Main Article Content

Abstract

Recent progress in photovoltaic (PV) cell usage has been hindered due to a shortage of suitable materials that emit adequate wavelengths of light energy and convert it to electricity.  Quantum dot light-emitting diodes (QLEDs) and quantum dot solar cells (QDSCs) have been identified as promising artificial light sources and PV cell types to nicely fit into this solution, not only complying with that but also being controllable, flexible, portable, and lightweight.  The purpose of this study is to provide a review of the application of how QLEDs can be collected for QDSCs. 

Keywords

Quantum Dot Solar cell QLED QDSC Energy

Article Details

How to Cite
Umar, A. S. ., Usman, A., & Abubakar, A. (2023). Application of quantum dot light-emitting diode harvest by quantum dot solar cells. Future Technology, 3(2), 32–43. Retrieved from https://fupubco.com/futech/article/view/134
Bookmark and Share

References

  1. N. L. Panwar, S. C. Kaushik, S. Kothari, "Role of renewable energy sources in environmental protection: A review," Renew. Sustain. Energy Rev., 153, 1513–1524, 2011.
  2. Global Climate & Energy Project, (GCEP), "An Assessment of Solar Energy Conversion Technologies and Research Opportunities GCEP Energy Assessment," Analysis Summer 2006 Global Climate & Energy Project, Stanford University, Technical Assessment Report, 2006.
  3. S. Biswas, and H. Kim, "Solar Cells for Indoor Applications: Progress and Development", Polymers, 12, 1338, 2020. doi:10.3390/polym12061338
  4. P. Rawat, Performance Analysis of 300W Solar Photovoltaic Module under Varying Wavelength of Solar Radiation, International Journal for Research in Applied Science & Engineering Technology (IJRASET), 5(XI), 2478-2482, 2017. www.ijraset.com
  5. C-C. Lin, H-C. Chen, Y. L. Tsai, H-V. Han, H-S. Shih, Y-A. Chang, H-C Kuo, and P. Yu, "Highly efficient CdS-quantum-dot-sensitized GaAs solar cells," OPTICS EXPRESS A325, 20(S2), 2012.
  6. M. K. Narendra, H. S. Saini, K. S. R. Anjneyulu, and S. Kuldip, "Solar Power Analysis Based On Light Intensity", International Conference on Innovations in Electrical & Electronics Engineering (ICIEEE-2014), The International Journal of Engineering and Science (IJES), 2319 – 1805, 2014.
  7. E. O. Semonin, M. J. Luther, and M. C. Beard, "Quantum dots for nextgeneration photovoltaics", Review, 15(11), 508-515, 2012.
  8. T. H. Kim, W. Wang, and Q. Li, "Advancement in materials for energy-saving lighting devices, Frontiers of Chemical Science and Engineering, 6(1), 13-26, 2012. https://doi.org/10.1007/s11705-011-1168-y
  9. D. Manimegalai, and S. Meenakshi, "Energy Harvesting from Solar Cells Under Electric Lighting Sources in Indoors", ARPN Journal of Engineering and Applied Sciences, 11(19), 11395-11402, 2016. www.arpnjournals.com.
  10. N. Khan, and N. Abas, "Comparative study of energy saving light sources", Renewable & Sustainable Energy Reviews, 15(1), 296–309, 2011.
  11. F. Plyta, F. "Optical design of a fully LED-based solar simulator", Doctoral Thesis, Submitted in the partial fulfilment of the requirements for the reward of Doctor of Philosophy of Loughborough University, 2015.
  12. M. A. Triana, A. A. Restrepo, R. J. Lanzafame, P. Palomaki, and Y. Dong, "Quantum dot light-emitting diodes as light sources in photomedicine: photodynamic therapy and photobiomodulation", Journal of Physics: Materials, 3, 032002, 2020. https://doi.org/10.1088/2515-7639/ab95e8
  13. H. Jabbar, and T. Jeong, Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena. Appl. Sci., 12, 2068, 2022. https://doi.org/10.3390/app12042068
  14. S. Gangasani, "A Study on Quantum Dot and its Applications", International Journal of Innovative Research in Science, Engineering and Technology, 5(5), 8128- 8133, 2016. DOI:10.15680/IJIRSET.2016.0505119
  15. H. Zhang, S. Chen, and X. W. Sun, "Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%", ACS Nano. 12, 697–704, 2018.
  16. H. S. Adi, R. A. Priramadhi, and D. Darlis, D. "Artificial Light Energy Harvester Using Low Start Voltage Solar Cell", 3rd Annual Applied Science and Engineering Conference (AASEC 2018), IOP Conf. Series: Materials Science and Engineering, 434, 012212, 2018. https//doi.org/1088/1757-899X/434/1/012212
  17. G. Lucarelli, F. Di Giacomo, V. Zardetto, M. Creatore, and T. M. Brown, "Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination", Nano Research, 10(6), 2130-2145, 2017. https://doi.org/10.1007/s12274-016-1402-5
  18. A. Chirap, V. Popa, E. Coca, and A. D. Potorac, "A study on light energy harvesting from indoor environment: The autonomous sensor nodes", 12th International Conference on Development and Application Systems, Suceava, Romania, May 15-17, 2014.
  19. J. Y. Tsao, "Light Emitting Diodes (LEDs) for General Illumination", Optoelectronics Industry Development Association, 1133 Connecticut Avenue, NW, Suite 600 Washington, DC 20036, 2002.
  20. B. Bowers, "Lengthening the Day: A History of Lighting Technology", (Oxford University Press, Oxford, 1998.
  21. P. Kathirgamanathan, M. L. Bushby, M. Kumaraverl, S. Ravichandran, and S. Surendrakumar, "Electroluminescent Organic and Quantum Dot LEDs: The State of the Art", Journal of Display Technology, 11(5), 480-493, 2015.
  22. Wac Lighting, "Responsible Lighting. LED/OLED: Technical Training and Applications", [Internet]. Available from: http://iie.ciapr.org/actividades/seminarios/2009/Presentacion LED-OLED.pdf, 2013.
  23. H. J. Round "A note on carborundum", Electrical World, 19:309-310, 1907.
  24. O. V. Losev "Luminous carborundum (silicon carbide) detector and detection with crystals", Telegrafiya i Telefoniya bez Provodov., 44, 485-494, 1927.
  25. N. Jr. Holonyak, "Bevaqua SF. Coherent (visible) light emission from Ga(As1-xPx) junctions", Applied Physics Letters, 1(4), 82-83, 1962. DOI: 10.1063/1.1753706
  26. L. E. Brus "Electronic wave functions in semiconductor clusters: experiment and theory", J. Phys. Chem., 90, 2555-2560, 1986.
  27. C. Cheng, X. Sun, Z. Yao, C. Bi, X Wei, J. Wang, and J. Tian, J. "Balancing charge injection in quantum dot light-emitting diodes to achieve high efficienciy of over 21%", Sci China Mater, 65(7), 1882–1889, 2022. https://doi.org/10.1007/s40843-021-1976-9
  28. W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, "Highly stable QLEDs with improved hole injection via quantum dot structure tailoring,” Nat. Commun. 9(1), 2608, 2018.
  29. A. Mousa, "Syndissertation and Characterization of PbS Quantum Dots, Submitted to the Department of Chemical Physics", A thesis in Partial fulfillment of the Requirements for the Degree of Master of Science in Chemistry, Lund University, 2011.
  30. N. Heydari, S. M. B. Ghorashi, W. Han, and H. Park, "Quantum Dot-Based Light Emitting Diodes (QDLEDs)", Intech, 2017. Available at: http://www.intechopen.com/books/quantum-dot-based-lightemitting-diode
  31. A. Thabet, S. Abdelhady, and Y. Mobarak, "Design modern structure for heterojunction quantum dot solar cells", International Journal of Electrical and Computer Engineering (IJECE), 10(3), 2918-2925, 2020. https://doi.org/10.11591/ijece.v10i3.pp2918-2925
  32. A. M. Bagher, "Solar Cell Quantum Dots", American Journal of Renewable and Sustainable Energy, 2(1) 1-5, 2016. Available at: http://www.aiscience.org/journal/ajrse
  33. A. Chilton, "The Properties and Applications of Quantum Dots", Azo Quantum. AZoQuantum.com, 2014.
  34. P. V. Kamat, "Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics", J. Phys. Chem. Lett., 4, 908−918, 2013. https://doi.org/10.1021/jz400052e
  35. E. Abou, and M. M. Aly, "Investigation of Some Parameters Which Affects into The Efficiency of Quantum Dot Intermediate Band Solar Cell", INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 4(4), 1085-1093, 2014.
  36. R. Ma, Cd-Free Quantum Dots for Lighting and Displays", Nonosys., 2020.
  37. M. A. Bagher, Quantum Dot Display Technology and Comparison with OLED Display Technology", International Journal of Advanced Research in Physical Science (IJARPS), 4(1), 48-53, 2017. Available at: www.arcjournals.org
  38. X. T. Fan, T. Z. Wu, B. Liu, R. Zhang, and H. C. Kuo, "Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism", Opto-Electron Adv, 4(4), 210022, 2021. https://doi.org/10.29026/oea.2021.210022
  39. G. Zaiats, S. Ikeda, and P. V. Kamat, "Optimization of the electron transport layer in quantum dot light-emitting devices", NPG Asia Materials, 12:57, 2020. https://doi.org/10.1038/s41427-020-00237-0
  40. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, "Emergence of colloidal quantum-dot light-emitting technologies", Nat. Photonics, 7(1), 13–23, 2013.
  41. G. Ba, Q. Xu, X. Li, Q. Lin, H. Shen, and Z. Du, Z. "Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering", Optics Express, 29(8/12), 12169-12178, 2021.
  42. Z. Liu, F. Li, G. Huang, J. Wei, G. Jiang, and Y. Huang, "Enhance the Light Extraction Efficiency of QLED with Surface Micro-Nanostructure", Journal of Nanomaterials, 8858996, 2020. https://doi.org/10.1155/2020/8858996
  43. Y-M. Huang, K. J. Singh, A. C. Liu, C-C. Lin, Z. Chen, K. Wang, Y. Lin, Z. Liu, T. Wu, and H-C. Kuo, "Advances in Quantum-Dot-Based Displays", Nanomaterials, 10, 1327, 2020. https://doi.org/10.3390/nano10071327
  44. N. Tu, "Quantum Dot Light-Emitting Diode: Structure, Mechanism, and Preparation, Quantum Dots", Fundamental and Application, 2020.
  45. H. S. Lee, L. Cui, Y. Li, J. S. Choi, J-H. Choi, Z. Li, Z., "Influence of Light Emitting Diode-Derived Blue Light Overexposure on Mouse Ocular Surface", PLoS ONE 11(8): e0161041, 2016. https://doi.org/10.1371/journal.pone.0161041
  46. L. Paterson, F. May, and D. Andrienko, "Computer aided design of stable and efficient OLEDs", Journal of Applied Physics, 128, 160901, 2020. https://doi.org/10.1063/5.0022870.
  47. A. Armăşelu, "Recent Developments in Applications of Quantum-Dot Based Light-Emitting Diodes", Quantum-dot Based Light-emitting Diodes, Morteza Sasani Ghamsari, IntechOpen, 2017. https://doi.org/10.5772/intechopen.69177
  48. C. Hao, and P. Si-Hyun, "Numerical Simulations of the Light-Extraction Efficiency of LEDs on Sapphire Substrates Patterned with Various Polygonal Pyramids", Journal of Optical Society of Korea, 18(6), 774-776, 2014.
  49. X-J Shang, "Study of quantum dots on solar energy applications," A Doctoral Thesis in Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology Stockholm, Sweden, 2012.
  50. K. V. M. Murali, V. B. Naik, and D. Datta, "Gallium-nitride-based light-emitting diodes", Resonance, 20(7), 605–616, 2015.
  51. F. Saeed, M. H. Khan, A. H. Tauqeer, A. Haroon, A. Idrees, S. M.Shehrazi, L. Prokop, V. Blazek, S. Misak, and N. Ullah, "Numerical Investigation of Photo-Generated Carrier Recombination Dynamics on the Device Characteristics for the Perovskite/Carbon Nitride Absorber-Layer Solar Cell", Nanomaterials, 12, 4012, 2022. https://doi.org/10.3390/nano12224012.
  52. J. H. Bang, and P. V. Kamat, "Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe", Adv. Funct. Mater. 20, 1970–1976, 2010.
  53. V. Gonzalez-Pedro, X. Xu, I. Mora-Sero, and J. Bisquert, "Modeling High-Efficiency Quantum Dot Sensitized Solar Cells", Acs Nano 4, 5783–5790, 2010.
  54. X-Y., Yu, J-Y. Liao K.-Q. Qiu, D.-B. Kuang, and C-Y. Su, "Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition", Acs Nano 5, 9494–9500, 2011.
  55. G. Zhang, "Optical Property Optimisation of Lead Sulphide Quantum Dots", A Dissertation Submitted for the Degree of Master of Engineering Science, School of Chemical Engineering, The University of Adelaide, Adelaide, Australia, 2013.
  56. J. Tian, and G. Cao, "Semiconductor quantum dot-sensitized solar cells", Nano Reviews, 4(1), 22578, 2013. https://doi.org/10.3402/nano.v4i0.22578
  57. A. A. Ganesan, A. J. Houtepen and R. W. Crisp, "Quantum Dot Solar Cells: Small Beginnings Have Large Impacts, Appl. Sci., 8, 1867, 2018. doi:10.3390/app8101867
  58. W. Amanda, and H. Penny, "Quantum Dots: The Future of Highly-Efficient Solar Cells", 2014.
  59. K. J. Ebrahim, "Quantum Dots Solar Cells", InTech Solar Cells New Approaches and Reviews, 31, 303-331, 2015.
  60. V. A. Singh, and G. C. John, Physics of semiconductor nanostructures (K.P. Jain)", Marosa Publishing House, New Delhi, 186, 1997.
  61. H. I. Ikeri, A. I. Onyia, and P. U. Asogwa, "Investigation of Optical Characteristics of Semiconductor Quantum Dots for Multi Junction Solar Cells Applications", International Journal of Scientific & Technology Research, 8(10), 3531-3535, 2019. www.ijstr.org
  62. A. E. Aouami, L. M. Pérez, K. Feddi, M. El-Yadri, F. Dujardin, M. J. Suazo, D. Laroze, M. Courel, and E. M. Feddi, E. M. "Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1−xN Quantum Dot Solar Cells", Nanomaterials, 11, 1317, 2021. https://doi.org/10.3390/nano11051317
  63. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357, 1994.
  64. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420(6917), 800–803, 2002.
  65. W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, “R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices,” Adv. Mater. 26(37), 6387–6393, 2014.
  66. Q. Huang, J. Pan, Y. Zhang, J. Chen, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963, 2016.
  67. T. Zhang, H. Tang, S. Zhou, S. Ding, X. Xiao, Z. Wen, G. Niu, X. Luo, F. Wang, X. W. Sun, G. Xing, and K. Wang, “Factors influencing the working temperature of quantum dot light-emitting diodes,” Opt. Express 28(23), 34167–34179, 2020.
  68. X. Li, Y. B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z. H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164, 2018.
  69. C. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic Nanocrystal Quantum Dots,” Science, 291, 5512, 2390-2392, 2001.
  70. J. Melville, "Optical properties of quantum dots [final paper]. UC Berkeley College of Chemistry, 2015. Available from: https://www.ocf.berkeley.edu/~jmlvll/lab-reports/quantumDots/quantumDots.pdf
  71. W. J. Parak, L. Manna, C. H. Rimmel, D. Gerion, and P. Alivisatos, "Quantum dots. In: Schmid G, editor. Nanoparticles—From Theory to Application", Weinheim, John Wiley and Sons, 2004.
  72. S. Yin, S. "Achieving High-Performance Infrared Range (IR) Photodiode via Bilayer Lead Sulfide Quantum Dots (QDs) Structure", A dissertation submitted to the Graduate Faculty of North Carolina State University, in partial fulfillment of the requirements for the degree of Master of Science, Materials Science and Engineering, Raleigh, North Carolina, 2018.
  73. G. S. Dedigamuwa, "Fabrication and Characterization of Surfactant-Free PbSe Quantum Dot Films and PbSe Polymer Hybrid Structures", A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy, Department of Physics, College of Arts and Sciences, University of South Florida, 2010.
  74. K. E. Jasim, Solar Cells - New Approaches and Reviews", IntechOpen, 2015. http://dx.doi.org/10.5772/59159
  75. Q. Yin, W. Zhang, Y. Zhou, R. Wang, Z. Zhao, and C. Liu, "High efficiency luminescence from PbS quantum dots embedded glasses for near-infrared light emitting diodes", Journal of Luminescence 250, 119065, 2022. https://doi.org/10.1016/j.jlumin.2022.119065
  76. J. H. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. R. Dunlop, "Time-resolved photoluminescence spectroscopy of ligandcapped PbS nanocrystals", Nanotechnology 16(2), 175–179, 2004. https://doi.org/10.1088/0957-4484/16/2/001
  77. N. Torres-Gomez, D. F. Garcia-Gutierrez, A. R. Lara-Canche, L. TrianaCruz, J. A. Arizpe-Zapata, and D. I. Garcia-Gutierrez, D "Absorption and emission in the visible range by ultra-small PbS quantum dots in the strong quantum confinement regime with s-terminated surfaces capped with diphenylphosphine", Journal of Alloys and Compounds 860, 158443, 2021. https://doi.org/10.1016/j.jallcom.2020.158443
  78. D. Kim, T. Kuwabara, and M. Nakayama, "Photoluminescence properties related to localized states in colloidal PbS quantum dots", Journal of Luminescence, 119-120, 214–218, 2006. https://doi.org/10.1016/j.jlumin.2005.12.033.
  79. J. Tian, and G. Cao, "Semiconductor quantum dot-sensitized solar cells", Nano Reviews, 4(1), 22578, 2013. https://doi.org/10.3402/nano.v4i0.22578
  80. R. H. Gilmore, Y. Liu, W. Shcherbakov-Wu, N. S. Dahod, E. M. F. Lee, M. C. Weidman, H. Li, J. Jean, V. Bulovi´c, A. P. Willard, J. C. Grossman, and W. A. Tisdale, "Epitaxial dimers and auger-assisted detrapping in PbS quantum dot solids", Matter, 1(1), 250–265, 2019. https://doi.org/10.1016/j.matt.2019.05.015
  81. S. Nakashima, A. Hoshino, J. Cai, and K. Mukai, "Thiol-stabilized PbS quantum dots with stable luminescence in the infrared spectral range", Journal of Crystal Growth, 378, 542–545, 2013. https://doi.org/10.1016/j.jcrysgro.2012.11.024
  82. P. A. Loiko, G. E. Rachkovskaya, G. B Zacharevich, and K. V. Yumashev, "Wavelength-tunable absorption and luminescence of SiO2/al2o3/ZnO/na2o/k2o/NaF glasses with PbS quantum dots", Journal of Luminescence, 143, 418–422, 2013. https://doi.org/10.1016/j.jlumin.2013.05.057
  83. E. Kolobkova, Z. Lipatova, A. Abdrshin, N. and N. Nikonorov, "Luminescent properties of fluorine phosphate glasses doped with PbSe and PbS quantum dots", Optical Materials, 65, 124–128, 2017. https://doi.org/10.1016/j.optmat.2016.09.033
  84. E. R. Welser, K. S. Ashok J. S. Lewis, N. K. Dhar, P. Wijewarnasuriya, and R. L. Peters, "Development of III-V Quantum Well and Quantum Dot Solar Cells", International Journal of Engineering Research and Technology, 9(1), 29-44, 2016.
  85. W. A. A. Mohamed, H. Abd El-Gawad, S. Mekkey, H. Galal, H. Handal, H. Mousa, and A. Labib, "Quantum dots synthetization and future prospect applications", Nanotechnology Reviews, 10, 1926–1940, 2021. https://doi.org/10.1515/ntrev-2021-0118
  86. H. Alexander H., et al. "Hybrid passivated colloidal quantum dot solids", Nature nanotechnology, 7(9), 577-582, 2013.
  87. B. Sotirios, and A. F. Terzis. "Size-dependent band gap of colloidal quantum dots", Journal of applied physics, 99(1), 013708, 2006.
  88. J. Pastuszak, and P. W˛egierek, "Photovoltaic Cell Generations and Current Research Directions for Their Development", Materials, 15, 5542, 2022. https://doi.org/10.3390/ma15165542
  89. S. H. Wei, and A. Zunger, "Electronic and structural anomalies in lead chalcogenides", Physical Review, B 55(20), 13605–13610, 1997.
  90. T. Sloboda, S. Svanstro¨m, F. O. L. Johansson, E. Bryngelsson, A. Garcı´a-Ferna´ndez, A. Lindblad, and U. B. Cappe, "The impact of chemical composition of halide surface ligands on the electronic structure and stability of lead sulfide quantum dot materials. Phys. Chem. Chem. Phys., 24, 12645–12657, 2022. DOI: 10.1039/d2cp01050j
  91. M. B. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, "Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation", Nano Letters 9(3), 1217–1222, 2009.
  92. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, "Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots", Nano Lett., 5, 865–871, 2005
  93. Y. Lin, "Study of Colloidal Lead Sulfide Quantum Dot Light-Emitting-Diodes with Inorganic Charge Injection Layers and Ligand Exchanges", A Thesis Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Master of Science, 2014.
  94. K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. Macneil, L. Levina, and E. H. Sargent, "Schottky-Quantum Dot Photovoltaics for Efficient Infrared Power Conversion, Appl. Phys. Lett., 92, 151115, 2008.
  95. S. V. Kershaw, A. S. Susha and A. L. Rogach, "Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties", Chem. Soc. Rev., 42, 3033–3087, 2013.
  96. F. W. Wise, "Lead salt quantum dots: The limit of strongquantum confinement", Acc. Chem. Res., 33, 773–780, 2000.
  97. D. V. Talapin, J. S. Lee M. V. Kovalenko, and E. V. Shevchenko, "Prospects of colloidal nanocrystals for electronic and optoelectronic applications", Chemical Reviews, 110(1), 389–458, 2010.
  98. M. Albaladejo-Siguan, E. C. Baird, D. Becker-Koch, Y. Li, A. L. Rogach, and Y. Vaynzof, "Stability of Quantum Dot Solar Cells: A Matter of (Life) Time", Adv. Energy Mater., 11, 2003457, 1-25, 2021.
  99. A. De Iacovo, C. Venettacci, L. Colace, L. Scopa, L. and S. Foglia, "PbS Colloidal Quantum Dot Photodetectors operating in the near infrared", Sci. Rep., 6, 37913, 2016.
  100. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. Klem, L. Levina, and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics", Nat. Mater., 4, 138, 2005.
  101. E. H. Sargent, " Infrared quantum dots", Adv. Mater., 17, 515–522, 2005.
  102. S. K. Pandey, "Optoelectronic Applications of Quantum Dots", International Journal of Research in Science and Engineering, 6(2), 10-18, 2018.
  103. B. Hou, Y. Cho, B-S. Kim, D. Ahn, S. Lee, J. B. Park, Y-W. Lee, J. Hong, H. Im, S. Morris, J. I. Sohn, S. N. Cha, and J. M. Kim, "Red green blue emissive lead sulfide quantum dots: heterogeneous synthesis and applications", J. Mater. Chem. C, 5, 3692, 2017. DOI: 10.1039/c7tc00576h.
  104. X. Lan, O. Voznyy, A. Kiani, F. P. Garcı´a de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland and E. H. Sargent, "Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering", Adv. Mater., 28, 299, 2016.
  105. B. Hou, Y. Cho, B. S. Kim, J. Hong, J. B. Park, S. J. Ahn, J. I. Sohn, S. Cha and J. M. Kim, ACS Energy Lett., 2016, 1, 834.5 J. Q. Grim, L. Manna and I. Moreels, Chem. Soc. Rev., 44, 5897, 2017.
  106. W. Yoon, J. E. Boercker, M. P. Lumb, D. Placencia, E. E. Foos and J. G. Tischler, "Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells", Sci. Rep., 3, 2225, 2013.
  107. C.-H. M. Chuang, A. Maurano, R. E. Brandt, G. W. Hwang, J. Jean, T. Buonassisi, V. Bulovic´ and M. G. Bawendi, "Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells", Nano Lett., 15, 3286, 2015.
  108. G. Nair, L.-Y. Chang, S. M. Geyer and M. G. Bawendi, "Perspective on the Prospects of a Carrier Multiplication Nanocrystal Solar Cell", Nano Lett., 11, 2145, 2011.
  109. W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater and A. P. Alivisatos, "Photovoltaic Performance of Ultrasmall PbSe Quantum Dots", ACS Nano, 5, 8140, 2011.
  110. R. S. Kane, R. E. Cohen and R. Silbey, "Theoretical Study of the Electronic Structure of PbS Nanoclusters", J. Phys. Chem., 1996,
  111. G. D. Scholes, and G. Rumbles, "Excitons in nanoscale systems", Nat. Mater. 5, 683–696, 2006.
  112. R. Schoolar, and J. Dixon, "Optical constants of lead sulfide in the fundamental absorption edge region", Phys. Rev. 137, A667, 1965.
  113. J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard and A. J. Nozik "Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell", Adv Mater, 22, 3704–3707, 2010.
  114. W. Yoon, J. E. Boercker, M. P. Lumb, D. Placencia, E. E. Foos, and J. G. Tischler, "Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells Scientific reports, 19(3), 1-7, 2013.
  115. J. W. Lee, et al. "Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent", Sci. Rep. 3(1050), 1–8 , 2013.
  116. V. Gonzalez-Pedro V. et al. "High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation", Phys. Chem. Chem. Phys. 15, 13835–13843, 2013.
  117. C. Cheng, "Semiconductor Colloidal Quantum Dots For Photovoltaic Applications", A thesis submitted in fulfilment of requirement for the degree of DPhil in Materials at The University of Oxford, 2014.
  118. G. Zhang, "Optical Property Optimisation of Lead Sulphide Quantum Dots", A Thesis Submitted for the Degree of Master of Engineering Science, School of Chemical Engineering, the University of Adelaide, Australia, 2013.
  119. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, "Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study", ACS Nano, 5, 2004–2012, 2011.
  120. . D. Kang, M. B. Kumar, C. Son, H. Park, and J. Park, "Simple Syndissertation Method and Characterizations of Aggregation-Free Cysteamine Capped PbS Quantum Dot", Appl. Sci., 9, 4661, 2019. https://doi.org/10.3390/app9214661
  121. E. Yilmaz, M. Y. Ates, and Y. C. Sahilli, "Synthesizing, Chitosan Coating and Detecting the Nanotoxic Effect of the Lead Selenide (Pbse) Quantum Dots", DigestJournal of Nanomaterials and Biostructures, 13(4), 1173-1182, 2018.
  122. A. Albert, C. O. Sreekala, and M. Prabhakaran, "Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application", IOP Conf. Series: Materials Science and Engineering, 310, 012152, 2018. doi:10.1088/1757-899X/310/1/012152
  123. H. Du. C. L. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G.Thomas, and J. Silcox, "Quantum Photonics: Pioneering Advances and Emerging Applications", Nano Lett. 2 (11) 1321−1326, 2002.
  124. J. Chauhan, and R. Soni, "Characterization of Nanostructure Lead selenide (PbSe) thin films", Report and Opinion, 10(4), 41-45, 2018. doi:10.7537/marsroj100418.07.
  125. H. A. Morris, "Investigation of the Optical Properties of PbSe/PbX Nanocrystals for Photodetector Applications", Graduate Theses and Dissertations, 2018. Retrieved from https://scholarworks.uark.edu/etd/1828
  126. Y. J. Na, H. S. Kim, and J. Park, . Morphology-Controlled Lead Selenide Nanocrystals and their on situ growth in Nanotubes. J. Phys. Chem. C. 112 11218–11226, 2008.
  127. R. D. Schaller, an d I. V. Klimov, V. I. "High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion", Phys. ReV. Lett., 92, 186601, 2004.
  128. M. Califano, A. Zunger, and A. Franceschetti, "Efficient inverse Auger recombination at threshold in CdSe nanocrystals". Nano Lett., 4, 525–531, 2004.
  129. J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, "Schottky Solar Cells Based on Colloidal Nanocrystal Films", Nano Lett., 8, 3488-3492, 2008.
  130. J. Chen, Q. Huang, and W. Lei, "Dual-Facets Emissive Quantum-Dot Light-Emitting Diode Based on AZO Electrode. Materials, 15, 740, 2022. https://doi.org/10.3390/ma15030740
  131. Y. Sun, Y. Jiang, W. X. Sun, et al. "Beyond OLED: Efficient quantum dot light‐emitting diodes for display and lighting application", Chem Rec, 19: 1729–1752, 2019.
  132. C. Gannon, and R. Liang, "Ray mapping with surface information for freeform illumination design", Optics Express, 25(8), 9426–9434, 2017.
  133. H. Vu, N. M. Kieu, D. T. Gam, S. Shin, T. Q. Tien, and N. H. Vu, "Design and Evaluation of Uniform LED Illumination Based on Double Linear Fresnel Lenses", Applied Sciences, 10, 3257, 2020. https://doi.org/10.3390/app10093257
  134. K. Wang, F. Chen, Z. Liu, X Luo, and S. Liu, "Design of compact freeform lens for application specific light-emitting diode packaging", Opt. Express, 18, 413, 2010.
  135. A. Thorseth, "Characterization, Modeling, and Optimization of Light-Emitting Diode Systems", Technical University of Denmark, 2011.
  136. A. K. Hussein, and T. C. Miqdam, "The Impact of Using Solar Colored Filters to Cover the PV Panel in Its Outcomes", Scholars Bulletin, 2(7), 464-469, 2016. https://doi.org/10.21276/sb.2016.2.7.5
  137. H. J. Hovel, R. T. Hodgson, and J. W. Woodall, "The effect of fluorescent wavelength shifting on solar cell spectral response", Solar Energy Materials, 2(1), 19–29, 1979.
  138. C. Strumpel, M. McCann, and Beaucarne et al., "Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials", Solar Energy Materials & Solar Cells, 91(4), 238–249, 2007.
  139. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, "Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review", Solar Energy Materials & Solar Cells, 93(8), 1182–1194, 2009.
  140. K. R. McIntosh, G. Lau, and J. N. Cotsell, "Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer", Progress in Photovoltaics: Research and Applications, 17(3), 191–197, 2009.
  141. D. Ross, D. Alonso-Alvarez, and E. Klampaftis, "The impact of luminescent down shifting on the performance of CdTe photovoltaics: impact of the module vintage", IEEE Journal of Photovoltaics, 4(1), 457–464, 2014.
  142. R. Rothemund, S. Kreuzer, T Umundum, G. Meinhardt, T. N. Fromherz, and W. Jantsch, "External quantum efficiency analysis of Si solar cells with II–VI nanocrystal luminescent downshifting layers", Energy Procedia, (10)83–87, 2011.
  143. D. Alonso-Alvarez, D. Ross, and E. Klampaftis, "Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies", Progress in Photovoltaics: Research and Applications, 23(4), 479–497, 2015.
  144. H. Ahmed, S. J. McCormack, and J. Doran, "External Quantum Efficiency Improvement with Luminescent Downshifting Layers: Experimental and Modelling", International Journal of Spectroscopy, 8543475, 2016. http://dx.doi.org/10.1155/2016/854347