Main Article Content
Abstract
Deep Learning and advanced image processing can enhance the detection and prognosis of liver cancer using medical imaging, such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. Liver cancer detection is a challenging task due to factors such as poor contrast, noise in imaging techniques, limited annotated datasets, and the complex characteristics of tumors. This study proposes a hybrid technique that combines Contrast-Limited Adaptive Histogram Equalization (CLAHE), Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs), and Transfer Learning (TL) to improve the precision and accuracy of liver tumor detection. A conventional technique for image enhancement, CLAHE increases the contrast of medical images, making malignant tumors more apparent. CLAHE, however, does not provide a thorough tumor characterization; instead, it focuses on enhancing image quality. CNN is used to extract features, find and learn important patterns, such as edges, textures, and shapes that are pertinent to the diagnosis of tumors. Finally, TL utilizes pre-trained models (Inception V3) for classification, enabling the effective learning of tumor features and achieving high diagnostic precision with fewer computational resources. A hybrid approach combining CNN, GAN, and TL may give an integrated and effective solution for identifying and diagnosing liver tumors. The hybrid technique performed significantly better than independent DL approaches, achieving an accuracy of 93.3%, a sensitivity of 92.2%, a specificity of 94.5%, and an F1-score of 92.8%.
Keywords
Article Details
References
- Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: a cancer journal for clinicians, 74(1), 12-49.
- Dumachi, A. I., & Buiu, C. (2024). Applications of Machine Learning in Cancer Imaging: A Review of Diagnostic Methods for Six Major Cancer Types. Electronics, 13(23), 4697. https://doi.org/10.3390/electronics13234697
- Tejaswi VS, Rachapudi V. Liver cancer classification via deep hybrid model from CT image with improved texture feature set and fuzzy clustering based segmentation. InWeb Intelligence 2024 Sep 13 (Vol. 22, No. 3, pp. 291-314). Sage UK: London, England: SAGE Publications.
- Nasir, M. U., Zubair, M., Ghazal, T. M., Khan, M. F., Ahmad, M., Rahman, A. U., ... & Mansoor, W. (2022). Kidney cancer prediction empowered with blockchain security using transfer learning. Sensors, 22(19), 7483.
- Wan, Y., Wang, D., Li, H., & Xu, Y. (2023). The imaging techniques and diagnostic performance of ultrasound, CT, and MRI in detecting liver steatosis and fat quantification: A systematic review. Journal of Radiation Research and Applied Sciences, 16(4), 100658.
- Buriboev, A. S., Khashimov, A., Abduvaitov, A., & Jeon, H. S. (2024). CNN-Based Kidney Segmentation Using a Modified CLAHE Algorithm. Sensors, 24(23), 7703.
- Scherer, R., da Costa, D. R., Malek, D. A., Jammal, A. A., & Medeiros, F. A. (2024). Contrast-Limited Adaptive Histogram Equalization filters for Quality Enhancement for Glaucoma Fundus Imaging. Investigative Ophthalmology & Visual Science, 65(7), 6476-6476.
- Sajjanar R, Dixit UD, Vagga VK. Advancements in hybrid approaches for brain tumor segmentation in MRI: a comprehensive review of machine learning and deep learning techniques. Multimedia Tools and Applications. 2024 Mar;83(10):30505-39.
- Huang D, Liu Z, Li Y. Research on Tumors Segmentation based on Image Enhancement Method. arXiv preprint. 2024 Jun 7, https://doi.org/10.48550/arXiv.2406.05170
- H. Kaur, N. Kaur and N. Neeru, "A Comparative Study of Image Enhancement Algorithms for Abdomen CT Images," 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 2024, pp. 1-6, doi: 10.1109/IATMSI60426.2024.10502768.
- Rani, R. M., Dwarakanath, B., Kathiravan, M., Murugesan, S., Bharathiraja, N., & Vinoth Kumar, M. (2024). Accurate artificial intelligence method for abnormality detection of CT liver images. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-16.
- Wu, Chaopeng, Qiyao Chen, Haoyu Wang, Yu Guan, Zhangyang Mian, Cong Huang, Changli Ruan et al. "A review of deep learning approaches for multimodal image segmentation of liver cancer." Journal of Applied Clinical Medical Physics 25, no. 12 (2024): e14540. https://doi.org/10.1002/acm2.14540
- P. Singh, S. K. Mishra, Nidhi, J. Singh, M. Agrawal and P. Joshi, "Efficient Liver and Tumor Segmentation from CT Images Using a Hybrid ResUNet Model," 2024 IEEE North Karnataka Subsection Flagship International Conference (NKCon), Bagalkote, India, 2024, pp. 1-6, doi: 10.1109/NKCon62728.2024.10775024
- Jesi, P. M., & Daniel, V. A. A. (2024). Differential CNN and KELM integration for accurate liver cancer detection. Biomedical Signal Processing and Control, 95, 106419.
- Das, B., & Toraman, S. (2022). Deep transfer learning for automated liver cancer gene recognition using spectrogram images of digitized DNA sequences. Biomedical Signal Processing and Control, 72, 103317.
- Hameed, U., Ur Rehman, M., Rehman, A., Damaševičius, R., Sattar, A., & Saba, T. (2024). A deep learning approach for liver cancer detection in CT scans. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(7), 2280558.
- Gedeon, K. K., & Liu, Z. (2024). Classification of liver lesions in CT images based on LivlesioNet, modified Multi-Scale CNN with bridge Scale method. Multimedia Tools and Applications, 83(3), 8911-8929.
- Bhaskar, N., Kiran, J. S., Satyanarayan, S., Divya, G., Raju, K. S., Kanthi, M., & Patra, R. K. (2024). An approach for liver cancer detection from histopathology images using hybrid pre-trained models. TELKOMNIKA (Telecommunication Computing Electronics and Control), 22(2), 401-412.
- Ma, Ke Ouyang, Ziping Ma, Mingge Xia, Silong Xu, Ke Lu, Transformer dense center network for liver tumor detection, Biomedical Signal Processing and Control, Volume 91, 2024, 106066, ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2024.106066.
- Kavitha, V. R., Jahir Hussain, F. B., Chillakuru, P., & Shanmugam, P. (2024). Automated Classification of Liver Cancer Stages Using Deep Learning on Histopathological Images. Traitement du Signal, 41(1).
- Malik, M. H., Ghous, H., Rashid, T., Maryum, B., Hao, Z., & Umer, Q. (2024). Feature extraction-based liver tumor classification using Machine Learning and Deep Learning methods of computed tomography images. Cogent Engineering, 11(1), 2338994.
- Chen, Y., Lin, H., Zhang, W., Chen, W., Zhou, Z., Heidari, A. A., ... & Xu, G. (2024). ICycle-GAN: Improved cycle generative adversarial networks for liver medical image generation. Biomedical Signal Processing and Control, 92, 106100.
- Bandaru, S. C., Mohan, G. B., Kumar, R. P., & Altalbe, A. (2024). SwinGALE: fusion of swin transformer and attention mechanism for GAN-augmented liver tumor classification with enhanced deep learning. International Journal of Information Technology, 16(8), 5351-5369
- Setiawan, W., Suhadi, M. M., & Pramudita, Y. D. (2024). Inception-v3 with Reduce Learning Rate for Optimization of Lung Cancer Histopathology Classification. Ingénierie des Systèmes d'Information, 29(2).
- Makram, M., & Mohammed, A. (2024, July). Deep learning approach for hepatic lesion detection. In 2024 Intelligent Methods, Systems, and Applications (IMSA) (pp. 312-318). IEEE.
References
Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: a cancer journal for clinicians, 74(1), 12-49.
Dumachi, A. I., & Buiu, C. (2024). Applications of Machine Learning in Cancer Imaging: A Review of Diagnostic Methods for Six Major Cancer Types. Electronics, 13(23), 4697. https://doi.org/10.3390/electronics13234697
Tejaswi VS, Rachapudi V. Liver cancer classification via deep hybrid model from CT image with improved texture feature set and fuzzy clustering based segmentation. InWeb Intelligence 2024 Sep 13 (Vol. 22, No. 3, pp. 291-314). Sage UK: London, England: SAGE Publications.
Nasir, M. U., Zubair, M., Ghazal, T. M., Khan, M. F., Ahmad, M., Rahman, A. U., ... & Mansoor, W. (2022). Kidney cancer prediction empowered with blockchain security using transfer learning. Sensors, 22(19), 7483.
Wan, Y., Wang, D., Li, H., & Xu, Y. (2023). The imaging techniques and diagnostic performance of ultrasound, CT, and MRI in detecting liver steatosis and fat quantification: A systematic review. Journal of Radiation Research and Applied Sciences, 16(4), 100658.
Buriboev, A. S., Khashimov, A., Abduvaitov, A., & Jeon, H. S. (2024). CNN-Based Kidney Segmentation Using a Modified CLAHE Algorithm. Sensors, 24(23), 7703.
Scherer, R., da Costa, D. R., Malek, D. A., Jammal, A. A., & Medeiros, F. A. (2024). Contrast-Limited Adaptive Histogram Equalization filters for Quality Enhancement for Glaucoma Fundus Imaging. Investigative Ophthalmology & Visual Science, 65(7), 6476-6476.
Sajjanar R, Dixit UD, Vagga VK. Advancements in hybrid approaches for brain tumor segmentation in MRI: a comprehensive review of machine learning and deep learning techniques. Multimedia Tools and Applications. 2024 Mar;83(10):30505-39.
Huang D, Liu Z, Li Y. Research on Tumors Segmentation based on Image Enhancement Method. arXiv preprint. 2024 Jun 7, https://doi.org/10.48550/arXiv.2406.05170
H. Kaur, N. Kaur and N. Neeru, "A Comparative Study of Image Enhancement Algorithms for Abdomen CT Images," 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 2024, pp. 1-6, doi: 10.1109/IATMSI60426.2024.10502768.
Rani, R. M., Dwarakanath, B., Kathiravan, M., Murugesan, S., Bharathiraja, N., & Vinoth Kumar, M. (2024). Accurate artificial intelligence method for abnormality detection of CT liver images. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-16.
Wu, Chaopeng, Qiyao Chen, Haoyu Wang, Yu Guan, Zhangyang Mian, Cong Huang, Changli Ruan et al. "A review of deep learning approaches for multimodal image segmentation of liver cancer." Journal of Applied Clinical Medical Physics 25, no. 12 (2024): e14540. https://doi.org/10.1002/acm2.14540
P. Singh, S. K. Mishra, Nidhi, J. Singh, M. Agrawal and P. Joshi, "Efficient Liver and Tumor Segmentation from CT Images Using a Hybrid ResUNet Model," 2024 IEEE North Karnataka Subsection Flagship International Conference (NKCon), Bagalkote, India, 2024, pp. 1-6, doi: 10.1109/NKCon62728.2024.10775024
Jesi, P. M., & Daniel, V. A. A. (2024). Differential CNN and KELM integration for accurate liver cancer detection. Biomedical Signal Processing and Control, 95, 106419.
Das, B., & Toraman, S. (2022). Deep transfer learning for automated liver cancer gene recognition using spectrogram images of digitized DNA sequences. Biomedical Signal Processing and Control, 72, 103317.
Hameed, U., Ur Rehman, M., Rehman, A., Damaševičius, R., Sattar, A., & Saba, T. (2024). A deep learning approach for liver cancer detection in CT scans. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(7), 2280558.
Gedeon, K. K., & Liu, Z. (2024). Classification of liver lesions in CT images based on LivlesioNet, modified Multi-Scale CNN with bridge Scale method. Multimedia Tools and Applications, 83(3), 8911-8929.
Bhaskar, N., Kiran, J. S., Satyanarayan, S., Divya, G., Raju, K. S., Kanthi, M., & Patra, R. K. (2024). An approach for liver cancer detection from histopathology images using hybrid pre-trained models. TELKOMNIKA (Telecommunication Computing Electronics and Control), 22(2), 401-412.
Ma, Ke Ouyang, Ziping Ma, Mingge Xia, Silong Xu, Ke Lu, Transformer dense center network for liver tumor detection, Biomedical Signal Processing and Control, Volume 91, 2024, 106066, ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2024.106066.
Kavitha, V. R., Jahir Hussain, F. B., Chillakuru, P., & Shanmugam, P. (2024). Automated Classification of Liver Cancer Stages Using Deep Learning on Histopathological Images. Traitement du Signal, 41(1).
Malik, M. H., Ghous, H., Rashid, T., Maryum, B., Hao, Z., & Umer, Q. (2024). Feature extraction-based liver tumor classification using Machine Learning and Deep Learning methods of computed tomography images. Cogent Engineering, 11(1), 2338994.
Chen, Y., Lin, H., Zhang, W., Chen, W., Zhou, Z., Heidari, A. A., ... & Xu, G. (2024). ICycle-GAN: Improved cycle generative adversarial networks for liver medical image generation. Biomedical Signal Processing and Control, 92, 106100.
Bandaru, S. C., Mohan, G. B., Kumar, R. P., & Altalbe, A. (2024). SwinGALE: fusion of swin transformer and attention mechanism for GAN-augmented liver tumor classification with enhanced deep learning. International Journal of Information Technology, 16(8), 5351-5369
Setiawan, W., Suhadi, M. M., & Pramudita, Y. D. (2024). Inception-v3 with Reduce Learning Rate for Optimization of Lung Cancer Histopathology Classification. Ingénierie des Systèmes d'Information, 29(2).
Makram, M., & Mohammed, A. (2024, July). Deep learning approach for hepatic lesion detection. In 2024 Intelligent Methods, Systems, and Applications (IMSA) (pp. 312-318). IEEE.