Main Article Content
Abstract
Contemporary marketing faces challenges in analyzing complex, multidimensional customer-brand relationships from unprecedented volumes of multimodal data. Traditional analytical approaches inadequately capture this complexity, limiting precision marketing effectiveness. This research develops and validates a comprehensive multimodal data fusion framework utilizing deep learning architectures to enhance service quality perception analysis and customer loyalty prediction. The methodology integrates four data modalities—textual reviews, behavioral patterns, transactional records, and visual content—through specialized neural encoders: CNN for structured data, BERT transformers for textual analysis, LSTM networks for sequential behaviors, and transformer-based encoders for service indicators. Multi-head attention mechanisms and cross-modal feature weighting strategies unify these components while maintaining interpretability through SHAP-based analysis. Experimental validation across 15,420 customers demonstrates substantial performance improvements: service quality prediction (R² = 0.891, MAE = 0.142), customer loyalty classification (F1-score = 0.875, AUC-ROC = 0.923), and churn risk assessment (F1-score = 0.864, AUC-ROC = 0.917), significantly outperforming traditional baselines. Marketing optimization results demonstrate remarkable enhancements: conversion rates (+43.5%), ROI (+56.8%), click-through rates (+81.3%), and revenue per user (+71.1%), all of which are statistically significant (p < 0.001). Customer segmentation analysis reveals that value customers prioritize operational excellence and technical expertise, while regular customers emphasize interpersonal service dimensions. This framework advances multimodal learning theory in marketing contexts, providing practical foundations for next-generation customer relationship management systems. It enables enhanced customer engagement and business value creation through integrated data strategies.
Keywords
Article Details
References
- J. Gao, P. Li, Z. Chen, and J. Zhang, "A survey on deep learning for multimodal data fusion," Neural Computation, vol. 32, no. 5, pp. 829-864, May 2020. DOI: 10.1162/neco_a_01273.
- S. R. Stahlschmidt, B. Ulfenborg, and J. Synnergren, "Multimodal deep learning for biomedical data fusion: a review," Briefings in bioinformatics, vol. 23, no. 2, p. bbab569, Mar 10 2022. DOI: 10.1093/bib/bbab569.
- I. César, I. Pereira, F. Rodrigues, V. Miguéis, S. Nicola, and A. Madureira, "Exploring multimodal learning applications in marketing: A critical perspective," International Journal of Hybrid Intelligent Systems, vol. 21, no. 1, pp. 29-46, 2025. DOI:10.18089/tms.20250103.
- L. Alzubaidi et al., "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," Journal of big Data, vol. 8, no. 1, pp. 1-74, 2021. DOI: 10.1186/s40537-021-00444-8.
- W. N. Wassouf, R. Alkhatib, K. Salloum, and S. Balloul, "Predictive analytics using big data for increased customer loyalty: Syriatel Telecom Company case study," Journal of Big Data, vol. 7, no. 1, p. 29, 2020. DOI: https://doi.org/10.1186/s40537-020-00290-0.
- H. F. Lee and M. Jiang, "A hybrid machine learning approach for customer loyalty prediction," in Neural Computing for Advanced Applications: Second International Conference, NCAA 2021, Guangzhou, China, August 27-30, 2021, Proceedings 2, 2021: Springer, pp. 211-226. DOI: https://doi.org/10.1007/978-981-16-5188-5_16.
- M. J. S. Shabbir and C. Mankar, "The Role of Predictive Data Analytics in Retailing," in Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2020, 2021: Springer, pp. 153-159. DOI: https://doi.org/10.1007/978-981-15-5258-8_16.
- Z. H. Kilimci, "Prediction of user loyalty in mobile applications using deep contextualized word representations," Journal of Information and Telecommunication, vol. 6, no. 1, pp. 43-62, 2022. DOI: https://doi.org/10.1080/24751839.2021.1981684.
- C. Zhang, S. Ma, S. Li, and A. Singh, "Effects of customer engagement behaviors on action loyalty: moderating roles of service failure and customization," International Journal of Contemporary Hospitality Management, vol. 33, no. 1, pp. 286-304, 2021. DOI: https://doi.org/10.1108/IJCHM-08-2019-0740.
- Y. Cheng and H. Jiang, "How do AI-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use," Journal of Broadcasting & Electronic Media, vol. 64, no. 4, pp. 592-614, 2020. DOI: https://doi.org/10.1080/08838151.2020.1834296.
- M. S. Kasem, M. Hamada, and I. Taj-Eddin, "Customer profiling, segmentation, and sales prediction using AI in direct marketing," Neural Computing and Applications, vol. 36, no. 9, pp. 4995-5005, 2024. DOI: https://doi.org/10.1007/s00521-023-09339-6.
- S. Ramaswamy and N. DeClerck, "Customer perception analysis using deep learning and NLP," Procedia Computer Science, vol. 140, pp. 170-178, 2018. DOI: https://doi.org/10.1016/j.procs.2018.10.326.
- E. AboElHamd, H. M. Shamma, and M. Saleh, "Dynamic programming models for maximizing customer lifetime value: an overview," in Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 1, 2020: Springer, pp. 419-445. DOI: https://doi.org/10.1007/978-3-030-29516-5_34.
- S. J. Haddadi, A. Farshidvard, F. dos Santos Silva, J. C. dos Reis, and M. da Silva Reis, "Customer churn prediction in imbalanced datasets with resampling methods: A comparative study," Expert Systems with Applications, vol. 246, p. 123086, 2024. DOI: https://doi.org/10.1016/j.eswa.2023.123086.
- Y. Mao, Q. Liu, and Y. Zhang, "Sentiment analysis methods, applications, and challenges: A systematic literature review," Journal of King Saud University-Computer and Information Sciences, p. 102048, 2024. DOI: https://doi.org/10.1016/j.jksuci.2024.102048.
- Y. K. Dwivedi et al., "Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy," International journal of information management, vol. 71, p. 102642, 2023. DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642.
- L. Liu, "e‐Commerce Personalized Recommendation Based on Machine Learning Technology," Mobile Information Systems, vol. 2022, no. 1, p. 1761579, 2022. DOI: https://doi.org/10.1155/2022/1761579.
- S. M. H. M. Huzir, A. H. I. H. Al-Hadi, Z. M. Yusoff, N. Ismail, and M. N. Taib, "Accurate Agarwood Oil Quality Determination: A Breakthrough with Artificial Neural Networks and the Levenberg-Marquardt Algorithm," IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3381627.
- X. Wei, T. Zhang, Y. Li, Y. Zhang, and F. Wu, "Multi-modality cross attention network for image and sentence matching," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10941-10950. DOI: 10.1109/CVPR42600.2020.01095.
- A. Matei, A. Glavan, and E. Talavera, "Deep learning for scene recognition from visual data: a survey," in International Conference on Hybrid Artificial Intelligence Systems, 2020: Springer, pp. 763-773. DOI: https://doi.org/10.1007/978-3-030-61705-9_64.
- Z. Niu, G. Zhong, and H. Yu, "A review on the attention mechanism of deep learning," Neurocomputing, vol. 452, pp. 48-62, 2021. DOI: https://doi.org/10.1016/j.neucom.2021.03.091.
- Z. Bai, X. Chen, M. Zhou, T. Yi, and W.-C. Chien, "Low-rank multimodal fusion algorithm based on context modeling," Journal of Internet Technology, vol. 22, no. 4, pp. 913-921, 2021. DOI:10.53106/160792642021072204018.
- L. Zhu, Z. Zhu, C. Zhang, Y. Xu, and X. Kong, "Multimodal sentiment analysis based on fusion methods: A survey," Information Fusion, vol. 95, pp. 306-325, 2023. DOI: https://doi.org/10.1016/j.inffus.2023.02.028.
- X.-X. Liu and Z.-Y. Chen, "Service quality evaluation and service improvement using online reviews: A framework combining deep learning with a hierarchical service quality model," Electronic Commerce Research and Applications, vol. 54, p. 101174, 2022. DOI: https://doi.org/10.1016/j.elerap.2022.101174.
- X. Li et al., "Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond," Knowledge and Information Systems, vol. 64, no. 12, pp. 3197-3234, 2022. DOI:10.48550/arXiv.2103.10689.
- S. S. Amiri, S. Mottahedi, E. R. Lee, and S. Hoque, "Peeking inside the black-box: Explainable machine learning applied to household transportation energy consumption," Computers, Environment and Urban Systems, vol. 88, p. 101647, 2021. DOI: https://doi.org/10.1016/j.compenvurbsys.2021.101647.
- M. Benk and A. Ferrario, "Explaining interpretable machine learning: Theory, methods and applications," Methods and Applications (December 11, 2020), 2020. DOI:10.2139/ssrn.3748268.
- S. Kruschel, N. Hambauer, S. Weinzierl, S. Zilker, M. Kraus, and P. Zschech, "Challenging the Performance-Interpretability Trade-off: An Evaluation of Interpretable Machine Learning Models," Business & Information Systems Engineering, pp. 1-25, 2025. DOI:10.48550/arXiv.2409.14429.
- C. Meng, L. Trinh, N. Xu, J. Enouen, and Y. Liu, "Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset," Scientific Reports, vol. 12, no. 1, p. 7166, May 3 2022, doi: 10.1038/s41598-022-11012-2. DOI: 10.1038/s41598-022-11012-2.
- A. B. Arrieta et al., "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI," Information fusion, vol. 58, pp. 82-115, 2020. DOI: https://doi.org/10.1016/j.inffus.2019.12.012.
- J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, "Evaluating the quality of machine learning explanations: A survey on methods and metrics," Electronics, vol. 10, no. 5, p. 593, 2021. DOI:10.3390/electronics10050593.
- E. Stein, K. Robinson, A. Wolfer, G. Almeida, and W. Huang, "Unlocking the next frontier of personalized marketing," The McKinsey Quarterly, 2025.
- M. Kozak and A. Correia, "From mass marketing to personalized digital marketing in tourism: a 2050 horizon paper," Tourism Review, vol. 80, no. 1, pp. 373-391, 2025. DOI:10.1108/tr-03-2024-0169.
- M. Kia, "Attention-guided deep learning for effective customer loyalty management and multi-criteria decision analysis," Iran Journal of Computer Science, vol. 8, no. 1, pp. 163-184, 2025. DOI:10.1007/s42044-024-00215-7.
- В. КАРМАЗІНОВА, "Gamification of consumer loyalty programs," Scientia fructuosa, vol. 153, no. 1, pp. 70-83, 2024. DOI: https://doi.org/10.31617/1.2024(153)04.
- M. Joshi, Intro to E-Commerce and Social Commerce. Educohack Press, 2025. ISBN:9789361520877, 9361520873
- A. G. AG, H.-K. Su, and W.-K. Kuo, "Personalized E-commerce: Enhancing Customer Experience through Machine Learning-driven Personalization," in 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), 2024: IEEE, pp. 1-5. DOI: 10.1109/ICITEICS61368.2024.10624901.
- O. Moqaddem, "Investigating the impact of AI on personalization and customer engagement in intelligent marketing strategies," European Journal of Management and Marketing Studies, vol. 10, no. 1, 2025. DOI: http://dx.doi.org/10.46827/ejmms.v10i1.1922.
- M. Kihn and C. B. O'Hara, Customer data platforms: Use people data to transform the future of marketing engagement. John Wiley & Sons, 2020.
- R. Agarwal, R. Jacobson, P. Kline, and M. Obeid, "The future of customer experience: Personalized, white-glove service for all," McKinsey & Company. Available at https://www. mckinsey. com/business-functions/operations/our-insights/the-future-of-customer-experience-personalized-white-glove-service-for-all.[Accessed 8 June 2021], 2020.
References
J. Gao, P. Li, Z. Chen, and J. Zhang, "A survey on deep learning for multimodal data fusion," Neural Computation, vol. 32, no. 5, pp. 829-864, May 2020. DOI: 10.1162/neco_a_01273.
S. R. Stahlschmidt, B. Ulfenborg, and J. Synnergren, "Multimodal deep learning for biomedical data fusion: a review," Briefings in bioinformatics, vol. 23, no. 2, p. bbab569, Mar 10 2022. DOI: 10.1093/bib/bbab569.
I. César, I. Pereira, F. Rodrigues, V. Miguéis, S. Nicola, and A. Madureira, "Exploring multimodal learning applications in marketing: A critical perspective," International Journal of Hybrid Intelligent Systems, vol. 21, no. 1, pp. 29-46, 2025. DOI:10.18089/tms.20250103.
L. Alzubaidi et al., "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," Journal of big Data, vol. 8, no. 1, pp. 1-74, 2021. DOI: 10.1186/s40537-021-00444-8.
W. N. Wassouf, R. Alkhatib, K. Salloum, and S. Balloul, "Predictive analytics using big data for increased customer loyalty: Syriatel Telecom Company case study," Journal of Big Data, vol. 7, no. 1, p. 29, 2020. DOI: https://doi.org/10.1186/s40537-020-00290-0.
H. F. Lee and M. Jiang, "A hybrid machine learning approach for customer loyalty prediction," in Neural Computing for Advanced Applications: Second International Conference, NCAA 2021, Guangzhou, China, August 27-30, 2021, Proceedings 2, 2021: Springer, pp. 211-226. DOI: https://doi.org/10.1007/978-981-16-5188-5_16.
M. J. S. Shabbir and C. Mankar, "The Role of Predictive Data Analytics in Retailing," in Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2020, 2021: Springer, pp. 153-159. DOI: https://doi.org/10.1007/978-981-15-5258-8_16.
Z. H. Kilimci, "Prediction of user loyalty in mobile applications using deep contextualized word representations," Journal of Information and Telecommunication, vol. 6, no. 1, pp. 43-62, 2022. DOI: https://doi.org/10.1080/24751839.2021.1981684.
C. Zhang, S. Ma, S. Li, and A. Singh, "Effects of customer engagement behaviors on action loyalty: moderating roles of service failure and customization," International Journal of Contemporary Hospitality Management, vol. 33, no. 1, pp. 286-304, 2021. DOI: https://doi.org/10.1108/IJCHM-08-2019-0740.
Y. Cheng and H. Jiang, "How do AI-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use," Journal of Broadcasting & Electronic Media, vol. 64, no. 4, pp. 592-614, 2020. DOI: https://doi.org/10.1080/08838151.2020.1834296.
M. S. Kasem, M. Hamada, and I. Taj-Eddin, "Customer profiling, segmentation, and sales prediction using AI in direct marketing," Neural Computing and Applications, vol. 36, no. 9, pp. 4995-5005, 2024. DOI: https://doi.org/10.1007/s00521-023-09339-6.
S. Ramaswamy and N. DeClerck, "Customer perception analysis using deep learning and NLP," Procedia Computer Science, vol. 140, pp. 170-178, 2018. DOI: https://doi.org/10.1016/j.procs.2018.10.326.
E. AboElHamd, H. M. Shamma, and M. Saleh, "Dynamic programming models for maximizing customer lifetime value: an overview," in Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 1, 2020: Springer, pp. 419-445. DOI: https://doi.org/10.1007/978-3-030-29516-5_34.
S. J. Haddadi, A. Farshidvard, F. dos Santos Silva, J. C. dos Reis, and M. da Silva Reis, "Customer churn prediction in imbalanced datasets with resampling methods: A comparative study," Expert Systems with Applications, vol. 246, p. 123086, 2024. DOI: https://doi.org/10.1016/j.eswa.2023.123086.
Y. Mao, Q. Liu, and Y. Zhang, "Sentiment analysis methods, applications, and challenges: A systematic literature review," Journal of King Saud University-Computer and Information Sciences, p. 102048, 2024. DOI: https://doi.org/10.1016/j.jksuci.2024.102048.
Y. K. Dwivedi et al., "Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy," International journal of information management, vol. 71, p. 102642, 2023. DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642.
L. Liu, "e‐Commerce Personalized Recommendation Based on Machine Learning Technology," Mobile Information Systems, vol. 2022, no. 1, p. 1761579, 2022. DOI: https://doi.org/10.1155/2022/1761579.
S. M. H. M. Huzir, A. H. I. H. Al-Hadi, Z. M. Yusoff, N. Ismail, and M. N. Taib, "Accurate Agarwood Oil Quality Determination: A Breakthrough with Artificial Neural Networks and the Levenberg-Marquardt Algorithm," IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3381627.
X. Wei, T. Zhang, Y. Li, Y. Zhang, and F. Wu, "Multi-modality cross attention network for image and sentence matching," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10941-10950. DOI: 10.1109/CVPR42600.2020.01095.
A. Matei, A. Glavan, and E. Talavera, "Deep learning for scene recognition from visual data: a survey," in International Conference on Hybrid Artificial Intelligence Systems, 2020: Springer, pp. 763-773. DOI: https://doi.org/10.1007/978-3-030-61705-9_64.
Z. Niu, G. Zhong, and H. Yu, "A review on the attention mechanism of deep learning," Neurocomputing, vol. 452, pp. 48-62, 2021. DOI: https://doi.org/10.1016/j.neucom.2021.03.091.
Z. Bai, X. Chen, M. Zhou, T. Yi, and W.-C. Chien, "Low-rank multimodal fusion algorithm based on context modeling," Journal of Internet Technology, vol. 22, no. 4, pp. 913-921, 2021. DOI:10.53106/160792642021072204018.
L. Zhu, Z. Zhu, C. Zhang, Y. Xu, and X. Kong, "Multimodal sentiment analysis based on fusion methods: A survey," Information Fusion, vol. 95, pp. 306-325, 2023. DOI: https://doi.org/10.1016/j.inffus.2023.02.028.
X.-X. Liu and Z.-Y. Chen, "Service quality evaluation and service improvement using online reviews: A framework combining deep learning with a hierarchical service quality model," Electronic Commerce Research and Applications, vol. 54, p. 101174, 2022. DOI: https://doi.org/10.1016/j.elerap.2022.101174.
X. Li et al., "Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond," Knowledge and Information Systems, vol. 64, no. 12, pp. 3197-3234, 2022. DOI:10.48550/arXiv.2103.10689.
S. S. Amiri, S. Mottahedi, E. R. Lee, and S. Hoque, "Peeking inside the black-box: Explainable machine learning applied to household transportation energy consumption," Computers, Environment and Urban Systems, vol. 88, p. 101647, 2021. DOI: https://doi.org/10.1016/j.compenvurbsys.2021.101647.
M. Benk and A. Ferrario, "Explaining interpretable machine learning: Theory, methods and applications," Methods and Applications (December 11, 2020), 2020. DOI:10.2139/ssrn.3748268.
S. Kruschel, N. Hambauer, S. Weinzierl, S. Zilker, M. Kraus, and P. Zschech, "Challenging the Performance-Interpretability Trade-off: An Evaluation of Interpretable Machine Learning Models," Business & Information Systems Engineering, pp. 1-25, 2025. DOI:10.48550/arXiv.2409.14429.
C. Meng, L. Trinh, N. Xu, J. Enouen, and Y. Liu, "Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset," Scientific Reports, vol. 12, no. 1, p. 7166, May 3 2022, doi: 10.1038/s41598-022-11012-2. DOI: 10.1038/s41598-022-11012-2.
A. B. Arrieta et al., "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI," Information fusion, vol. 58, pp. 82-115, 2020. DOI: https://doi.org/10.1016/j.inffus.2019.12.012.
J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, "Evaluating the quality of machine learning explanations: A survey on methods and metrics," Electronics, vol. 10, no. 5, p. 593, 2021. DOI:10.3390/electronics10050593.
E. Stein, K. Robinson, A. Wolfer, G. Almeida, and W. Huang, "Unlocking the next frontier of personalized marketing," The McKinsey Quarterly, 2025.
M. Kozak and A. Correia, "From mass marketing to personalized digital marketing in tourism: a 2050 horizon paper," Tourism Review, vol. 80, no. 1, pp. 373-391, 2025. DOI:10.1108/tr-03-2024-0169.
M. Kia, "Attention-guided deep learning for effective customer loyalty management and multi-criteria decision analysis," Iran Journal of Computer Science, vol. 8, no. 1, pp. 163-184, 2025. DOI:10.1007/s42044-024-00215-7.
В. КАРМАЗІНОВА, "Gamification of consumer loyalty programs," Scientia fructuosa, vol. 153, no. 1, pp. 70-83, 2024. DOI: https://doi.org/10.31617/1.2024(153)04.
M. Joshi, Intro to E-Commerce and Social Commerce. Educohack Press, 2025. ISBN:9789361520877, 9361520873
A. G. AG, H.-K. Su, and W.-K. Kuo, "Personalized E-commerce: Enhancing Customer Experience through Machine Learning-driven Personalization," in 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), 2024: IEEE, pp. 1-5. DOI: 10.1109/ICITEICS61368.2024.10624901.
O. Moqaddem, "Investigating the impact of AI on personalization and customer engagement in intelligent marketing strategies," European Journal of Management and Marketing Studies, vol. 10, no. 1, 2025. DOI: http://dx.doi.org/10.46827/ejmms.v10i1.1922.
M. Kihn and C. B. O'Hara, Customer data platforms: Use people data to transform the future of marketing engagement. John Wiley & Sons, 2020.
R. Agarwal, R. Jacobson, P. Kline, and M. Obeid, "The future of customer experience: Personalized, white-glove service for all," McKinsey & Company. Available at https://www. mckinsey. com/business-functions/operations/our-insights/the-future-of-customer-experience-personalized-white-glove-service-for-all.[Accessed 8 June 2021], 2020.