Main Article Content
Abstract
Cardiac arrhythmias are critical conditions requiring accurate classification for effective diagnosis as well as treatment. In this investigation, we provide a novel approach for cardiac arrhythmia classification that integrates two advanced techniques for feature extraction from ECG signals: “Ensemble Empirical Mode Decomposition” (EEMD) and “Heart Rate Variability” (HRV) analysis. The proposed approach employs EEMD to decompose ECG signals into intrinsic mode functions, capturing signal features, while HRV analysis provides additional physiological insights into heart rate fluctuations. Combining two strategies, our approach leverages a comprehensive set of features to improve the accuracy and resilience of arrhythmia classification. The system's effectiveness is explained via simulated tests utilizing the MIT-BIH arrhythmia database, with performance evaluated based on recall, accuracy, and precision metrics. Our results indicate that integrating EEMD and HRV features provides a more reliable and detailed classification of cardiac arrhythmias, offering a holistic perspective on heart rhythm dynamics.
Keywords
Article Details
References
- Detrano, R., et al. (2019). Machine Learning Techniques for Heart Disease Prediction: A Comparative Study. Journal of Medical Systems, 43(10), 1-11. DOI: 10.1007/s10916-019-1368-1.
- Rajkomar, A., et al. (2018). Deep Learning-Based Cardiovascular Disease Prediction Using Electronic Health Records. Nature Biomedical Engineering, 2(5), 347-358. DOI: 10.1038/s41551-018-0204-7.
- Krittanawong, C., et al. (2020). An Ensemble Learning Approach for Cardiovascular Disease Risk Prediction. Scientific Reports, 10(1), 1-10. DOI: 10.1038/s41598-020-59704-8.
- Soliman, E. Z., Rautaharju, P. M., & Prineas, R. J. (2018). The Role of Electrocardiography in the Prevention of Cardiovascular Diseases. Journal of Electrocardiology, 51(6), 1109-1113.
- Noseworthy, P. A., & Friedman, P. A. (2020). Arrhythmias: Diagnosis and Treatment. The Lancet, 393(10175), 1902-1913.
- Clifford, G. D., Liu, C. Y., Moody, B., & Lehman, L. (2019). Advanced Methods and Tools for ECG Data Analysis. Computers in Biology and Medicine, 113, 103687.
- Li, Z., Wang, L., Liu, X., & Lu, Z. (2020). "Deep Learning for ECG Arrhythmia Classification: A Review." Knowledge-Based Systems, 188, 105033.
- Sangaiah, A. K., & Rabie, K. (2019). "Machine Learning and Deep Learning Techniques for Medical Imaging: ECG Signal Processing and Cardiovascular Disease Detection—A Survey." Journal of Supercomputing, 75, 7117-7133.
- Yildirim, Ö., Talo, M., & Baloglu, U. B. (2018). "A Comprehensive Review on Automated ECG Analysis." IEEE Transactions on Biomedical Engineering, 66(5), 1557-1570.
- Martis, R. J., Acharya, U. R., & Min, L. C. (2013). "ECG Beat Classification Using PCA, LDA, ICA and Discrete Wavelet Transform." Biomedical Signal Processing and Control, 8(5), 437-448
- Ibrahim, M., & Mittal, A. P. (2018). "ECG Signal Analysis Using Wavelet and Fast Fourier Transform Techniques." Procedia Computer Science, 125, 166-173.
- Kozos, M., Kania, D., & Kwiatkowska, B. (2018). "Analysis of QRS Complex in the ECG Signal Using Morphological Transformations." IFAC-PapersOnLine, 51(27), 42-47.
- Polat, K., & Güneş, S. (2007). "Detection of ECG Arrhythmia Using a Differential Expert System Approach Based on Principal Component Analysis and Least Square Support Vector Machine." Applied Mathematics and Computation, 186(1), 898-906.
- Yildirim, Ö., Talo, M., & Baloglu, U. B. (2019). "Automated Arrhythmia Detection Using Deep Learning Techniques." Journal of Electrocardiology, 57, S70-S74
- Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., & Ng, A. Y. (2019). "Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network." Nature Medicine, 25(1), 65-69.
- Rajpurkar, P., Hannun, A. Y., Haghpanahi, M., Bourn, C., & Ng, A. Y. (2017). "Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks." arXiv preprint arXiv:1707.01836.
- Clifford, G. D., Liu, C., Moody, B., Lehman, L. H., & Silva, I. (2017). "AF Classification from a Short Single Lead ECG Recording: The PhysioNet/Computing in Cardiology Challenge 2017." Computing in Cardiology Conference (CinC).
- Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2017). "Automated Detection of arrhythmias using different intervals in ECG signals." Biomedical Signal Processing and Control, 33, 190-198
- Bahrami Rad, A., Eftestol, T., Engan, K., Irusta, U., Kvaloy, J. T., Kramer-Johansen, J., & Wik, L. (2017). "ECG-Based Classification of Resuscitation Cardiac Rhythms for Retrospective Data Analysis." IEEE Transactions on Biomedical Engineering, 64(10), 2411-2421.
- Huang, J., Yin, P., & Hu, C. (2019). "LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices." IEEE Journal of Biomedical and Health Informatics, 23(2), 445-454. DOI: 10.1109/jbhi.2019.2911367.
- Hu, Y., Liu, S., Fan, Z., & Li, C. (2023). "Deep Arrhythmia Classification Based on SENet and Lightweight Context Transform." Mathematical Biosciences and Engineering, 20(1), 1-20. DOI: 10.3934/mbe.2023001.
- Sharma, R., Kaur, P., & Sharma, A. (2022). "Classification of ECG Signal Using FFT-Based Improved AlexNet Classifier." PLoS ONE, 17(9), e0274225.
- Qiu, Y., Liu, H., Zhang, X., & Wang, W. (2023). "Classification of Electrocardiogram Signals Using Deep Learning Based on Genetic Algorithm Feature Extraction." Biomedical Physics & Engineering Express, 9(1), 015002.
- Silva, I., & Henriques, J. (2020). "Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal." Sensors, 20(6), 1579.
- Wu, W., Wang, X., & Zhang, Z. (2022). "Robust Arrhythmia Classification Based on QRS Detection and a Compact 1D-CNN for Wearable ECG Devices." IEEE Journal of Biomedical and Health Informatics, 26(10), 4622-4633..
- Yang, L., Zhou, Y., & Zhang, J. (2023). "Health Warning Based on 3R ECG Sample's Combined Features and LSTM." Computers in Biology and Medicine, 157, 107082..
- Plesinger, F., Nejedly, P., & Halamek, J. (2023). "Optimization of Arrhythmia-Based ECG-Lead Selection for Computer-Interpreted Heart Rhythm Classification." IEEE Engineering in Medicine & Biology Society Conference, 2023, 4725-4728.
- Wang, Z., Liu, Q., & Xu, W. (2019). "Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network." Sensors, 19(11), 2558.
- Li, H., Yuan, D., Wang, Y., Cui, D., & Cao, L. (2016). Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System. Sensors, 16(10), 1744.
- Li, N., Liu, L., Yang, Z., & Qin, S. (2023). A self-adjusting ant colony clustering algorithm for ECG arrhythmia classification based on a correction mechanism. Computer Methods and Programs in Biomedicine, 235, 107519.
- Majeed RR, Alkhafaji SKD. ECG classification system based on multi-domain features approach coupled with least square support vector machine (LS-SVM). Comput Methods Biomech Biomed Engin. 2023 Apr;26(5):540-547
- Runchuan Li, Wenzhi Zhang, Shengya Shen, Jinliang Yao, Bicao Li, Bing Zhou, Gang Chen, Zongmin Wang, “An Intelligent Heartbeat Classification System Based on Attributable Features with AdaBoost + Random Forest Algorithm”, Journal of Healthcare Engineering, 2021.
- Tang S, Deng Z. CS-based multi-task learning network for arrhythmia reconstruction and classification using ECG signals. Physiol Meas. 2023 Jul 5;44(7).
- Hua J, Chu B, Zou J, Jia J. ECG signal classification in wearable devices based on compressed domain. PLoS One. 2023 Apr 4;18(4):e0284008.
- Fang Y, Shi J, Huang Y, Zeng T, Ye Y, Su L, Zhu D, Huang J. Electrocardiogram Signal Classification in the Diagnosis of Heart Disease Based on RBF Neural Network. Comput Math Methods Med. 2022 Jan 30;2022:9251225.
- Liu F, Li H, Wu T, Lin H, Lin C, Han G. Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional LSTM. ISA Trans. 2023 Jul;138:397-407.
- Huiwen Gao,Xingyao Wang,Zhenghua Chen,Min Wu,Jianqing Li,Chengyu Liu, “ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on Continual Learning”, IEEE Journal Of Biomedical And Health Informatics, Vol. 27, No. 11, November 2023.
- P. K. Stein and Y. Pu, “Heart rate variability, sleep and sleep disorders,” Sleep Med. Rev., vol. 16, no. 1, pp. 47–66, Feb. 2012.
- R. E. Kleiger, P. K. Stein, and J. T. Bigger, “Heart rate variability: Measurement and clinical utility,” Ann. Noninvasive Electrocardiol., vol. 10, no. 1, pp. 88–101.
- U. J. Scholz, A. M. Bianchi, S. Cerutti, and S. Kubicki, “Vegetative background of sleep: Spectral analysis of the heart rate variability,” Physiol. Behav., vol. 62, no. 5, pp. 1037–1043.
- Anam Mustaqeem, Syed Muhammad Anwar, and Muahammad Majid, “Multiclass Classification of Cardiac Arrhythmia Using Improved Feature Selection and SVM Invariants”, Computational and Mathematical Methods in Medicine, Volume 2018, Article ID 7310496.
- Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), e215–e220.
References
Detrano, R., et al. (2019). Machine Learning Techniques for Heart Disease Prediction: A Comparative Study. Journal of Medical Systems, 43(10), 1-11. DOI: 10.1007/s10916-019-1368-1.
Rajkomar, A., et al. (2018). Deep Learning-Based Cardiovascular Disease Prediction Using Electronic Health Records. Nature Biomedical Engineering, 2(5), 347-358. DOI: 10.1038/s41551-018-0204-7.
Krittanawong, C., et al. (2020). An Ensemble Learning Approach for Cardiovascular Disease Risk Prediction. Scientific Reports, 10(1), 1-10. DOI: 10.1038/s41598-020-59704-8.
Soliman, E. Z., Rautaharju, P. M., & Prineas, R. J. (2018). The Role of Electrocardiography in the Prevention of Cardiovascular Diseases. Journal of Electrocardiology, 51(6), 1109-1113.
Noseworthy, P. A., & Friedman, P. A. (2020). Arrhythmias: Diagnosis and Treatment. The Lancet, 393(10175), 1902-1913.
Clifford, G. D., Liu, C. Y., Moody, B., & Lehman, L. (2019). Advanced Methods and Tools for ECG Data Analysis. Computers in Biology and Medicine, 113, 103687.
Li, Z., Wang, L., Liu, X., & Lu, Z. (2020). "Deep Learning for ECG Arrhythmia Classification: A Review." Knowledge-Based Systems, 188, 105033.
Sangaiah, A. K., & Rabie, K. (2019). "Machine Learning and Deep Learning Techniques for Medical Imaging: ECG Signal Processing and Cardiovascular Disease Detection—A Survey." Journal of Supercomputing, 75, 7117-7133.
Yildirim, Ö., Talo, M., & Baloglu, U. B. (2018). "A Comprehensive Review on Automated ECG Analysis." IEEE Transactions on Biomedical Engineering, 66(5), 1557-1570.
Martis, R. J., Acharya, U. R., & Min, L. C. (2013). "ECG Beat Classification Using PCA, LDA, ICA and Discrete Wavelet Transform." Biomedical Signal Processing and Control, 8(5), 437-448
Ibrahim, M., & Mittal, A. P. (2018). "ECG Signal Analysis Using Wavelet and Fast Fourier Transform Techniques." Procedia Computer Science, 125, 166-173.
Kozos, M., Kania, D., & Kwiatkowska, B. (2018). "Analysis of QRS Complex in the ECG Signal Using Morphological Transformations." IFAC-PapersOnLine, 51(27), 42-47.
Polat, K., & Güneş, S. (2007). "Detection of ECG Arrhythmia Using a Differential Expert System Approach Based on Principal Component Analysis and Least Square Support Vector Machine." Applied Mathematics and Computation, 186(1), 898-906.
Yildirim, Ö., Talo, M., & Baloglu, U. B. (2019). "Automated Arrhythmia Detection Using Deep Learning Techniques." Journal of Electrocardiology, 57, S70-S74
Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., & Ng, A. Y. (2019). "Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network." Nature Medicine, 25(1), 65-69.
Rajpurkar, P., Hannun, A. Y., Haghpanahi, M., Bourn, C., & Ng, A. Y. (2017). "Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks." arXiv preprint arXiv:1707.01836.
Clifford, G. D., Liu, C., Moody, B., Lehman, L. H., & Silva, I. (2017). "AF Classification from a Short Single Lead ECG Recording: The PhysioNet/Computing in Cardiology Challenge 2017." Computing in Cardiology Conference (CinC).
Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2017). "Automated Detection of arrhythmias using different intervals in ECG signals." Biomedical Signal Processing and Control, 33, 190-198
Bahrami Rad, A., Eftestol, T., Engan, K., Irusta, U., Kvaloy, J. T., Kramer-Johansen, J., & Wik, L. (2017). "ECG-Based Classification of Resuscitation Cardiac Rhythms for Retrospective Data Analysis." IEEE Transactions on Biomedical Engineering, 64(10), 2411-2421.
Huang, J., Yin, P., & Hu, C. (2019). "LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices." IEEE Journal of Biomedical and Health Informatics, 23(2), 445-454. DOI: 10.1109/jbhi.2019.2911367.
Hu, Y., Liu, S., Fan, Z., & Li, C. (2023). "Deep Arrhythmia Classification Based on SENet and Lightweight Context Transform." Mathematical Biosciences and Engineering, 20(1), 1-20. DOI: 10.3934/mbe.2023001.
Sharma, R., Kaur, P., & Sharma, A. (2022). "Classification of ECG Signal Using FFT-Based Improved AlexNet Classifier." PLoS ONE, 17(9), e0274225.
Qiu, Y., Liu, H., Zhang, X., & Wang, W. (2023). "Classification of Electrocardiogram Signals Using Deep Learning Based on Genetic Algorithm Feature Extraction." Biomedical Physics & Engineering Express, 9(1), 015002.
Silva, I., & Henriques, J. (2020). "Automatic Detection of Arrhythmia Based on Multi-Resolution Representation of ECG Signal." Sensors, 20(6), 1579.
Wu, W., Wang, X., & Zhang, Z. (2022). "Robust Arrhythmia Classification Based on QRS Detection and a Compact 1D-CNN for Wearable ECG Devices." IEEE Journal of Biomedical and Health Informatics, 26(10), 4622-4633..
Yang, L., Zhou, Y., & Zhang, J. (2023). "Health Warning Based on 3R ECG Sample's Combined Features and LSTM." Computers in Biology and Medicine, 157, 107082..
Plesinger, F., Nejedly, P., & Halamek, J. (2023). "Optimization of Arrhythmia-Based ECG-Lead Selection for Computer-Interpreted Heart Rhythm Classification." IEEE Engineering in Medicine & Biology Society Conference, 2023, 4725-4728.
Wang, Z., Liu, Q., & Xu, W. (2019). "Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network." Sensors, 19(11), 2558.
Li, H., Yuan, D., Wang, Y., Cui, D., & Cao, L. (2016). Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System. Sensors, 16(10), 1744.
Li, N., Liu, L., Yang, Z., & Qin, S. (2023). A self-adjusting ant colony clustering algorithm for ECG arrhythmia classification based on a correction mechanism. Computer Methods and Programs in Biomedicine, 235, 107519.
Majeed RR, Alkhafaji SKD. ECG classification system based on multi-domain features approach coupled with least square support vector machine (LS-SVM). Comput Methods Biomech Biomed Engin. 2023 Apr;26(5):540-547
Runchuan Li, Wenzhi Zhang, Shengya Shen, Jinliang Yao, Bicao Li, Bing Zhou, Gang Chen, Zongmin Wang, “An Intelligent Heartbeat Classification System Based on Attributable Features with AdaBoost + Random Forest Algorithm”, Journal of Healthcare Engineering, 2021.
Tang S, Deng Z. CS-based multi-task learning network for arrhythmia reconstruction and classification using ECG signals. Physiol Meas. 2023 Jul 5;44(7).
Hua J, Chu B, Zou J, Jia J. ECG signal classification in wearable devices based on compressed domain. PLoS One. 2023 Apr 4;18(4):e0284008.
Fang Y, Shi J, Huang Y, Zeng T, Ye Y, Su L, Zhu D, Huang J. Electrocardiogram Signal Classification in the Diagnosis of Heart Disease Based on RBF Neural Network. Comput Math Methods Med. 2022 Jan 30;2022:9251225.
Liu F, Li H, Wu T, Lin H, Lin C, Han G. Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional LSTM. ISA Trans. 2023 Jul;138:397-407.
Huiwen Gao,Xingyao Wang,Zhenghua Chen,Min Wu,Jianqing Li,Chengyu Liu, “ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on Continual Learning”, IEEE Journal Of Biomedical And Health Informatics, Vol. 27, No. 11, November 2023.
P. K. Stein and Y. Pu, “Heart rate variability, sleep and sleep disorders,” Sleep Med. Rev., vol. 16, no. 1, pp. 47–66, Feb. 2012.
R. E. Kleiger, P. K. Stein, and J. T. Bigger, “Heart rate variability: Measurement and clinical utility,” Ann. Noninvasive Electrocardiol., vol. 10, no. 1, pp. 88–101.
U. J. Scholz, A. M. Bianchi, S. Cerutti, and S. Kubicki, “Vegetative background of sleep: Spectral analysis of the heart rate variability,” Physiol. Behav., vol. 62, no. 5, pp. 1037–1043.
Anam Mustaqeem, Syed Muhammad Anwar, and Muahammad Majid, “Multiclass Classification of Cardiac Arrhythmia Using Improved Feature Selection and SVM Invariants”, Computational and Mathematical Methods in Medicine, Volume 2018, Article ID 7310496.
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), e215–e220.