Main Article Content

Abstract

Renewable energy is becoming more apparent as a key solution to climate change, energy challenges, and economic challenges. As a result of the abundance of solar irradiance, photovoltaic power generation remains one of the most promising energy sources. Despite the wide spectrum of solar irradiance, PV solar cells are only able to convert a small part of it into electricity. The remainder of the spectrum is lost as heat waste, which increases the temperature of the PV panels. As the temperature rises, both the efficiency and lifespan of solar PV panels are reduced. To mitigate the aforementioned issue, thermoelectric generators (TEGs) are used in conjunction with solar PV systems. A TEG is a device that converts thermal energy (heat) into electricity based on the thermoelectric effect caused by a temperature gradient across the thermoelectric module. This paper presents an overview of studies on hybrid PV-TEG systems. In addition to hybrid PV-TEG systems, PV and TEG systems are briefly described. PV-TEG systems are compared with individual PV systems in terms of their major operational parameters, including temperature and power generation efficiency. Finally, an update on recent developments in PV-TEG systems is provided.

Keywords

Hybrid PV-TEG PV TEG Heat sink Wick Phase change material

Article Details

How to Cite
Zamanipour, Z., Thallapelly, S. K. ., & Sanjari Pirmahalleh, S. M. . (2024). Advances in the performance of hybrid photovoltaic-thermoelectric generators: a review. Future Technology, 3(3), 1–11. Retrieved from https://fupubco.com/futech/article/view/186
Bookmark and Share

References

  1. REN21. Renewables 2024 Global status report. https://www.ren21.net/gsr-2024/modules/global_overview.
  2. Karbaschi, H., Nouri, N., Rezaei, M., & Rashedi, G. (2020). Thermoelectric power generation efficiency of zigzag monolayer nanoribbon of bismuth. Nanotechnology, 31(37), 375403, https://doi.org/10.1088/1361-6528/ab946f.
  3. Fisac, M., Villasevil, F. X., & López, A. M. (2014). High-efficiency photovoltaic technology including thermoelectric generation. Journal of power sources, 252, 264-269. https://doi.org/10.1016/j.jpowsour.2013.11.121.
  4. Creutzig F., Agoston P., Goldschmidt J.C., Luderer G., Nemet G., Pietzcker R.C (2017). - The underestimated potential of solar energy to mitigate climate change. Nat. Energy, 2 p. 17140, https://doi.org/ 10.1038/nenergy.2017.140
  5. Zainal, N. A., Ajisman, & Yusoff, A. R. Modelling of Photovoltaic Module Using Matlab Simulink. https://doi.org/10.1088/1757-899X/114/1/012137.
  6. Sathe, T. M., Dhoble, A. S., and Reviews, S. E. (2017) - A Review on Recent Advancements in Photovoltaic Thermal Techniques. Renew. Sust. Energ. Rev. 76, 645–672, https://doi.org/10.1016/j.rser.2017.03.075
  7. Saleh, U.A., Johar, M.A., Jumaat, S. A, Rejab, M.N., Wan Jamaludin, W.A. (2021) Evaluation of a Hybrid PV-TEG System Configuration for Enhanced Energy Performance: A Review. Int. Journal of Renewable Energy Development, 10(2), 385-400. https://doi.org/10.14710/ijred.2021.33917.
  8. Sahin AZ, Ismaila KG, Yilbas BS, Al-Sharafi A (2020). A review on the performance of photovoltaic/thermoelectric hybrid generators. Int J Energy Res.; 44:3365-3394. https://doi.org/10.1002/er.5139.
  9. Lakatos, L., Hevessy, G., and Kovács, J. (2011) - Advantages and Disadvantages of Solar Energy and Wind-Power Utilization. World Futures 67 (6), 395–408, https://doi.org/10.1080/02604020903021776.
  10. Karami Lakeh H, Kaatuzian H, Hosseini R. (2019)- A parametrical study on photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell. Renew Energy. 138:542- 550 (2019), https://doi.org/10.1016/j.renene.2019.01.094.
  11. Figueiredo Ramos, C. A. & Alcaso, Aderito & Cardoso, A.J.M. (2019). Photovoltaic-thermal (PVT) technology: Review and case study. IOP Conference Series: Earth and Environmental Science. 354. 012048. https://doi.org/10.1088/1755-1315/354/1/012048.
  12. Sargunanathan a, A. Elango b, S. Tharves Mohideen c (2016). Performance enhancement of solar photovoltaic cells using effective cooling methods: A review. https://doi.org/10.1016/j.rser.2016.06.024.
  13. Dimri, N., Tiwari, A., and Tiwari, G. N. (2017). Thermal Modelling of Semitransparent Photovoltaic thermal (PVT) with Thermoelectric Cooler (TEC) Collector. Energ. Convers. Manag. 146, 68–77. https://doi.org/10.1016/j.enconman.2017.05.017.
  14. Grubišić-Čabo, F., Nižetić, S., and Giuseppe Marco, T. J. T. O. F. (2016). Photovoltaic Panels: A Review of the Cooling Techniques. Trans. FAMENA 40 (SI-1), 63–74, https://hrcak.srce.hr/159196.
  15. Temaneh-Nyah C., Mukwekwe L.An investigation on the effect of operating temperature on power output of the photovoltaic system at university of Namibia faculty of engineering and I.T campus. https://ieeexplore.ieee.org/abstract/document/7054211.
  16. Chin, Jack & Salam, Zainal & Ishaque, Kashif. (2015). Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Applied Energy. 154. https://doi.org/10.1016/j.apenergy.2015.05.035.
  17. Zhang, Huili & Van Gerven, Tom & Baeyens, J & Degrève, Jan. (2014). Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs. TheScientificWorldJournal. 2014. https://doi.org/ 10.1155/2014/404913.
  18. Nguyen-Duc, T.; Nguyen-Duc, H.; Le-Viet, T.; Takano, H. Single-Diode Models of PV Modules: A Comparison of Conventional Approaches and Proposal of a Novel Model. Energies 2020, 13, 1296. https://doi.org/10.3390/en13061296.
  19. Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E.; Yaqoob, S.J. Experimental Investigation of the Effect of a Combination of Active and Passive Cooling Mechanism on the Thermal Characteristics and Efficiency of Solar PV Module. Inventions 2021, 6, 63. https://doi.org/10.3390/inventions6040063.
  20. Hasanuzzaman M, Malek ABMA, Islam MM, Pandey AK, Rahim NA (2016), Global advancement of cooling technologies for PV systems: a review. Solar Energy, https://doi.org/10.1016/j.solener.2016.07.010.
  21. D. Chandan, U. C. Arunachala, K. Varun. Improved energy conversion of a photovoltaic module-thermoelectric generator hybrid system with different cooling techniques: Indoor and outdoor performance comparison https://doi.org/10.1002/er.7820.
  22. Ayman Abdel-Raheim Amr, A.A.M. Hassan, Mazen Abdel-Salam, AbouHashema M. El-Sayed (2019), Enhancement of photovoltaic system performance via passive cooling: Theory versus experiment, Renewable Energy, Volume 140, Pages 88-103, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.03.048.
  23. Hongbing Chen, Xilin Chen, Sizhuo Li, Hanwan Ding, Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation, International Journal of Smart Grid and Clean Energy, 3(4), 2014, 374-379. https://doi.org/ 10.12720/sgce.3.4.374-379.
  24. Alkhalidi, Ammar & Khawaja, Mohamad & Al Kelany, Abdel. (2019). Investigation of Repurposed Material Utilization for Environmental Protection and Reduction of Overheat Power Losses in PV Panels. International Journal of Photoenergy. 2019. https://doi.org/10.1155/2019/2181967.
  25. Rejon, R. S., Hasan, M. M., Kabir, A., Firdaus, M. T., & Malek, A. B. M. A. Experimental Investigation of PV Cooling Methods using a Finned Heat Sink and Cotton Wicks, 7 International Conference on Engineering Research, Innovation and Education At: Shahjalal University of Science and Technology, Sylhet, Bangladesh, 2023.
  26. Muhammad Arif bin Azahari, Chua Yaw Long, & Koh Yit Yan. (2021). Performance Analysis of Photovoltaic Module with Different Passive Cooling Methods. IOP Conf. Ser.: Earth Environ. Sci. 945 012016, https://doi.org/10.1088/1755-1315/945/1/012016.
  27. Shastry, D. M. C., & Arunachala, U. C. (2020). Thermal management of photovoltaic module with metal matrix embedded PCM. Journal of Energy Storage, 28, 101312. https://doi.org/10.1016/j.est.2020.101312.
  28. Jiaxin Zhao, Zhenpeng Li, Tao Ma (2019). Performance analysis of a photovoltaic panel integrated with phase change material. https://doi.org/10.1016/j.egypro.2019.01.264.
  29. Adeel Waqas, Jie Ji, Lijie Xu, Majid Ali, Zeashan, Jahanzeb Alvi, Thermal and electrical management of photovoltaic panels using phase change materials – A review, Renewable and Sustainable Energy Reviews, Volume 92, 2018, Pages 254-271,ISSN 1364-0321, https://doi.org/10.1016/j.rser.2018.04.091.
  30. Rajvikram Madurai Elavarasan, Vijay Mudgal, Leoponraj Selvamanohar, Kai Wang, Gan Huang, G.M. Shafiullah, Christos N. Markides, K.S. Reddy, Mithulananthan Nadarajah, Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review, Energy Conversion and Management, Volume 255, 2022, 115278, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2022.115278.
  31. Noor Abbas Hindi, Saadoon Fahad Dakhil, & Karrar Abdullah Abbas. (2023). Experimental Study to Improve Solar Photovoltaic Performance by Utilizing PCM and Finned Wall. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 102(1), 153–170. https://doi.org/10.37934/arfmts.102.1.153170 .
  32. Ahmed, Koushik & Tanvir, Md Shahnewaz & Tahmid, Rafid & Sagor, Md & Haq, Md. Ahsanul & Swapno, Md. (2019). Modeling of a Thermoelectric Generator to Produce Electrical Power by Utilizing Waste Heat. 1-4. https://doi.org/10.1109/ICIET48527.2019.9290658.
  33. Siouane S, Jovanović S, Poure P. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions. Energies. 2017; 10(3):386. https://doi.org/10.3390/en10030386.
  34. Shafiei, Naser & Harun, Mohamad Haniff & Mohd Annuar, Khalil & Mohd Ab Halim, Mohd Firdaus & Mohd Aras, Mohd Shahrieel & Azahar, Arman. (2016). Development of portable air conditioning system using peltier and seebeck effect. 8. 97-100.
  35. Saleh, U.A., Johar, M.A., Jumaat, S. A, Rejab, M.N., Wan Jamaludin, W.A. (2021) Evaluation of a Hybrid PV-TEG System Configuration for Enhanced Energy Performance: A Review. Int. Journal of Renewable Energy Development, 10(2), 385-400. https://doi.org/10.14710/ijred.2021.33917.
  36. Khan, Muhammad Ahsan Iqbal, Khan Muhammad Irfan, Ali Hussain Kazim, Aqsa Shabir, Fahid Riaz, Nauman Mustafa, Hassan Javed, Ali Raza1, Mohsin Hussain, Chaudhary Awais Salman. (2021). "An experimental and comparative performance evaluation of a hybrid photovoltaic-thermoelectric system." Frontiers in Energy Research 9: 722514. https://doi.org/10.3389/fenrg.2021.722514.
  37. Cai, Y., Wang, Y., Liu, D., & Zhao, F. Y. (2019). Thermoelectric cooling technology applied in electronic devices: An updated review of the parametric investigations and model developments. Applied Thermal Engineering, 148(April 2018), https://doi.org/ 10.1016/j.applthermaleng.2018.11.014.
  38. Aljibory, M. W., Hashim, H. T., and Abbas, W. N. (2021). A Review of Solar Energy Harvesting Utilizing a Photovoltaic–Thermoelectric Integrated Hybrid System. IOP Conf. Ser.: Mater. Sci. Eng. 1067 012115, https://doi.org/10.1088/1757-899X/1067/1/012115
  39. H.R. Fallah Kohan, F. Lotfipour, M. Eslami (2019). Numerical simulation of a photovoltaic thermoelectric hybrid power generation system, https://doi.org/10.1016/j.solener.2018.09.046.
  40. Van Sark, W., Feasibility of photovoltaic–thermoelectric hybrid modules. Applied Energy, 2011. 88(8): p. 2785-2790. https://doi.org/10.1016/j.apenergy.2011.02.008.
  41. Zhang, J., Xuan, Y., and Yang, L. (2014). Performance Estimation of Photovoltaic Thermoelectric Hybrid Systems. Energy 78, 895–903. https://doi.org/10.1016/j.energy.2014.10.087.
  42. Zhang, Jia, Zhai, H., Wu, Z., Wang, Y., & Xie, H. (2020). Experimental investigation of novel integrated photovoltaic thermoelectric hybrid devices with enhanced performance. Solar Energy Materials and Solar Cells, 215(June), 110666. https://doi.org/10.1016/j.solmat.2020.110666.
  43. Gonder, Kanagaraj & Rezk, Hegazy. (2021). Dynamic Voltage Restorer Integrated with Photovoltaic-Thermoelectric Generator for Voltage Disturbances Compensation and Energy Saving in Three-Phase System. Sustainability. 13. 3511. https://doi.org/10.3390/su13063511.
  44. M. Gopinath, R. Marimuthu, PV-TEG output: Comparison with heat sink and graphite sheet as heat dissipators, Case Studies in Thermal Engineering, Volume 45, 2023, 102935, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2023.102935.
  45. Babu, C., & Ponnambalam, P. (2018). The theoretical performance evaluation of hybrid PV-TEG system. Energy Conversion and Management, 173, 450–460. https://doi.org/10.1016/j.enconman.2018.07.104.
  46. Li, G., Shittu, S., Zhou, K., Zhao, X., & Ma, X. (2019). Preliminary experiment on a novel photovoltaic-thermoelectric system in summer. Energy, 188, https://doi.org/10.1016/j.energy.2019.116041.
  47. Shittu, S., Li, G., Zhao, X., Akhlaghi, Y. G., Ma, X., & Yu, M. (2019). Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy conversion and management, 193, 1-14. https://doi.org/10.1016/j.enconman.2019.04.055.
  48. Motiei, P., Yaghoubi, M., & GoshtasbiRad, E. (2019). Transient simulation of a hybrid photovoltaic-thermoelectric system using a phase change material. Sustainable Energy Technologies and Assessments, 34, 200-213, https://doi.org/10.1016/j.seta.2019.05.004.
  49. J. Darkwa, J. Calautit, D. Du, G. Kokogianakis, A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells, Applied Energy, Volume 248, 2019, Pages 688-701, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2019.04.147.
  50. Gao, Y., Dai, Z., Wu, D., Wang, C., Chen, B., & Zhang, X. (2022). Transient performance assessment of a hybrid PV-TEG system integrated with PCM under non-uniform radiation conditions: a numerical investigation. Renewable Energy, 198, 352-366. https://doi.org/10.1016/j.renene.2022.08.087.
  51. Kang, Y.-K., Kim, B.-J., Lee, S.-J., Kim, M., Joung, J.-W., & Jeong, J.-W. (2022). Experimental and numerical performance evaluation of building integrated photovoltaic with thermoelectric generator and phase change material. CLIMA 2022 Conference. https://doi.org/10.34641/clima.2022.216.
  52. Li, G., Shittu, S., Zhou, K., Zhao, X., & Ma, X. (2019). Preliminary experiment on a novel photovoltaic-thermoelectric system in summer. Energy, 188, https://doi.org/10.1016/j.energy.2019.116041.
  53. Khang, W.C., Amely Jumaat, S., Johar, M.A., & Saleh Abu Bakar, U. (2023). Development of Prototype Hybrid Photovoltaic-Thermoelectric (PV-TEG) System. 2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA), 175-178, https://doi.org/10.1109/ICPEA56918.2023.1009315.