Main Article Content


The performance of a Kalina-based multigeneration cycle for power, water and hydrogen production is investigated from thermo-environmental, sustainability and thermo-economic perspectives. The plant comprises a gas turbine (GT), Kalina cycle (KC) and vapour absorption system (VAS) as the bottoming cycle and an integrated domestic water heater and proton-electron membrane (PEM) electrolyzer for hydrogen production. The system's models were simulated with Engineering Equation Solver (EES) codes. The results indicate a net energy efficiency of 53.48% and exergy efficiencies of 50.05 %, with an additional 30,178 kW of products from the bottoming cycles. The GT contributed approximately 85.81 % of the overall exergy destruction. The system's exergo-thermal index (ETI) stood at 1.713, with the GT only having an ETI of 2.106. Similarly, the exergetic sustainability index (ESI) of the multigeneration plant was not greater than 2.04. The exergoeconomic analysis shows a low average energy cost from the GT, estimated at 0.836 $/GJ, compared to the Kalina subsystem, which stood at 6.53 $/GJ. The thermodynamic and cost evaluation of the system demonstrates substantial benefits from the plant, which kept the hydrogen production rate at 0.1524 kg/hr


Energy Exergy Kalina cycle Sustainability Hydrogen

Article Details

How to Cite
Abam, F., Umeh, V., Ekwe, E. B., Effiom, S. O., Egbe, J., Anyandi, A. J., Enyia, J., Ubauike, U. H., & Ndukwu, M. C. (2023). Thermodynamic and environmental performance of a Kalina-based multigeneration cycle with biomass ancillary firing for power, water and hydrogen production. Future Technology, 3(1), 40–55. Retrieved from
Bookmark and Share


  1. M. Azam .Energy and economic growth in developing Asian economies, J. of the Asia Pacific Econo. 25 (3) (2020) 447-471 DOI: 10.1080/13547860.2019.1665328
  2. C. Cicea., C. N Ciocoiu., C. Marinescu. (2021). Exploring the Research Regarding Energy–Economic Growth Relationship. Energies 14(9) (2021) 2661. Doi: 10.3390/en14092661.
  3. N. Dev, R. Attri. Performance analysis of combined cycle power plant. Front in Energy, 9(4) (2015) 371-386.
  4. E. Bellos., C. Tzivanidis. Optimization of a solar-driven trigeneration system with nanofluids-based parabolic trough collectors. Energies10 (2017) 848-877
  5. G. Manente, G. (2016). High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design. Energy Conver. Manag. 111 (2016)186–97.
  6. C. Stefano., D. Micheli., M. Reini., R. Taccani. (2013). Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions. Applied Energy, 106 (2013) 355-364. doi:10.1016/j.apenergy.2013.02.004.
  7. B.Peris., J.Navarro-Esbrí., F. Molés. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Applied Therm. Eng. 61(2) (2013). 364-371.
  8. F. I. Abam., E. B. Ekwe, S. O. Effiom. C. Afangideh. Performance and thermo- sustainability analysis of non-hybrid organic Rankine cycles (ORCs) at varying heat source and evaporator conditions. Australian J. Mechanical Eng. 16 (3) (2018) 238- 248
  9. H. Gao., F. Chen. Thermo-Economic Analysis of a Bottoming Kalina Cycle for Internal Combustion Engine Exhaust Heat Recovery. Energies, 11(11) 2018 3044 doi: 10.3390/en11113044.
  10. L. A. Prananto., I. N. Zaini., B.I. Mahendranata., F. B. Juangsa, F Bagja; M. Aziz, T. Soelaiman., A. Fauzi (2018). Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: Case study of the Wayang Windu geothermal power plant. Appl. Thermal Eng. 132, (2018) 686-696.
  11. G. Guzmán., L. D, L Reyes, E. Noriega., H. Ramírez., Bula., A. Fontalvo. Thermal Optimization of a Dual Pressure Goswami Cycle for Low Grade Thermal Sources. Entropy 21, (2019)711; doi:10.3390/e21070711
  12. Dev, N. and Attri, R. (2015). Performance analysis of combined cycle power plant. Frontiers in Energy, 9(4): 371–386.
  13. Ahmadi, Pouria; Dincer, Ibrahim; Rosen, Marc A. (2012). Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Conversion and Management, 64(), 447–453. doi:10.1016/j.enconman.2012.06.001.
  14. Sharifishourabi, M., Ratlamwala, T., Alimoradiyan, H. and Sadeghizadeh, E. (2016). Performance assessment of a multigeneration system based on organic Rankine cycle. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 3: 225-232.
  15. F. I. Abam, O. E. Diemuodeke, E. B. Ekwe, M. Alghassab, O. D. Samuel, Z. A. Khan, M. Imran, M. Farooq. Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing. Energies 2020, 13, 6018
  16. Anvari, S., Mahian, O., Taghavifar, H., Wongwises, S., and Desideri, U. (2020). 4E analysis of a modified mmulti-generationsystem designed for power, heating/cooling, and water desalination. Applied Energy, 270, 115107.
  17. Chitgar, Nazanin; Moghimi, Mahdi (2020). Design and evaluation of a novel mmulti-generationsystem based on SOFC-GT for power, desalinated water and hydrogen supply. Energy, 117162–. doi:10.1016/
  18. Khalid, F., Dincer, I., & Rosen, M. A. (2017). Techno-economic assessment of a solar- geothermal mmulti-generationsystem for buildings. International Journal of Hydrogen Energy, 1-9. doi:
  19. Cao, L., Lou, J., Wang, J., & Dai, Y. (2018). Exergy analysis and optimization of a combined cooling and power system driven by geothermal energy for ice-making and hydrogen production. Energy Conversion and Management, 174, 886-896.
  20. F. I. Abam, T. A. Briggs, E. B. Ekwe, C. G. Kanu, Samuel O. Effiom, M. C. Ndukwu, S. O. Ohunakin, M. I. Ofem (2018): Exergy analysis of a novel low- heat recovery organic Rankine cycle (ORC) for combined cooling and power generation, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, DOI: 10.1080/15567036.2018.1549140
  21. Roy, D. and Ghosh, R. (2017). Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle, Clean Techn Environ Policy DOI 10.1007/s10098-017-1358-5.
  22. Chitsaz, A., Mehr, A. S., Mahmoudi, S. M. (2015). Exergoeconomic analysis of a trigeneration system driven by a solid oxide fuel cell. Energy conversion and management, 106:921–31.
  23. K. Owebor, C. O. C. Oko, E. O. Diemuodeke und O. J. Ogorure, „Thermo- environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-steam- organic fluid-and absorption refrigeration cycle thermal power plants.,“ Applied Energy, Bd. 239, pp. 1385-1401, 2019.
  24. O. L. Gulder. Flame temperature estimation of conventional and future jet fuels, Journal of Engineering for Gas Turbines and Power, Bd. 108, Nr. (2), pp. 376-380, 1986.
  25. Aydin, H. (2013). Exergetic sustainability analysis of LM 6000 gas turbine power plant with steam cycle. Energy 57: 766-774.