control
Group: Control Group models include fixed-weight AHP,
linear regression, and both Random Forest and XGBoost
models using a fixed number of 100 trees and 100 estimators.
By comparing the two benchmark methods, it tests whether
the dynamic weight mechanism improves prediction
performance. Results will report 95% confidence intervals via
bootstrap resampling (10,000 iterations) for all performance
metrics to quantify estimation uncertainty.

The performance stability of the DWA-RL algorithm is
tested for different rates of environmental change in
Experiment Two, simulating four environmental change
scenarios: slow, below the average annual technical iteration
rate of 5%; medium, between 5% and 15%; fast, between
15% and 30%; and extremely fast, above 30%; the
convergence speed and fluctuation range of the algorithm's
accuracy can be observed. Fixed-weight AHP and linear
weight adjustment strategy are control methods. Multi-
scenario comparison displays the value of the proposed
adaptive mechanism based on reinforcement learning.

Experiment Three tests the effectiveness of the
technology management decision recommendation system in
the presence of scarce resources. Three resource conditions
are created: when resources are adequately available, when
resources are moderately available, and when resources are
scarce. The experiment compares decision scoring and
resource usage effectiveness of Al-assisted decision making,
traditional empirical decision making, and random decision
making for making technology choice decisions, investment
prioritization decisions, and technology architecture
evolution route planning. Decision quality is quantified as:

Q = 0.4. Alignment + 0.3. Feasibility + 0.3.ROI 3)

where  Alignment examines the goal-strategy
relationship, Feasibility investigates resource satisfaction,
while ROI approximates the cost/benefit ratio.

Experiment Four conducts a comprehensive
performance benchmark comparison of the framework,
comprehensively comparing the framework proposed in this
study with the digital capability framework of MIT Center for
Information Systems Research (CISR) and McKinsey Digital
Maturity Model across six dimensions: prediction accuracy,
response speed, dynamic adaptability, interpretability,
implementation cost, and technical threshold. The
interpretability score is objectively assessed using the Al
interpretability theory standard proposed by Lipton, which
identifies the framework's relative advantages and potential
limitations through a multidimensional assessment.

Power analysis also indicated sufficient sample size, as
the minimum required per group for testing medium effects
(Cohen's d = 0.5) at an alpha level of 0.05 and power of 80 is
128; the present sample size of 8,000 exceeds this
requirement. Additionally, the number of validation cases
was surpassed by 12. All experiments are conducted in
accordance with stringent statistical analysis protocols. The
statistical techniques used are the paired t-test for comparing
the mean of a single experimental group with that of a control
group, one-way ANOVA for comparing multiple groups, and
the Bonferroni method for controlling the family-wise error
rate due to multiple comparisons.
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Dynamic Capability
Theory (DCT) Cycle

Figure 1. Agentic Al-driven framework architecture

3. Results
3.1 Design outcomes and architecture verification of the

Al-driven Agentic framework

The Agentic Al-driven framework achieves an effective
balance between theoretical rigor and practical applicability
through its four-layer progressive architecture, as shown in
Figure 1. Figure 1 illustrates the architecture design, which
demonstrates improvements in three dimensions compared
with the traditional digital transformation framework: the
autonomy of Al agents enables continuous operation and self-
optimization of the framework without human intervention.
It ensures that the dynamic weighting mechanism enables the
capability assessment model to adapt to environmental
changes rather than adhere to static standards. The closed-
loop feedback design ensures continuous improvement in
decision-making quality rather than a one-time output. As
shown in Table 1, to further validate the framework's
innovative value, this study systematically compared it with
the MIT Center for Enterprise Systems (CISR) digital
capability framework and the McKinsey Digital Maturity
model across eight key dimensions.

Table 1 shows that the framework of this study shows
higher scores than benchmark models on three dimensions:
Al-driven, with a score of 4.8/5.0; dynamic adaptability,
4.6/5.0; and decision intelligence, 4.7/5.0. In comparison, the
scores of the MIT CISR framework in these three dimensions
are 3.2, 3.5, and 3.1, respectively. Correspondingly, the
McKinsey models are 3.4, 3.3, and 3.4, reflecting the
weaknesses of traditional frameworks in terms of intelligence
and dynamics. It should be noted that the interpretability
score of the framework in this study has a value of 3.5, which
compares poorly to the 4.2 value of MIT CISR and 4.0 of
McKinsey. This problem can be attributed to the black-box
nature of deep reinforcement learning. However, with the
addition of the Embedded SHAP value analysis module and
the attention mechanism module, traceability of
interpretation can be ensured in the framework.
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3.2 Verification results of the dynamic assessment

model for organizational capabilities

Based on more than 8,000 enterprise samples, this study
constructed a four-dimensional capability indicator system
with dynamic weight allocation, as shown in Table 2. As
shown in Table 2, the indicator system exhibits very strong
universality in cross-industry verification. The weight of
technical capabilities, including cloud computing adoption,
data analysis, and automation, in manufacturing enterprises
is substantially greater than in service enterprises. In terms
of organizational capabilities, the weight of digital culture and
an agile organizational structure in the financial sector is
relatively greater. Prediction accuracy across different time
Windows gradually decreased with increasing prediction
horizon, but even a 12-month prediction maintained an
accuracy of 73.6% (95% CI: 71.2%-76.0%; Cohen's d = 1.24
vs. fixed-weight, P < 0.001). In contrast, using the fixed-weight
AHP method, the model achieved only 58.8%, and the simple
linear model obtained only 51.2%. It thus improved by 14.8
and 22.4 percentage points, respectively. The accuracy
verification of the capability assessment model was achieved
through historical backtracking experiments, as shown in
Figure 2. Figure 2(a) reflects the four-dimensional capability
maturity distribution for six typical industries. The financial
industry has the highest technological capability score,
averaging 4.2 /5.0, but a relatively weak ecosystem capability
of 2.8/5.0. The manufacturing industry is characterized by
balanced technological and organizational capabilities, with
scores of 3.6 and 3.4, respectively, but lagging strategic
capabilities at 2.9. The ecosystem capability of the retail
industry is 3.9, ranking first among industries, reflecting its
effectiveness in platform transformation. Figure 2(b) reflects
the core advantages of the dynamic weighting mechanism:
within a rapidly changing technological environment, that is,
from 2020 to 2021 during the pandemic period, the accuracy
of fixed-weight declined 25.5 percentage points from 84.3%
to 58.8%, while the DWA-RL algorithm controlled such a
decline by 17.6 percentage points, namely, from 91.2% to
73.6%, through adaptive weight adjustment, reflecting a 7.9
percentage point advantage in stability and strong robustness
to environmental fluctuation.
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Table 1. Framework comparison with existing models

May 2026/ Volume 05 [ Issue 02 | Pages 71-81

Evaluation Proposed MIT CISR McKinsey Digital Evaluation Basis
Dimension Framework (This Framework Maturity Model
Study)
Al-Drivenness 4.8/5.0 3.2/5.0 3.4/5.0 Degree of autonomous agent
integration and self-learning capability
Dynamic 4.6/5.0 3.5/5.0 3.3/5.0 Capability to adjust evaluation weights
Adaptability and strategies in response to
environmental changes
Decision 4.7/5.0 3.1/5.0 3.4/5.0 Quality and sophistication of Al-
Intelligence powered decision recommendation
mechanisms
Closed-Loop 4.5/5.0 3.4/5.0 3.2/5.0 Presence of continuous monitoring,
Feedback evaluation, and iterative optimization
mechanisms
Technology 4.4/5.0 3.6/5.0 3.8/5.0 Depth of support for technology
Management selection, investment prioritization,
Focus and architecture evolution
Interpretability 3.5/5.0 4.2/5.0 4.0/5.0 Transparency of decision-making logic
and ease of understanding by
managers (based on Lipton, 2018
standards)
Implementation 2.8/5.0 (High Cost) 4.1/5.0 3.9/5.0 (Moderate Required technical infrastructure, data
Complexity (Moderate Cost) Cost) quality standards, and expert
resources
Applicable Scale 3.8/5.0 (Medium-to- 4.3/5.0 (All 4.1/5.0 (All Scales) Suitability across different enterprise
Large) Scales) sizes and organizational structures

Table 2. Four-Dimensional capability indicators

Capability Core Indicators (Representative Measurement Method Data Source Initial
Dimension Examples) Weight
Range
Technology ¢ Cloud computing adoption rate Likert scale (1-5) survey | WBES enterprise survey, 0.22-0.31
Capability (TC) « Data analytics maturity level + objective metrics OECD database, enterprise
« Digital infrastructure robustness (adoption rate %, IT audit reports
» Automation degree of core processes | system uptime %)
Organizational « Digital culture penetration Composite index WBES organizational 0.24-0.33
Capability (0C) « Agile organizational structure combining employee module, HR analytics data,
adoption surveys + organizational | internal assessment
* Employee digital literacy index network analysis
¢ Cross-functional collaboration
effectiveness
Strategic Capability | e Digital transformation strategic Expert panel scoring + MIT case library, annual 0.19-0.28
(SQ) clarity financial data analysis reports, OECD innovation
 [nnovation investment intensity (% (R&D ratio, digital statistics
of revenue) revenue %)
« Digital-driven business model
innovation
« Strategic agility in technology
adoption
Ecosystem « Digital platform participation depth Network analysis WBES value chain module, 0.18-0.26
Capability (EC) o Strategic partnership diversity metrics (degree business partnership
» External collaboration network centrality, databases, industry reports
density betweenness) +
¢ Open innovation engagement level partnership count
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Figure 2. Capability assessment, performance, and industry maturity.
(a) Industry-specific capability maturity distribution. (b) Prediction
accuracy across time windows

3.3 Verification results of Al algorithm performance and

technology management decisions

The DWA-RL algorithm’s performance was verified
through simulation experiments and real case tests, as shown
in Figure 3. Figure 3(a) indicates that the DWA-RL algorithm
reaches stable convergence at the 280th iteration, with
decision quality scores declining within a range of 85.3-88.1
and the loss function decreasing from 2.34 to 0.08, showing
typical characteristics of a rapid decline followed by
smoothness. The average inference time of 2.3 s meets the
real-time decision support requirement. Figure 3(b)
illustrates the performance comparison of the algorithms’
rates of environmental changes. For the slow-changing
environment (annual iteration rate: 4.2%), the three methods
perform comparably in accuracy: DWA-RL 91.3%, fixed AHP
89.7%, and linear adjustment 88.5%. For the extremely
volatile environment (iteration rate: 34.6%), However, DWA-
RL maintains an accuracy of 84.7% (95% CI: 82.3%-87.1%,
Cohen’s d=1.56 vs. fixed AHP, P<0.001) while fixed AHP drops
dramatically to 72.1%, and linear adjustment decreases to
76.8%, which demonstrates the much-enhanced robustness
of the dynamic learning mechanism in response to sudden
changes of technologies, having only a 6.6-percentage-point
decline compared to 17.6 for fixed methods.
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Figure 3. DWA-RL algorithm performance. (a) Convergence
characteristics and training efficiency. (b) Dynamic adaptability
under environmental changes

The effectiveness assessment of technology management
decisions focuses on the quality of decisions in three core
scenarios, as shown in Figure 4. Figure 4 shows the group
comparison, where in the high resource adequacy scenario,
the Al-backed recommendations stood consistently at 78.6
points, 95% CI: 76.2-81.0, whereas traditional empirical
decisions fell very sharply to 57.3 points, 95% (CI: 54.8-59.8;
Cohen's d = 2.34,P < 0.001). and a random benchmark of 41.2
points. Highlighted is the stability advantage of Al decision-
making under complex constraints. In terms of technology
selection during technology maturity assessment, the
accuracy of technical solution recommendation using Al was
at 89.7%, and the prediction error for total cost of ownership
was maintained at 12.3%. The Kendall correlation coefficient
for investment priority ranking was found to be 0.78, which
was quite higher than that of empirical decision-making,
measuring at 0.54, and the feasibility index of the technical
architecture evolution path was at 4.3/5.0.

3.4 Comprehensive performance evaluation of
framework and application in digital transformation
The framework’s comprehensive performance was
evaluated through multi-dimensional comparison with
mainstream models, as shown in Table 3.
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Table 3. Comprehensive performance benchmark
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Evaluation Proposed MIT CISR McKinsey Testing Method Performance
Dimension Framework Framework Digital Comparison
(This Study) Maturity
Model
Prediction Accuracy 87.3% 71.5% 69.8% Historical backtracking This study +15.8% vs.
validation with 12 MIT case CISR, +17.5% vs.
library cases; accuracy McKinsey
calculated as percentage of
correct predictions within £10%
tolerance
Response Speed 2.3 seconds 8.7 seconds 12.4 seconds Average inference time per This study 3.8x faster
decision measured across 500 than CISR, 5.4x faster
test scenarios on standardized than McKinsey
hardware (Intel Xeon E5-2680
v4)
Dynamic 4.6/5.0 3.1/5.0 3.3/5.0 Performance stability test under | Superior robustness:
Adaptability four environmental change rate only 6.7% accuracy
scenarios drop in volatile
(slow/medium/fast/extremely environments vs. 18.3%
fast); scored by accuracy for fixed-weight
retention rate methods
Decision Quality +28% +12% +14% Expert panel assessment (n=15) | Relative improvement:
Improvement comparing Al-recommended vs. | +16 percentage points
traditional experience-based vs. CISR, +14 points
decisions across three resource vs. McKinsey
constraint scenarios
Interpretability 3.5/5.0 4.2/5.0 4.0/5.0 Objective scoring based on Trade-off for higher
Lipton (2018) Al interpretability | performance; partially
theory standards: model mitigated through
transparency, logic traceability, SHAP value analysis
decision explainability and attention
mechanism
visualization
Implementation Cost 2.8/5.0 (High) 4.1/5.0 3.9/5.0 Expert assessment considering Requires substantial
(Moderate) (Moderate) infrastructure requirements, data | investment in technical
quality standards, training infrastructure and
needs, and maintenance skilled Al talent
overhead
Technical Threshold 3.2/5.0 4.3/5.0 (Low- 4.1/5.0 Evaluation of prerequisite Best suited for digitally
(Moderate- Moderate) (Moderate) technical capabilities: data mature medium-to-
High) management maturity, cloud large enterprises with
infrastructure readiness, AI/ML established data
expertise availability foundations
100 I Al Recommendation Decision Table 3 indicates that the proposed framework leads in
s24 704 [__Traditional Experience Decisi five dimensions but has relative disadvantages in
= - © 715 80.8 78,6 |[__IRandom Baseline i . X )
S sl _I_+ 713 I interpretability and implementation cost. The framework
S {» 692 achieved an 87.3% prediction accuracy (exceeding 71.5% by
£ 3 MIT CISR and 69.8% by McKinsey), a response time of 2.3
'E eor a2 seconds, which is 3.8x faster than CISR, and a dynamic
= adaptability of 4.6/5.0, which is substantially higher than 3.1
cz or and 3.3. In the trade-off graph, the 28% improvement in
2 decision quality is achieved at lower algorithmic
§ 201 transparency due to the black-box nature of deep
reinforcement learning. A high implementation cost and
0 moderate technical requirements suggest that the solution
goo“'e goo“‘e ] “@6"‘5 would entail mandates related to digital infrastructure and Al
Y\@\"& 6\"“\@ < A skills and would be targeted at medium- to large-scale
we e’ enterprises with higher digital maturity. The transformation

Resource Constraint Scenario

Figure 4. Decision quality under resource constraints

path guidance generated from capability assessment results
provides differentiated recommendations for enterprises at
different maturity levels, as shown in Figure 5.
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Figure 5. Three-year digital transformation trajectory

Figure 5 shows a typical trajectory of digital
transformation for a manufacturing enterprise over three
years, from the initial level to the mature level through five
distinct maturity stages: TC increases from 2.1 to 3.8, OC from
2.3t0 3.6, SC from 1.9 to 3.4, and EC from 2.0 to 3.5. The main
transformation path illustrates capability growth in a steady
upward trend, with an average score increasing from 2.075 to
3.575. Meanwhile, the development patterns of the four
dimensions show differentiation: Technology Capability
exhibits the steepest growth slope (+1.7), indicating that
greater attention was paid to investing in technical
infrastructure at the outset, whereas Strategic Capability
starts at the lowest point but achieves substantial
improvement (+1.5) through mid-stage adjustment.
Organizational Capability and Ecosystem Capability have
balanced progress throughout the journey, with +1.3 and
+1.5, respectively. The phased strategic focus-technology
infrastructure in Year 0-1, organizational change in Year 1-2,
and strategic alignment with ecosystem building in Year 2-3-
can make the capability develop harmoniously and provide
actionable guidance for enterprises to optimize resource
allocation and accelerate digital transformation.

4. Discussion

Consequently, the performance of the Agentic Al-driven
framework proposed in this study, in terms of prediction
accuracy (87.3%), dynamic adaptability (4.6/5.0), and the
improvement in decision quality (+28%), provides empirical
support to understand how artificial intelligence
systematically empowers the digital transformation of
organizations. This is consistent with the research that
dynamic digital transformation capabilities enhance the
performance of the banking industry [14]. The research
advances the frontiers of theory from passive adaptation to
active evolution by incorporating autonomous-agent
mechanisms and reinforcement-learning processes. The
DWA-RL algorithm employed in the study reduced the drop
in accuracy by 17.6 percentage points during environmental
disturbances, compared with the fixed-weight approach,
which dropped by 25.5 percentage points.

Leading Level

Optimization Level

O Mature Level
O Year 3TC: 3.8
OC: 36
Year 2 SC: 3.4 |Development Level
EC: 3.5
Initial Level
2 2.5 3 35

The findings enhance understanding of the mediating
role of change management in the evolution of dynamic
capabilities [16]. It indicates that the algorithm-driven
weight-adaptive mechanism can serve as an effective
supplementary tool for organizational change management,
enabling real-time responses to environmental fluctuations at
the technical level. A study emphasized the value of Al-driven
visual analytics for understanding business ecosystems [17].
This study further validated this view by developing a four-
dimensional capability assessment system (TC, OC, SC, EC)
and integrating it with dynamic tracking of the ecological
capability dimension. This is particularly reflected in the
finding that the retail industry's ecological capability score
(3.9/5.0) is higher than that of other industries.

The new paradigm of agent-dominated, human-
supervised decision-making revealed in this study provides a
theoretical response to empirical research on how Al
influences the strategic decisions of entrepreneurs and
investors [18]. However, it also facilitates continuous
improvement in decision quality through a closed-loop
feedback process rather than a snapshot decision. This aligns
with the proposed capability of generative Al to assess
strategic decision-making in Ref. [19] and, in fact, specifies the
technical process by which Al-based strategic management
decisions can strengthen competitiveness in business entities
[20]. A study found that dynamic capabilities play a critical
role in building organizational resilience [21]. The sensitivity
analysis of this study found that when the data loss rate
exceeded 30%, the prediction accuracy dropped to 74.8%,
indicating a certain tolerance of the framework to fluctuations
in data quality. Their technical resilience provides a
theoretical rationale for organizations to sustain the
momentum of the transformation process despite an
imperfect data environment. Research studies on the impact
of digital and dynamic capabilities on business model
innovation conclude that organizational inertia moderates
this effect [22]. In this study, three years of transformation
path cases (from TC:2.1 to 3.8) of manufacturing enterprises
are used to demonstrate the importance of balanced
capability development. In particular, the trajectory of
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strategic capability, from lagging behind at 1.9 in the initial
stage to catching up at 3.4 in the later stage, confirms that
breaking through organizational inertia requires a shift in the
focus of phased strategies. For example, research highlighted
the promoting effect of learning from the digital business
ecosystem on innovation [23]. This research finds evidence
that when the retail industry exhibits strong performance in
ecological capability, its platform transformation is more
effective, providing evidence across industries of this view.
This research is relevant regarding the systematic pathway
view on building a sustainable business ecosystem [24]. A
study verified the supportive role of dynamic capabilities for
strategic planning in the digital age within the Palestinian
context [25]. In complementing this understanding from a
global perspective, the cross-national dataset of this study
(8,000 + enterprises covering 130+ countries) reveals the
limitations of the framework's applicability in traditional
service industries and agriculture. This is in line with the
findings on the unique challenges faced by small and medium-
sized enterprises in digital transformation that the technical
threshold of the framework (3.2/5.0) and the high
implementation cost (2.8/5.0) may limit its promotion and
application in resource-constrained enterprises [26].
Research on dynamic capability practices in large enterprises
aligns with this study's conclusion that the framework should
be prioritized for use in medium- and large-sized enterprises
[27]. In the digital transformation of large-scale
organizations, the description of four reorganization
dilemmas partly explains the relatively low scores (3.5/5.0)
on interpretability assigned to the research framework. The
black-box qualities inherent in deep reinforcement learning
may well accentuate concerns about decisional transparency
within large-scale organizational structures [28].

The first drawback for this particular study is that it has
70% synthetic data. While quality assurance is taken care of
with triple validation processes that include the KS test,
correlation maintenance, and prediction consistency checks,
these processes cannot be adequately supplemented by the
power that causal inference from direct observation of the
enterprise transformation process could offer. The finding
that the framework performs best in the finance and
manufacturing industries indicates that generalizability
across industries needs further work, such as the design of
industry-specific weight initialization schemes based on
digital maturity. Based on this, there are three directions in
which future research could be deepened: integrating
interpretable Al technologies to improve the transparency of
the framework; conducting multi-time point longitudinal
tracking studies to verify causal relationships; and developing
lightweight versions to reduce the application threshold for
small and medium-sized enterprises, which would extend the
practical influence of the framework and push the evolution
of digital transformation research from descriptive to
normative  paradigms. The framework's superior
performance holds primarily for digitally mature mid-to-
large companies (number of employees >500, readiness score
23/5) in manufacturing, financial services, and services.
Performance decreases when the data context is low (i.e,
when the number of records is <1000).

5. Conclusion

Based on the design science research methodology, the
study develops an Agentic, Al-powered dynamic decision
framework to evaluate organizational capabilities and inform
technology management decisions. The decision framework
is designed to have a four-layer closed-loop architecture. It
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implements the DWA-RL algorithm to enable adaptive weight
adjustment. Empirical verification, based on over 8,000
enterprise samples, shows that the framework outperforms
traditional methods in prediction accuracy (87.3%),
improvement in decision quality (+28%), and dynamic
adaptability (4.6/5.0). The three-year transformation path
case of manufacturing enterprises further substantiates the
feasibility of developing a four-dimensional capability
balance (TC, OC, SC, EC). This study develops the dynamic
capability theory by introducing an autonomous agent
mechanism, redefines the decision-making paradigm of agent
dominance - human supervision, and provides Ctos and CIOs
with a systematic tool for formulating technology strategy.
The framework's explanatory level is moderate (3.5/5.0), and
its implementation cost remains high (2.8/5.0). However, its
success in the industrial and financial sectors demonstrates
that artificial intelligence can be a force multiplier in
advancing the digital transformation process. Future work
may focus on integrating explainable Al tools and developing
methods with lightweight tracking and verification
capabilities.
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