Main Article Content

Abstract

Outer rotor in-wheel motors face critical thermal management challenges due to constrained heat dissipation within wheel hubs, limiting their application in electric vehicles. This study addresses the research gap of inadequate cooling solutions for high-power-density motors by developing an innovative double-helix oil cooling system through multi-physics coupling optimization. The proposed framework integrates MotorCAD-Maxwell-Ansys platforms to simultaneously analyze electromagnetic losses, thermal conduction, and fluid dynamics. Key findings demonstrate that the optimized double-helix configuration achieves 28% heat dissipation efficiency enhancement, 17% temperature uniformity improvement, and 5°C peak temperature reduction compared to conventional single-channel systems, while maintaining an acceptable 15% pressure drop penalty. Experimental validation confirms 96.9% correlation with simulation results. This research provides practical thermal management solutions crucial for advancing electric vehicle motor technology.

Keywords

Outer rotor in-wheel motor Double-helix oil cooling Multi-physics coupling Temperature field optimization Electric vehicle thermal management Intelligent optimization

Article Details

Author Biography

Bin Xu, School of Mechanical, Manufacturing and Energy Engineering,Mapua University Muralla Street, Intramuros, Manila,1002, Philippines

Bin Xu is currently a PhD student at Mapúa University in the Philippines. His research interests include in-wheel motors for new energy vehicles.

How to Cite
Xu, B., & D. Calderon, A. (2025). Intelligent optimization of double-helix oil cooling system for outer rotor in-wheel motors based on multi-physics coupling simulation. Future Technology, 4(4), 85–99. Retrieved from https://fupubco.com/futech/article/view/456
Bookmark and Share

References

  1. S. Lei, S. Xin, S. Liu, Separate and integrated thermal management solutions for electric vehicles: A review, Journal of Power Sources 550 (2022) 232133. https://doi.org/10.1016/j.jpowsour.2022.232133
  2. I. Ušakovs, D. Mishkinis, I.A. Galkin, A. Bubovich, A. Podgornovs, Experimental thermal characterization of the in-wheel electric motor with loop heat pipe thermal management system, Case Studies in Thermal Engineering 47 (2023) 103069. https://doi.org/10.1016/j.csite.2023.103069
  3. X. Wang, B. Li, D. Gerada, K. Huang, I. Stone, S. Worrall, Y. Yan, A critical review on thermal management technologies for motors in electric cars, Applied thermal engineering 201 (2022) 117758. https://doi.org/10.1016/j.applthermaleng.2021.117758
  4. S.K. Chawrasia, A. Das, C.K. Chanda, In-wheel motor design with thermal and mechanical model analysis for electric bikes, International Journal of Performability Engineering 18(9) (2022) 613. https://doi.org/10.23940/ijpe.22.09.p2.613625
  5. E. Gundabattini, R. Kuppan, D.G. Solomon, A. Kalam, D. Kothari, R.A. Bakar, A review on methods of finding losses and cooling methods to increase efficiency of electric machines, Ain Shams Engineering Journal 12(1) (2021) 497-505. https://doi.org/10.1016/j.asej.2020.08.014
  6. J. Park, J. An, K. Han, H.-S. Choi, I.S. Park, Enhancement of cooling performance in traction motor of electric vehicle using direct slot cooling method, Applied Thermal Engineering 217 (2022) 119082. https://doi.org/10.1016/j.applthermaleng.2022.119082
  7. P.-O. Gronwald, T.A. Kern, Traction motor cooling systems: A literature review and comparative study, IEEE transactions on transportation electrification 7(4) (2021) 2892-2913. https://doi.org/10.1109/TTE.2021.3075844
  8. M. Chang, B. Lai, H. Wang, J. Bai, Z. Mao, Comprehensive efficiency analysis of air-cooled vs water-cooled electric motor for unmanned aerial vehicle, Applied Thermal Engineering 225 (2023) 120226. https://doi.org/10.1016/j.applthermaleng.2023.120226
  9. C. Guo, L. Long, Y. Wu, K. Xu, H. Ye, Electromagnetic-thermal coupling analysis of a permanent-magnet in-wheel motor with cooling channels in the deepened stator slots, Case Studies in Thermal Engineering 35 (2022) 102158. https://doi.org/10.1016/j.csite.2022.102158
  10. K.S. Garud, M.-Y. Lee, Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor, International Journal of Heat and Mass Transfer 201 (2023) 123596. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123596
  11. Y. Li, Q. Li, T. Fan, X. Wen, Heat dissipation design of end winding of permanent magnet synchronous motor for electric vehicle, Energy Reports 9 (2023) 282-288. https://doi.org/10.1016/j.egyr.2022.10.416
  12. N.G. Han, H.L. Lee, R.H. Kim, T.Y. Beom, Y.K. Kim, T.W. Ha, S.W. Lee, D.K. Kim, Thermal analysis of the oil cooling motor according to the churning phenomenon, Applied Thermal Engineering 220 (2023) 119791. https://doi.org/10.1016/j.applthermaleng.2022.119791
  13. P. Chen, N.B. Hassine, S. Ouenzerfi, S. Harmand, Experimental and numerical study of stator end-winding cooling with impinging oil jet, Applied Thermal Engineering 220 (2023) 119702. https://doi.org/10.1016/j.applthermaleng.2022.119702
  14. X. Wang, B. Li, K. Huang, Y. Yan, I. Stone, S. Worrall, Experimental investigation on end winding thermal management with oil spray in electric vehicles, Case studies in thermal engineering 35 (2022) 102082. https://doi.org/10.1016/j.csite.2022.102082
  15. L. Gao, X. Liu, H. Liu, Analytical Calculation of Magnetic Field and Temperature Field of Surface Mounted Permanent Magnet Synchronous Motor, Journal of Electrical Engineering & Technology (2024) 1-14. https://doi.org/10.1007/s42835-024-02108-y
  16. A. Tikadar, D. Johnston, N. Kumar, Y. Joshi, S. Kumar, Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors, Applied Thermal Engineering 183 (2021) 116182. https://doi.org/10.1016/j.applthermaleng.2020.116182
  17. M.H. Park, S.C. Kim, Development and validation of lumped parameter thermal network model on rotational oil spray cooled motor for electric vehicles, Applied Thermal Engineering 225 (2023) 120176. https://doi.org/10.1016/j.applthermaleng.2023.120176
  18. Y. Yan, C. Mao, L. Chen, Multi-physical Field Coupling Analysis of Flat Wire Motor, International Journal of Automotive Technology 26(2) (2025) 475-489. https://doi.org/10.1007/s12239-024-00155-y
  19. T. Sciberras, M. Demicoli, I. Grech, B. Mallia, P. Mollicone, N. Sammut, Thermo-mechanical fluid–structure interaction numerical modelling and experimental validation of MEMS electrothermal actuators for aqueous biomedical applications, Micromachines 14(6) (2023) 1264. https://doi.org/10.3390/mi14061264
  20. M. Popescu, D.G. Dorrell, L. Alberti, N. Bianchi, D.A. Staton, D. Hawkins, Thermal analysis of duplex three-phase induction motor under fault operating conditions, IEEE Transactions on Industry Applications 49(4) (2013) 1523-1530. https://doi.org/10.1109/TIA.2013.2258392
  21. A. Ansaldi, Integrated drive for high-power alternating bidirectional electric vehicles charging: the EMC issuers, simulations, design and tests, Politecnico di Torino, 2024. http://webthesis.biblio.polito.it/id/eprint/31477
  22. C. Kim, W. Sim, J. Yoon, T. Lee, J. Yoo, Numerical and experimental analysis of a dual-channel electric motor housing cooling system, Applied Thermal Engineering 265 (2025) 125537. https://doi.org/10.1016/j.applthermaleng.2025.125537
  23. M. Khoshvaght-Aliabadi, A. Feizabadi, Compound heat transfer enhancement of helical channel with corrugated wall structure, International Journal of Heat and Mass Transfer 146 (2020) 118858. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118858
  24. D. Anders, U. Reinicke, M. Baum, Analysis of heat transfer enhancement due to helical static mixing elements inside cooling channels in machine tools, The International Journal of Advanced Manufacturing Technology 127(5) (2023) 2273-2285. https://doi.org/10.1007/s00170-023-11501-2
  25. L. Zhou, S. Li, A. Jain, G. Sun, G. Chen, D. Guo, J. Kang, Y. Zhao, Optimization of thermal non-uniformity challenges in liquid-cooled lithium-ion battery packs using NSGA-II, Journal of Electrochemical Energy Conversion and Storage 22(4) (2025). https://doi.org/10.1115/1.4066725
  26. Y. Wang, M. Li, R. Wang, G. Hou, W. Chang, Design and optimization of driving motor cooling water pipeline structure based on a comprehensive evaluation method and CNN-PSO, e-Prime-Advances in Electrical Engineering, Electronics and Energy 3 (2023) 100125. https://doi.org/10.1016/j.prime.2023.100125
  27. S. Fu, H. Qin, Optimization of Thermoelectric Module Configuration and Cooling Performance in Thermoelectric-Based Battery Thermal Management System, World Electric Vehicle Journal 16(7) (2025) 344. https://doi.org/10.3390/wevj16070344
  28. M. Ranta, M. Hinkkanen, E. Dlala, A.-K. Repo, J. Luomi, Inclusion of hysteresis and eddy current losses in dynamic induction machine models, 2009 IEEE International Electric Machines and Drives Conference, IEEE, 2009, pp. 1387-1392. https://doi.org/10.1109/IEMDC.2009.5075384
  29. G. Bertotti, Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations, Journal of applied Physics 57(6) (1985) 2110-2117. https://doi.org/10.1063/1.334404