Main Article Content

Abstract

This paper presents the design and development of a cooling and cleaning system for photovoltaic (PV) installations. The key contribution of this work is the use of an Arduino-controlled closed-loop water circulation system to clean and cool the PV panels. The proposed solution incorporates sensors to measure the temperature, current, and voltage of the PV panels, as well as the water level in the tank. These measurements are used to control the pump's operation, regulating the flow of water across the PV panels. The study aims to improve the performance of PV systems by addressing two main challenges: the heating of the panels and the accumulation of dust. In regions like the Sahara, dust and sand reduce the efficiency of PV panels, necessitating regular cleaning. To address these issues, a cooling and cleaning prototype was developed. Tests and temperature measurements were performed under identical weather conditions (i.e., the same ambient temperature and solar radiation), demonstrating the effective operation of the proposed system and an improvement in PV efficiency. The automated cooling and cleaning system successfully reduced the panel temperature and boosted the output power to 287.81 W under radiation of 761.13 W/m², resulting in an efficiency of 19.15%. In contrast, under the same radiation, the uncooled panels produced only 283.48 W, yielding an efficiency of 18.86%, a 4.33 W difference.

Keywords

Photovoltaic panels Cooling system Cleaning Control Efficiency

Article Details

How to Cite
Toujani, R., Msadya, N., Abdelkafi, A., Masmoudi, A., & Krichen, L. (2025). Experimental investigation of a cooling and cleaning system for enhanced photovoltaic panel performance. Future Technology, 4(1), 29–36. Retrieved from https://fupubco.com/futech/article/view/232
Bookmark and Share

References

  1. M. El H. Attia, M. E. Zayed , A. E. Kabeel , A. Khelifa , K. Irshad , S. Rehman. Numerical analysis and design of a novel solar photovoltaic thermal system using finned cooling channel structures embedded with air/TiO2–water nano bi-fluid. Solar Energy. vol 269, pp. 112368. 2024. https://doi.org/10.1016/j.solener.2024.112368
  2. F. F. Ahmad, C. Ghenai, A. K. Hamid, O. Rejeb, M. Bettayeb. Performance enhancement and infra-red (IR) thermography of solar photovoltaic panel using back cooling from the waste air of building centralized air conditioning system. Case Studies in Thermal Engineering, vol. 24, pp. 100840, 2021. https://doi.org/10.1016/j.csite.2021.100840
  3. W. Salameh, J. Faraj, M. Khaled. Numerical study of cooling photovoltaic panels with air exhausted from industrial systems: Comparisons and innovative configurations. International journal of thermo fluids, vol. 20, pp. 100493, 2023. https://doi.org/10.1016/j.ijft.2023.100493
  4. M. Patil, A. Sidramappa, S. K. Shetty, A. M. Hebbale. Experimental study of solar PV/T panel to increase the energy conversion efficiency by air cooling. Materialstody: Proceedings, vol. 92, pp. 309-313, 2023. https://doi.org/10.1016/j.matpr.2023.05.007
  5. S. S. C. Ghadikolaei. Solar photovoltaic cells performance improvement by cooling technology: An overall review. International Journal of Hydrogen Energy, vol. 46, pp. 10939-10972, 2021. https://doi.org/10.1016/j.ijhydene.2020.12.164
  6. E. B. Agyekum, S. P. Kumar, N. T. Alwan, V. I. Velkin, S. E. Shcheklein. Effect of dual surface cooling of solar photovoltaic panel on the efficiency the module: experimental investigation. Heliyon, vol. 7, e07920, 2021. https://doi.org/10.1016/j.heliyon.2021.e07920
  7. M. A. Alazwari , A. Basem , H. A. Z. AL-bonsrulah , N. H. Abu-Hamdeh , M. S. Albdeiri , G. A. A. Alashaari. Simulation of behavior of solar panel in existence of nanomaterial as cooling system. Case Studies in Thermal Engineering. vol 63, pp. 105306. 2024. https://doi.org/10.1016/j.csite.2024.105306
  8. Y. Sheikh, M. Jasim, M. O. Hamdan , B. A. Abu-Nabah, F. Gerner. Design and performance assessment of a solar photovoltaic panel integrated with heat pipes and bio-based phase change material: A hybrid passive cooling strategy. Journal of Energy Storage. vol 100, pp, 113706. 2024. https://doi.org/10.1016/j.est.2024.113706
  9. M. A. Alnakeeb, M. A. Abdel Salam, M. A. Hassab, W. M. El-Maghlany. Numerical study of thermal and electrical performance of a new configuration of hybrid photovoltaic solar panel phase-change material cooling system. Journal of Energy Storage. vol 97, pp, 112945, 2024. https://doi.org/10.1016/j.est.2024.112945
  10. N. S. Altawi, A. M. Almutairi, S. A. Khalil, A. O. Alatawi, W. Al-Anazi, M. Magherbi. Qualitative modeling of solar panel cooling by nanofluid jets: Heat transfer and second law analysis. Case Studies in Thermal Engineering, vol. 45, pp. 102981, 2023. https://doi.org/10.1016/j.csite.2023.102981
  11. T. Hai, O. I. Awad, S. Li, J. M. Zain, A. A. H. Karah Bash. The impact of using a turbulator at the nanofluid flow inlet to cool a solar panel in the presence of phase change materials using artificial intelligence. Engineering Analysis with Boundary Elements, vol. 152, pp. 301-310, 2023. https://doi.org/10.1016/j.enganabound.2023.03.025
  12. R. I. Hatamleh, M. J. H. Rawa, N. H. Abu-Hamdeh, B. Shboul, A. Karimipour. Simulation of nanofluid flow in a solar panel cooling system to investigate the panel’s electrical-thermal efficiency with artificial neural network. Journal of the Taiwan Institute of Chemical Engineers, vol. 148, pp. 104879, 2023. https://doi.org/10.1016/j.jtice.2023.104879
  13. S. Bhattacharyya, N. Jain, T. Bhatt, H. Yasmin, M. Sharifpur. Mini-channel cooling system for solar PV Panels with hybrid magnetic nanofluid and magnetic field. Results in Engineering, vol. 20, pp. 101473, 2023. https://doi.org/10.1016/j.rineng.2023.101473
  14. M. Chandrasekar. Chapter 29 - Hybrid cooling systems for enhancing the electrical performance of solar photovoltaic (PV) panels. Handbook of Thermal Management Systems, pp. 639-657, 2023. https://doi.org/10.1016/B978-0-443-19017-9.00020-9
  15. G. Yildiz, M. O. Karaagac, A. Ergun, M. Kayfeci. Chapter 28 - Solar panel cooling using hybrid cooling systems. Handbook of Thermal Management Systems, pp. 623- 638, 2023. https://doi.org/10.1016/B978-0-443-19017-9.00005-2
  16. L. Chanphavong, V. Chanthaboune, S. Phommachanh, X. Vilaida, P. Bounyanite. Enhancement of performance and exergy analysis of a water-cooling solar photovoltaic panel. Total Environment Research Themes, vol. 3-4, pp. 100018, 2022. https://doi.org/10.1016/j.totert.2022.100018
  17. D. Govindasamy, A. Kumar. Evaluation of the impact of different composite phase change materials on reduction in temperature and enhancement of solar panel efficiency. Journal of Energy Storage, vol. 60, pp. 106631, 2023. https://doi.org/10.1016/j.est.2023.106631
  18. M. S. Sheik, P. Kakati, D. Dandotiya, U. Ravi M, Ramesh C S. A comprehensive review on various cooling techniques to decrease an operating temperature of solar photovoltaic panels. Energy Nexus, vol. 8, pp. 100161, 2022. https://doi.org/10.1016/j.nexus.2022.100161
  19. K. Bilen, I. Erdogan. Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review. Solar Energy, vol. 262, pp. 111829, 2023. https://doi.org/10.1016/j.solener.2023.111829
  20. D. L. Pascual, I. V. Blanco. O. M. Narro, M. F. Munoz, E. D. Jimenez. Experimental characterization of a geothermal cooling system for enhancement of the efficiency of solar photovoltaic panels. Energy Reports, vol. 8, pp. 756-763, 2022. https://doi.org/10.1016/j.egyr.2022.10.154