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A B S T R A C T 
 

This study develops an Agentic AI-driven framework to address critical 
challenges in digital transformation, including subjectivity. A Dynamic Weight 
Adjustment algorithm, which is based on Deep Reinforcement Learning (DWA-
RL), enables adaptive updating of the weights assigned to each evaluation 
indicator across four capability dimensions: Technology, Organizational, 
Strategic, and Ecosystem. The empirical validation involved over 8,000 
enterprise samples from the World Bank Enterprise Surveys and case studies 
by MIT. For the training datasets, supplementary synthetic data has been 
generated by Monte Carlo simulation and Generative Adversarial Networks. 
The framework achieves 87.3% prediction accuracy, which is 15.8% higher 
than MIT CISR and 17.5% higher than McKinsey, shows the best dynamic 
adaptability of 4.6/5.0, and improves the quality of decisions by 28% compared 
to the traditional experience-based approach. Under volatile environments, the 
DWA-RL algorithm keeps the decline within 17.6 percentage points, while for 
fixed-weight methods, the decline is as high as 25.5 points. Manufacturing 
enterprise transformation trajectories prove balanced four-dimensional 
capability development over three-year periods. The current study extends 
dynamic capability theory by introducing mechanisms of autonomous agents 
and redefining the agent-dominated human-supervised decision paradigm.  

1. Introduction 

With the rapid evolution of artificial intelligence, 
enterprises face unprecedented pressure to transform 
digitally. Agentic AIs are intelligent systems that can support 
self-directed goal achievement, environmental sensing, and 
optimal strategy adaptation without human support, unlike 
traditional reactive systems that perform tasks only based on 
predefined inputs. Agentic AI, a new generation of intelligence 
systems characterized by self-directed goal orientation, 
environmental perception, and learning, and strategy-driven 
adaptation and optimization, transforms the basic paradigms 
of management and decision-making within organizations 
[1]. Unlike classical AI systems, which employ only passive 
responses, the ability to actively recognize changes in the 
environment, plan, and continually optimize decision-making 
strategies makes autonomous agents distinctive. It introduces 
a new technical potential in the form of an emergent human-
machine collaborative agency process [2]. However, the 
current promotion of enterprise digital transformation 
generally faces three core predicaments: the assessment of 
capability is highly subjective; reliance on management 
experience and judgment in strategic decision-making 
remains excessive; and technology governance lacks 

systematic intelligence [3]. Such challenges are even more 
pronounced in critical domains such as technology selection, 
investment ranking, and architectural evolution. The ever-
changing technological environment continues to challenge 
conventional assessment methods, resulting in delayed 
responses and ineffective resource allocation for 
organizations undergoing technological transformation [4]. 
Despite the accumulation of relevant studies in the literature 
on digital transformation and organizational capabilities, 
some gaps remain, particularly in the context of AI-driven 
strategic decision-making. The current body of research on AI 
and competitive advantage largely covers the extent to which 
the technology has been adopted without clarifying how 
organizational capabilities are shaped by self-autonomous 
agents [5]. Although research on innovation management has 
begun to explore its application potential for AI in business 
innovation, most research on AI has regarded it only as an 
auxiliary means rather than as a strategic driver of 
innovation. It is regrettable that the fundamental changes in 
the paradigm of organizational decision-making brought 
about by agents' autonomy, learning ability, and adaptability 
were overlooked [6]. Dynamic competence theory provides 
an important perspective on how organizations maintain 
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competitive advantages amid environmental change [7], and 
recent studies further reveal the microfoundations of 
organizational perceived competence in an emerging 
technology ecosystem [8]. However, the above-cited 
theoretical frameworks have not sufficiently addressed the 
technical aspect of Agentic AI, which lacks an explanation of 
how agents enable the transition from a static state to a 
dynamic co-evolutionary process. 

Four important gaps in current research require 
immediate attention. First, most research on AI system 
adoption focuses on technology diffusion at the system level, 
instead of conducting a detailed investigation of autonomous 
agent mechanisms [9]. Second, the existing method for 
capability assessment depends almost exclusively on static 
modeling and does not reflect the dynamic path of capability 
configuration change over the process of digital 
transformation [10]. Third, the decision support system lacks 
a closed-loop feedback procedure from perception to action 
execution that would serve for the optimization of the AI-
empowerment impact [11]. Fourth, the field of technology 
management decision-making lacks a systematic framework, 
and the applicability of existing tools is very limited in some 
key scenarios, such as technology selection, investment 
priorities, and architecture evolution [12]. These theoretical 
and practical gaps limit enterprises from reaping the full 
benefits of Agentic AI’s strategic value in digital 
transformation. There is an urgent need to develop a 
comprehensive framework that can dynamically assess 
organizational capabilities and support technology 
management decisions. 

The research seeks to provide a theoretical foundation 
for assessing Agentic AI-based dynamic capabilities in 
organizational management in relation to technological 
management decisions, thereby filling a theoretical gap with 
innovative concepts at multiple levels. At the theoretical level, 
it presents an “Agentic AI - organizational capability co-
evolution model” that goes beyond traditional assessments 
that treat capabilities as static concepts by explaining how 
agents aid the dynamic evolution of organizational 
capabilities through processes such as super-perception, 
intelligent capture, and reconstruction. At the methodological 
level, the Dynamic Weight Adjustment Algorithm based on 
deep reinforcement learning (DWA-RL) was developed. This 
enables dynamic adjustments to the weights assigned to 
assessment indicators for capabilities, thereby overcoming 
difficulties in analysis with fixed weights in dynamic 
environments.  

At the application level, a four-layer closed-loop 
architecture covering “data perception- capability analysis - 
decision recommendation- execution feedback” was 
constructed, embedding AI agent autonomy throughout the 
technical management process. In this way, a systematic 
approach has been established primarily to integrate the 
roles of CTOs and CIOs within the corporate environment, 
encompassing the analysis of capabilities, the planning of 
transformation paths, the optimization of investment 
decisions, and continuous iterations. By combining the 
principles of dynamic capabilities, the theory of artificial 
intelligence agents, and decision science, this research 
provides both theoretical and practical insights into how 
Agentic AI transforms the management of strategy within the 
organizational setting. 

 

 

2. Methodology 

2.1 Design principles of an agentic AI-driven framework 
for digital transformation 
More specifically, the theory of dynamic capabilities 

affects the assessment layer for capabilities in the following 
manner: the three: sensing (perception layer), seizing 
(recommendation layer), and transforming (feedback layer). 
The DSR approach is used to develop the Agentic AI 
framework, which can assess organizational capability. The 
developed framework is based on an interdisciplinary 
conceptual support system comprising dynamic capability 
theory (Teece) and organizational decision-making theory, 
combined with an AI agents' theory. 

This framework adopts a four-layer progressive 
architecture to enable intelligent empowerment throughout 
the Agentic AI digital transformation process. Four layers 
strike the right balance between granularity and modularity; 
adding or removing layers would affect the segregation of 
duties in decision-making and the evaluation of capabilities. 
The data perception layer is the foundation of the framework 
and is for acquiring real-time internal operational data of 
enterprises, external industrial benchmark information, and 
technological evolution trends. The data governance process 
employs schema validation (to ensure format consistency), 
temporal alignment (aligning multi-source timestamps 
within ±5 minutes), anomaly detection using Isolation Forest 
(indicating values that lie beyond 3σ), and blockchain-based 
audit trails for verification. Employ multi-source interfaces 
such as REST APIs (real-time ERP and CRM integration), IoT 
sensors (equipment status), and web scrapers (indicators of 
industry best practices). The AI agents detect deviations from 
thresholds (>2σ) and sudden capability drops (>15%). While 
the agents continuously monitor and perform anomaly 
detection, they independently identify the essential signals 
that shape the configuration of organizational capability. 
Based on data from the perception layer, the capability 
assessment layer develops a four-dimensional framework 
comprising Technology Capability (TC), Organizational 
Capability (OC), Strategic Capability (SC), and Ecosystem 
Capability (EC). Embed the Dynamic Weight Adjustment 
Algorithm (DWA-RL) in this layer to achieve adaptive 
updating of the weights of evaluation indicators. This 
algorithm draws from the successful practice of hybrid 
models proposed for financial risk assessment [13]. The 
indicators have been selected by using: (1) literature scan to 
identify 87 potential indicators, (2) Delphi technique to 
shortlist (n=12, 3 rounds, consensus kappa=0.78), and (3) 
principal component analysis to retain those explaining 
>75% of variance, shortlisting 16 indicators in four 
dimensions. The structure is consistent with existing 
frameworks: TC and OC from digital business capability 
frameworks, SC from the strategic sensing construct in 
dynamic capability theory, and EC from the ecosystem 
orchestration literature; each captures a different aspect of 
digital transformation. 

The decision recommendation layer designs dedicated 
decision-support modules for the three core scenarios in 
technology management: technology selection, technology 
investment prioritization, and technology architecture 
evolution path planning. This layer employs a Deep Q-
Network (DQN) to optimize strategy. It matches the current 
status of capabilities to the action space to produce decision 
plans. This is done to achieve maximum rewards. The model 
can independently recognize decision patterns in data, 
without human-intensive feature engineering, by developing 
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an end-to-end learning framework [14]. In addition, this 
research extends its application to the management of 
organizational capabilities. The act of decision-making 
transitions from experience-driven decision-making to 
intelligent decision-making supported by algorithms. The 
feedback loop for execution is designed to monitor the effects 
of the execution decision on the execution itself. Therefore, 
the perception-analysis-decision-execution-feedback loop 
becomes a closed-loop system. 

Reinforcement learning was preferred over the Genetic 
Algorithms and the Bayesian Optimizer approaches, owing to 
its effectiveness in managing sequential decision-making 
(dynamic weighting of the iterations) and its capability to 
learn from long-term transformation outcomes, though at a 
higher computational cost, as it has introduced the paradigm 
of reinforcement learning to the problem of weight 
optimization in capability evaluation. The state space is 
defined as the joint set of the current four-dimensional 
capability evaluation score, the environmental change rate, 
and the deviation from industry. The action space represents 
the incremental weight adjustments for each dimension. The 
reward function integrates three target dimensions: 
prediction accuracy, decision quality, and computational cost, 
with the form of expression as:  

( , ) Accuracy( , ) Quality( , ) Cost( , )R s a s a s a s a  =  +  −                   (1) 

The trade-offs are solved for by Pareto optimization, 
which ensures that α, β, γ are adjusted for adaptive weighting, 
where prediction accuracy has priority in stable conditions 
(α=0.5), while computational efficiency in constrained 
conditions enhances  (γ=0.3). Inspired by multi-agent 
reinforcement learning theory, this algorithm develops a 
collaborative learning mechanism that allows multiple sub-
agents to explore the optimal weight configuration in parallel 
in different dimensions of capability [15]. To be specific, 
fairness constraints are used to ensure that the relative 
importance of capability appraisal along each dimension is 
not systematically overlooked in favor of an algorithmic 
preference. It can prove to be an important design principle 
to avoid imbalance in overall capability building through 
digital transformation. Fairness is measured using the Gini 
coefficient based on the weights of the dimensions 
(target≤0.25), and this is achieved using the penalty term of 
the loss function (λ·Gini²), and this is checked every 50 
iterations with a rollback. Mathematically implemented as: 

 
2

total RL max(0,Gini 0.25)L L = +  −                            (2) 

Where LRL is the standard RL loss, 𝜆 = 10 is the penalty 

coefficient, and 𝐺𝑖𝑛𝑖 =
∑|𝑤𝑖−𝑤𝑗|

2𝑛2𝜇
 with wi denoting dimension 

weights, ensuring balanced emphasis on capabilities. It 
adopts a three-layer fully connected neural network as the Q-
value function approximator. The configured network 
structure is 64-128-64 neurons. This architecture was 
identified through Grid Search (tested: 32-64-32, 64-64-64, 
128-256-128), tuning for validation loss, with the best RMSE 
of 0.08 for the structure of 64-128-64, while preserving the 
speed of prediction below 3 seconds. The activation function 
uses ReLU to mitigate the vanishing-gradient problem. The 
hyperparameters are set as follows: the learning rate is 0.001; 
the discount factor is 0.95; the batch size is 32; the capacity of 
the experience replay pool is set to 10,000. Training will 
terminate when the reward variation falls below 0.5% for 50 
consecutive rounds or when the maximum number of 
iterations (500) is reached. Hyperparameters were then 

tuned using Bayesian optimization (for 100 trials) on a 
validation set, with the learning rate ranging from [0.0001, 
0.01] and the discount factor from [0.9, 0.99]; the selected 
values proved robust against ±10% variation (accuracy 
variance <2%). The overall four-layer progressive 
architecture, incorporating these components, is also 
systematically represented in Result 3.1 (Figure 1), where the 
design outcomes and verification results are provided in 
detail in accordance with the Design Science Research 
methodology. Whereas traditional AI decision-support tools 
spit out fixed recommendations, this framework embeds 
autonomous agent techniques. It can scan its environment 
autonomously, readjusting weights sans human input, and 
learn continuously from how it does so, effectively 
capabilities not offered by any of the existing frameworks 
(MIT CISR, McKinsey). 

2.2 Digital transformation capability, data acquisition 
strategies, and processing methods 
This study adopts a multi-source data strategy that 

combines public datasets with synthetic data to ensure that 
the framework's empirical verification is adequately 
supported while avoiding ethical review risks. The primary 
data source is the World Bank Enterprise Surveys, which 
include data on digital transformation practices from more 
than 8,000 enterprises in over 130 countries worldwide, 
including the key variables: technology adoption rate, 
organizational change indicators, digital investment intensity, 
and innovation performance. These sources set a standard 
against which the capabilities across industries are measured. 
Some auxiliary sources include the OECD Digital Economy 
Statistics Database, which contains macro-level indicators 
such as industry digitization, technology diffusion rates, and 
environmental policies. Another auxiliary source is the 12-15 
digital transformation case studies offered by MIT Sloan 
Management Review, which cover manufacturing, finance, 
retail, and healthcare industries and contain valuable insights 
and evolutionary details apt for reverse validation through 
backtracking. 

Because the minimum training data requirement to train 
most of the reinforcement machine learning techniques is 
normally above 10,000 observations, and because the 
available public datasets primarily contain descriptive 
enterprise data without the dynamic trajectories to 
characterize the capabilities, the research utilizes Monte 
Carlo simulation and GAN modeling to create datasets that 
statistically replicate the features of the real dataset.  Monte 
Carlo simulation conducts trajectory simulations for 
capability development with diverse possibilities via random 
sampling, and the GAN technology learns about the potential 
distribution of actual data and creates plausible virtual data. 
The architecture was a Wasserstein GAN with gradient 
penalty, utilizing 5-layer generators and discriminators, 
Adam optimizer (lr=0.0002, β₁=0.5), and training for 10,000 
iterations until the Wasserstein distance converged (<0.05 
change over 500 iterations). The Monte Carlo simulation 
produces temporally consistent paths for capabilities, 
reflecting the dynamics of evolutionary change, while GANs 
create a cross-sectional representation that maintains 
correlations between variables, which requires both 
longitudinal and structural validity. The Generator converts 
noise vectors from a dimensionality of 100 into fake 
capability trajectories (16 features × 12 time steps), and the 
Discriminator differentiates real and fake samples using 5 
convolution layers with LeakyReLU activation functions 
(α=0.2), obtaining the final discriminator loss <0.15. The 
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process of generating synthetic data strictly follows three 
validity verification criteria: The Kolmogorov-Smirnov tests 
confirmed the consistency of the marginal distributions 
(mean P-value=0.28, range: 0.12-0.47), while the Pearson 
correlation analysis identified the preservation of structure 
(mean deviation=2.8%, max=4.3%), and the cross-validation 
analysis indicated the consistency of predictions accuracy 
difference=1.7%), the comparison of Pearson correlation 
coefficients verifies that the correlation structures of multiple 
variables are preserved (the difference of the correlation 
coefficient should be less than 5%), and cross-validation 
experiments confirm the prediction consistency of models 
trained with synthetic data on the real test sets (the difference 
of accuracy should be less than 3%). Using such an approach 
ensures support for algorithm training via data augmentation, 
while also considering the impact on enterprise privacy and 
ethics in the primary data collection. Synthetic data will be 
used solely to train the algorithms and enhance learning of 
generic patterns in the developing capabilities, whereas 
validation and testing of the derived model will rely on public 
data. 

Three key steps are involved in data preprocessing: 
standardization, handling missing values, and anomaly 
detection. In the standardization process, the Z-score method 
eliminates scale differences across variables of different 
dimensions, ensuring comparability among capability 
indicators within each dimension and improving the 
numerical stability of neural network training. To handle 
missing values, MICE is used, which builds a predictive model 
for each missing variable via iterative regression procedures, 
using other complete variables as predictors to estimate 
missing values and create multiple imputed datasets. MICE 
performed better than mean imputation in terms of RMSE 
(0.42 vs. 0.67) and than KNN imputation in terms of both 
RMSE (0.42 vs. 0.49, k=5) and correlation decay (3.2% vs. 
12.5%). Compared with using a simple mean, this technique 
better preserves the intrinsic data structure and the 
uncertainty in statistical inference. The identification and 
processing of abnormal observations rely on the Isolation 
Forest algorithm. With tree=200, contamination=0.05 
(anomaly ratio expectation), and max samples=256, the 
algorithm identified 412 anomalies, comprising 5.2% of data 
points, with scores of -0.18 for normal data and -0.52 for 
anomalies; these results were subsequently improved 
through robust regression. The algorithm is based on the fact 
that most points with anomalous values are easily 
discriminable. Anomaly levels are determined via a random 
partitioning process in feature space, based on estimates of 
mean path lengths between points, to address the difficulties 
of using fixed threshold values to measure irregularity. 
Robust regression methods are also utilized to adjust 
irregular values rather than eliminating them. To counter the 
overfitting issue, the following strategies are used: (1) 
Training the model only on simulated data and testing only on 
real data, (2) Use of the regularizer (L2 = 0.001), and (3) Early 
stopping based on real data validation metrics. 

2.3 Experimental design and performance evaluation 
indicators 
This research has four experimental groups. The 

independent verification tasks for the four experiments are 
defined, including multiple functional modules of the 
framework. Experiment One focuses on the accuracy 
evaluation of the organizational capability evaluation model. 
This experiment uses 12 typical cases of digital 
transformation sourced from the MIT Case Library and 

employs historical validation by entering enterprise 
capability information from the outset to predict outcomes 
after 6 to 12 months. The forecast results are validated by the 
actual outcomes recorded in the case studies to calculate the 
accuracy, RMSE, and correlation coefficients. The Control 
Group: Control Group models include fixed-weight AHP, 
linear regression, and both Random Forest and XGBoost 
models using a fixed number of 100 trees and 100 estimators. 
By comparing the two benchmark methods, it tests whether 
the dynamic weight mechanism improves prediction 
performance. Results will report 95% confidence intervals via 
bootstrap resampling (10,000 iterations) for all performance 
metrics to quantify estimation uncertainty. 

The performance stability of the DWA-RL algorithm is 
tested for different rates of environmental change in 
Experiment Two, simulating four environmental change 
scenarios: slow, below the average annual technical iteration 
rate of 5%; medium, between 5% and 15%; fast, between 
15% and 30%; and extremely fast, above 30%; the 
convergence speed and fluctuation range of the algorithm's 
accuracy can be observed. Fixed-weight AHP and linear 
weight adjustment strategy are control methods. Multi-
scenario comparison displays the value of the proposed 
adaptive mechanism based on reinforcement learning. 

Experiment Three tests the effectiveness of the 
technology management decision recommendation system in 
the presence of scarce resources. Three resource conditions 
are created: when resources are adequately available, when 
resources are moderately available, and when resources are 
scarce. The experiment compares decision scoring and 
resource usage effectiveness of AI-assisted decision making, 
traditional empirical decision making, and random decision 
making for making technology choice decisions, investment 
prioritization decisions, and technology architecture 
evolution route planning. Decision quality is quantified as: 

𝑄 = 0.4. 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 + 0.3. 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 + 0.3. 𝑅𝑂𝐼                 (3)  

where Alignment examines the goal-strategy 
relationship, Feasibility investigates resource satisfaction, 
while ROI approximates the cost/benefit ratio. 

Experiment Four conducts a comprehensive 
performance benchmark comparison of the framework, 
comprehensively comparing the framework proposed in this 
study with the digital capability framework of MIT Center for 
Information Systems Research (CISR) and McKinsey Digital 
Maturity Model across six dimensions: prediction accuracy, 
response speed, dynamic adaptability, interpretability, 
implementation cost, and technical threshold. The 
interpretability score is objectively assessed using the AI 
interpretability theory standard proposed by Lipton, which 
identifies the framework's relative advantages and potential 
limitations through a multidimensional assessment. 

Power analysis also indicated sufficient sample size, as 
the minimum required per group for testing medium effects 
(Cohen's d = 0.5) at an alpha level of 0.05 and power of 80 is 
128; the present sample size of 8,000 exceeds this 
requirement. Additionally, the number of validation cases 
was surpassed by 12. All experiments are conducted in 
accordance with stringent statistical analysis protocols. The 
statistical techniques used are the paired t-test for comparing 
the mean of a single experimental group with that of a control 
group, one-way ANOVA for comparing multiple groups, and 
the Bonferroni method for controlling the family-wise error 
rate due to multiple comparisons. 
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Figure 1. Agentic AI-driven framework architecture 

3.  Results 

3.1 Design outcomes and architecture verification of the 
AI-driven Agentic framework 
The Agentic AI-driven framework achieves an effective 

balance between theoretical rigor and practical applicability 
through its four-layer progressive architecture, as shown in 
Figure 1. Figure 1 illustrates the architecture design, which 
demonstrates improvements in three dimensions compared 
with the traditional digital transformation framework: the 
autonomy of AI agents enables continuous operation and self-
optimization of the framework without human intervention. 
It ensures that the dynamic weighting mechanism enables the 
capability assessment model to adapt to environmental 
changes rather than adhere to static standards. The closed-
loop feedback design ensures continuous improvement in 
decision-making quality rather than a one-time output. As 
shown in Table 1, to further validate the framework's 
innovative value, this study systematically compared it with 
the MIT Center for Enterprise Systems (CISR) digital 
capability framework and the McKinsey Digital Maturity 
model across eight key dimensions. 

Table 1 shows that the framework of this study shows 
higher scores than benchmark models on three dimensions: 
AI-driven, with a score of 4.8/5.0; dynamic adaptability, 
4.6/5.0; and decision intelligence, 4.7/5.0. In comparison, the 
scores of the MIT CISR framework in these three dimensions 
are 3.2, 3.5, and 3.1, respectively. Correspondingly, the 
McKinsey models are 3.4, 3.3, and 3.4, reflecting the 
weaknesses of traditional frameworks in terms of intelligence 
and dynamics. It should be noted that the interpretability 
score of the framework in this study has a value of 3.5, which 
compares poorly to the 4.2 value of MIT CISR and 4.0 of 
McKinsey. This problem can be attributed to the black-box 
nature of deep reinforcement learning. However, with the 
addition of the Embedded SHAP value analysis module and 
the attention mechanism module, traceability of 
interpretation can be ensured in the framework. 

 

 

 

 

 

 
3.2 Verification results of the dynamic assessment 

model for organizational capabilities 
Based on more than 8,000 enterprise samples, this study 

constructed a four-dimensional capability indicator system 
with dynamic weight allocation, as shown in Table 2. As 
shown in Table 2, the indicator system exhibits very strong 
universality in cross-industry verification. The weight of 
technical capabilities, including cloud computing adoption, 
data analysis, and automation, in manufacturing enterprises 
is substantially greater than in service enterprises. In terms 
of organizational capabilities, the weight of digital culture and 
an agile organizational structure in the financial sector is 
relatively greater. Prediction accuracy across different time 
Windows gradually decreased with increasing prediction 
horizon, but even a 12-month prediction maintained an 
accuracy of 73.6% (95% CI: 71.2%-76.0%; Cohen's d = 1.24 
vs. fixed-weight, P < 0.001). In contrast, using the fixed-weight 
AHP method, the model achieved only 58.8%, and the simple 
linear model obtained only 51.2%. It thus improved by 14.8 
and 22.4 percentage points, respectively. The accuracy 
verification of the capability assessment model was achieved 
through historical backtracking experiments, as shown in 
Figure 2. Figure 2(a) reflects the four-dimensional capability 
maturity distribution for six typical industries. The financial 
industry has the highest technological capability score, 
averaging 4.2/5.0, but a relatively weak ecosystem capability 
of 2.8/5.0. The manufacturing industry is characterized by 
balanced technological and organizational capabilities, with 
scores of 3.6 and 3.4, respectively, but lagging strategic 
capabilities at 2.9. The ecosystem capability of the retail 
industry is 3.9, ranking first among industries, reflecting its 
effectiveness in platform transformation. Figure 2(b) reflects 
the core advantages of the dynamic weighting mechanism: 
within a rapidly changing technological environment, that is, 
from 2020 to 2021 during the pandemic period, the accuracy 
of fixed-weight declined 25.5 percentage points from 84.3% 
to 58.8%, while the DWA-RL algorithm controlled such a 
decline by 17.6 percentage points, namely, from 91.2% to 
73.6%, through adaptive weight adjustment, reflecting a 7.9 
percentage point advantage in stability and strong robustness 
to environmental fluctuation. 
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Table 1. Framework comparison with existing models 

Evaluation 
Dimension 

Proposed 
Framework (This 

Study) 

MIT CISR 
Framework 

McKinsey Digital 
Maturity Model 

Evaluation Basis 

AI-Drivenness 4.8/5.0 3.2/5.0 3.4/5.0 Degree of autonomous agent 
integration and self-learning capability 

Dynamic 
Adaptability 

4.6/5.0 3.5/5.0 3.3/5.0 Capability to adjust evaluation weights 
and strategies in response to 

environmental changes 

Decision 
Intelligence 

4.7/5.0 3.1/5.0 3.4/5.0 Quality and sophistication of AI-
powered decision recommendation 

mechanisms 

Closed-Loop 
Feedback 

4.5/5.0 3.4/5.0 3.2/5.0 Presence of continuous monitoring, 
evaluation, and iterative optimization 

mechanisms 

Technology 
Management 

Focus 

4.4/5.0 3.6/5.0 3.8/5.0 Depth of support for technology 
selection, investment prioritization, 

and architecture evolution 

Interpretability 3.5/5.0 4.2/5.0 4.0/5.0 Transparency of decision-making logic 
and ease of understanding by 

managers (based on Lipton, 2018 
standards) 

Implementation 
Complexity 

2.8/5.0 (High Cost) 4.1/5.0 
(Moderate Cost) 

3.9/5.0 (Moderate 
Cost) 

Required technical infrastructure, data 
quality standards, and expert 

resources 
Applicable Scale 3.8/5.0 (Medium-to-

Large) 
4.3/5.0 (All 

Scales) 
4.1/5.0 (All Scales) Suitability across different enterprise 

sizes and organizational structures 

 

Table 2. Four-Dimensional capability indicators 

Capability 
Dimension 

Core Indicators (Representative 
Examples) 

Measurement Method Data Source Initial 
Weight 
Range 

Technology 
Capability (TC) 

• Cloud computing adoption rate 
• Data analytics maturity level 
• Digital infrastructure robustness 
• Automation degree of core processes 

Likert scale (1-5) survey 
+ objective metrics 
(adoption rate %, 
system uptime %) 

WBES enterprise survey, 
OECD database, enterprise 
IT audit reports 

0.22-0.31 

Organizational 
Capability (OC) 

• Digital culture penetration 
• Agile organizational structure 
adoption 
• Employee digital literacy index 
• Cross-functional collaboration 
effectiveness 

Composite index 
combining employee 
surveys + organizational 
network analysis 

WBES organizational 
module, HR analytics data, 
internal assessment 

0.24-0.33 

Strategic Capability 
(SC) 

• Digital transformation strategic 
clarity 
• Innovation investment intensity (% 
of revenue) 
• Digital-driven business model 
innovation 
• Strategic agility in technology 
adoption 

Expert panel scoring + 
financial data analysis 
(R&D ratio, digital 
revenue %) 

MIT case library, annual 
reports, OECD innovation 
statistics 

0.19-0.28 

Ecosystem 
Capability (EC) 

• Digital platform participation depth 
• Strategic partnership diversity 
• External collaboration network 
density 
• Open innovation engagement level 

Network analysis 
metrics (degree 
centrality, 
betweenness) + 
partnership count 

WBES value chain module, 
business partnership 
databases, industry reports 

0.18-0.26 
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Figure 2. Capability assessment, performance, and industry maturity. 
(a) Industry-specific capability maturity distribution. (b) Prediction 
accuracy across time windows 

3.3 Verification results of AI algorithm performance and 
technology management decisions 
The DWA-RL algorithm’s performance was verified 

through simulation experiments and real case tests, as shown 
in Figure 3. Figure 3(a) indicates that the DWA-RL algorithm 
reaches stable convergence at the 280th iteration, with 
decision quality scores declining within a range of 85.3-88.1 
and the loss function decreasing from 2.34 to 0.08, showing 
typical characteristics of a rapid decline followed by 
smoothness. The average inference time of 2.3 s meets the 
real-time decision support requirement. Figure 3(b) 
illustrates the performance comparison of the algorithms' 
rates of environmental changes. For the slow-changing 
environment (annual iteration rate: 4.2%), the three methods 
perform comparably in accuracy: DWA-RL 91.3%, fixed AHP 
89.7%, and linear adjustment 88.5%. For the extremely 
volatile environment (iteration rate: 34.6%), However, DWA-
RL maintains an accuracy of 84.7% (95% CI: 82.3%-87.1%, 
Cohen’s d=1.56 vs. fixed AHP, P<0.001) while fixed AHP drops 
dramatically to 72.1%, and linear adjustment decreases to 
76.8%, which demonstrates the much-enhanced robustness 
of the dynamic learning mechanism in response to sudden 
changes of technologies, having only a 6.6-percentage-point 
decline compared to 17.6 for fixed methods. 

 

 

Figure 3. DWA-RL algorithm performance. (a) Convergence 
characteristics and training efficiency. (b) Dynamic adaptability 
under environmental changes 

The effectiveness assessment of technology management 
decisions focuses on the quality of decisions in three core 
scenarios, as shown in Figure 4. Figure 4 shows the group 
comparison, where in the high resource adequacy scenario, 
the AI-backed recommendations stood consistently at 78.6 
points, 95% CI: 76.2-81.0, whereas traditional empirical 
decisions fell very sharply to 57.3 points, 95% (CI: 54.8-59.8; 
Cohen's d = 2.34, P < 0.001). and a random benchmark of 41.2 
points. Highlighted is the stability advantage of AI decision-
making under complex constraints. In terms of technology 
selection during technology maturity assessment, the 
accuracy of technical solution recommendation using AI was 
at 89.7%, and the prediction error for total cost of ownership 
was maintained at 12.3%. The Kendall correlation coefficient 
for investment priority ranking was found to be 0.78, which 
was quite higher than that of empirical decision-making, 
measuring at 0.54, and the feasibility index of the technical 
architecture evolution path was at 4.3/5.0. 

3.4 Comprehensive performance evaluation of 
framework and application in digital transformation 
The framework’s comprehensive performance was 

evaluated through multi-dimensional comparison with 
mainstream models, as shown in Table 3. 
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Figure 4. Decision quality under resource constraints 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 indicates that the proposed framework leads in 
five dimensions but has relative disadvantages in 
interpretability and implementation cost. The framework 
achieved an 87.3% prediction accuracy (exceeding 71.5% by 
MIT CISR and 69.8% by McKinsey), a response time of 2.3 
seconds, which is 3.8× faster than CISR, and a dynamic 
adaptability of 4.6/5.0, which is substantially higher than 3.1 
and 3.3. In the trade-off graph, the 28% improvement in 
decision quality is achieved at lower algorithmic 
transparency due to the black-box nature of deep 
reinforcement learning. A high implementation cost and 
moderate technical requirements suggest that the solution 
would entail mandates related to digital infrastructure and AI 
skills and would be targeted at medium- to large-scale 
enterprises with higher digital maturity. The transformation 
path guidance generated from capability assessment results 
provides differentiated recommendations for enterprises at 
different maturity levels, as shown in Figure 5.  

 

 

 

Table 3. Comprehensive performance benchmark 

Evaluation 

Dimension 

Proposed 

Framework 

(This Study) 

MIT CISR 

Framework 

McKinsey 

Digital 

Maturity 

Model 

Testing Method Performance 

Comparison 

Prediction Accuracy 87.3% 71.5% 69.8% Historical backtracking 
validation with 12 MIT case 

library cases; accuracy 

calculated as percentage of 
correct predictions within ±10% 

tolerance 

This study +15.8% vs. 
CISR, +17.5% vs. 

McKinsey 

Response Speed 2.3 seconds 8.7 seconds 12.4 seconds Average inference time per 

decision measured across 500 
test scenarios on standardized 

hardware (Intel Xeon E5-2680 
v4) 

This study 3.8× faster 

than CISR, 5.4× faster 
than McKinsey 

Dynamic 

Adaptability 

4.6/5.0 3.1/5.0 3.3/5.0 Performance stability test under 

four environmental change rate 

scenarios 

(slow/medium/fast/extremely 

fast); scored by accuracy 

retention rate 

Superior robustness: 

only 6.7% accuracy 

drop in volatile 

environments vs. 18.3% 

for fixed-weight 

methods 

Decision Quality 

Improvement 

+28% +12% +14% Expert panel assessment (n=15) 

comparing AI-recommended vs. 

traditional experience-based 
decisions across three resource 

constraint scenarios 

Relative improvement: 

+16 percentage points 

vs. CISR, +14 points 
vs. McKinsey 

Interpretability 3.5/5.0 4.2/5.0 4.0/5.0 Objective scoring based on 

Lipton (2018) AI interpretability 
theory standards: model 

transparency, logic traceability, 

decision explainability 

Trade-off for higher 

performance; partially 
mitigated through 

SHAP value analysis 

and attention 
mechanism 

visualization 

Implementation Cost 2.8/5.0 (High) 4.1/5.0 
(Moderate) 

3.9/5.0 
(Moderate) 

Expert assessment considering 
infrastructure requirements, data 

quality standards, training 

needs, and maintenance 

overhead 

Requires substantial 
investment in technical 

infrastructure and 

skilled AI talent 

Technical Threshold 3.2/5.0 

(Moderate-
High) 

4.3/5.0 (Low-

Moderate) 

4.1/5.0 

(Moderate) 

Evaluation of prerequisite 

technical capabilities: data 
management maturity, cloud 

infrastructure readiness, AI/ML 

expertise availability 

Best suited for digitally 

mature medium-to-
large enterprises with 

established data 

foundations 
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Figure 5. Three-year digital transformation trajectory 

Figure 5 shows a typical trajectory of digital 
transformation for a manufacturing enterprise over three 
years, from the initial level to the mature level through five 
distinct maturity stages: TC increases from 2.1 to 3.8, OC from 
2.3 to 3.6, SC from 1.9 to 3.4, and EC from 2.0 to 3.5. The main 
transformation path illustrates capability growth in a steady 
upward trend, with an average score increasing from 2.075 to 
3.575. Meanwhile, the development patterns of the four 
dimensions show differentiation: Technology Capability 
exhibits the steepest growth slope (+1.7), indicating that 
greater attention was paid to investing in technical 
infrastructure at the outset, whereas Strategic Capability 
starts at the lowest point but achieves substantial 
improvement (+1.5) through mid-stage adjustment. 
Organizational Capability and Ecosystem Capability have 
balanced progress throughout the journey, with +1.3 and 
+1.5, respectively. The phased strategic focus-technology 
infrastructure in Year 0-1, organizational change in Year 1-2, 
and strategic alignment with ecosystem building in Year 2-3-
can make the capability develop harmoniously and provide 
actionable guidance for enterprises to optimize resource 
allocation and accelerate digital transformation. 

4. Discussion  

Consequently, the performance of the Agentic AI-driven 
framework proposed in this study, in terms of prediction 
accuracy (87.3%), dynamic adaptability (4.6/5.0), and the 
improvement in decision quality (+28%), provides empirical 
support to understand how artificial intelligence 
systematically empowers the digital transformation of 
organizations. This is consistent with the research that 
dynamic digital transformation capabilities enhance the 
performance of the banking industry [14]. The research 
advances the frontiers of theory from passive adaptation to 
active evolution by incorporating autonomous-agent 
mechanisms and reinforcement-learning processes. The 
DWA-RL algorithm employed in the study reduced the drop 
in accuracy by 17.6 percentage points during environmental 
disturbances, compared with the fixed-weight approach, 
which dropped by 25.5 percentage points.  

 

 

The findings enhance understanding of the mediating 
role of change management in the evolution of dynamic 
capabilities [16]. It indicates that the algorithm-driven 
weight-adaptive mechanism can serve as an effective 
supplementary tool for organizational change management, 
enabling real-time responses to environmental fluctuations at 
the technical level. A study emphasized the value of AI-driven 
visual analytics for understanding business ecosystems [17]. 
This study further validated this view by developing a four-
dimensional capability assessment system (TC, OC, SC, EC) 
and integrating it with dynamic tracking of the ecological 
capability dimension. This is particularly reflected in the 
finding that the retail industry's ecological capability score 
(3.9/5.0) is higher than that of other industries. 

The new paradigm of agent-dominated, human-
supervised decision-making revealed in this study provides a 
theoretical response to empirical research on how AI 
influences the strategic decisions of entrepreneurs and 
investors [18]. However, it also facilitates continuous 
improvement in decision quality through a closed-loop 
feedback process rather than a snapshot decision. This aligns 
with the proposed capability of generative AI to assess 
strategic decision-making in Ref. [19] and, in fact, specifies the 
technical process by which AI-based strategic management 
decisions can strengthen competitiveness in business entities 
[20]. A study found that dynamic capabilities play a critical 
role in building organizational resilience [21]. The sensitivity 
analysis of this study found that when the data loss rate 
exceeded 30%, the prediction accuracy dropped to 74.8%, 
indicating a certain tolerance of the framework to fluctuations 
in data quality. Their technical resilience provides a 
theoretical rationale for organizations to sustain the 
momentum of the transformation process despite an 
imperfect data environment. Research studies on the impact 
of digital and dynamic capabilities on business model 
innovation conclude that organizational inertia moderates 
this effect [22]. In this study, three years of transformation 
path cases (from TC:2.1 to 3.8) of manufacturing enterprises 
are used to demonstrate the importance of balanced 
capability development. In particular, the trajectory of 
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strategic capability, from lagging behind at 1.9 in the initial 
stage to catching up at 3.4 in the later stage, confirms that 
breaking through organizational inertia requires a shift in the 
focus of phased strategies. For example, research highlighted 
the promoting effect of learning from the digital business 
ecosystem on innovation [23]. This research finds evidence 
that when the retail industry exhibits strong performance in 
ecological capability, its platform transformation is more 
effective, providing evidence across industries of this view. 
This research is relevant regarding the systematic pathway 
view on building a sustainable business ecosystem [24]. A 
study verified the supportive role of dynamic capabilities for 
strategic planning in the digital age within the Palestinian 
context [25]. In complementing this understanding from a 
global perspective, the cross-national dataset of this study 
(8,000 + enterprises covering 130+ countries) reveals the 
limitations of the framework's applicability in traditional 
service industries and agriculture. This is in line with the 
findings on the unique challenges faced by small and medium-
sized enterprises in digital transformation that the technical 
threshold of the framework (3.2/5.0) and the high 
implementation cost (2.8/5.0) may limit its promotion and 
application in resource-constrained enterprises [26]. 
Research on dynamic capability practices in large enterprises 
aligns with this study's conclusion that the framework should 
be prioritized for use in medium- and large-sized enterprises 
[27]. In the digital transformation of large-scale 
organizations, the description of four reorganization 
dilemmas partly explains the relatively low scores (3.5/5.0) 
on interpretability assigned to the research framework. The 
black-box qualities inherent in deep reinforcement learning 
may well accentuate concerns about decisional transparency 
within large-scale organizational structures [28]. 

The first drawback for this particular study is that it has 
70% synthetic data. While quality assurance is taken care of 
with triple validation processes that include the KS test, 
correlation maintenance, and prediction consistency checks, 
these processes cannot be adequately supplemented by the 
power that causal inference from direct observation of the 
enterprise transformation process could offer. The finding 
that the framework performs best in the finance and 
manufacturing industries indicates that generalizability 
across industries needs further work, such as the design of 
industry-specific weight initialization schemes based on 
digital maturity. Based on this, there are three directions in 
which future research could be deepened: integrating 
interpretable AI technologies to improve the transparency of 
the framework; conducting multi-time point longitudinal 
tracking studies to verify causal relationships; and developing 
lightweight versions to reduce the application threshold for 
small and medium-sized enterprises, which would extend the 
practical influence of the framework and push the evolution 
of digital transformation research from descriptive to 
normative paradigms. The framework's superior 
performance holds primarily for digitally mature mid-to-
large companies (number of employees >500, readiness score 
≥3/5) in manufacturing, financial services, and services. 
Performance decreases when the data context is low (i.e., 
when the number of records is <1000). 

5. Conclusion  
Based on the design science research methodology, the 

study develops an Agentic, AI-powered dynamic decision 
framework to evaluate organizational capabilities and inform 
technology management decisions. The decision framework 
is designed to have a four-layer closed-loop architecture. It 

implements the DWA-RL algorithm to enable adaptive weight 
adjustment. Empirical verification, based on over 8,000 
enterprise samples, shows that the framework outperforms 
traditional methods in prediction accuracy (87.3%), 
improvement in decision quality (+28%), and dynamic 
adaptability (4.6/5.0). The three-year transformation path 
case of manufacturing enterprises further substantiates the 
feasibility of developing a four-dimensional capability 
balance (TC, OC, SC, EC). This study develops the dynamic 
capability theory by introducing an autonomous agent 
mechanism, redefines the decision-making paradigm of agent 
dominance - human supervision, and provides Ctos and CIOs 
with a systematic tool for formulating technology strategy. 
The framework's explanatory level is moderate (3.5/5.0), and 
its implementation cost remains high (2.8/5.0). However, its 
success in the industrial and financial sectors demonstrates 
that artificial intelligence can be a force multiplier in 
advancing the digital transformation process. Future work 
may focus on integrating explainable AI tools and developing 
methods with lightweight tracking and verification 
capabilities. 
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