Main Article Content
Abstract
Outer rotor in-wheel motors face critical thermal management challenges due to constrained heat dissipation within wheel hubs, limiting their application in electric vehicles. This study addresses the research gap of inadequate cooling solutions for high-power-density motors by developing an innovative double-helix oil cooling system through multi-physics coupling optimization. The proposed framework integrates MotorCAD-Maxwell-Ansys platforms to simultaneously analyze electromagnetic losses, thermal conduction, and fluid dynamics. Key findings demonstrate that the optimized double-helix configuration achieves 28% heat dissipation efficiency enhancement, 17% temperature uniformity improvement, and 5°C peak temperature reduction compared to conventional single-channel systems, while maintaining an acceptable 15% pressure drop penalty. Experimental validation confirms 96.9% correlation with simulation results. This research provides practical thermal management solutions crucial for advancing electric vehicle motor technology.
Keywords
Article Details
References
- S. Lei, S. Xin, S. Liu, Separate and integrated thermal management solutions for electric vehicles: A review, Journal of Power Sources 550 (2022) 232133. https://doi.org/10.1016/j.jpowsour.2022.232133
- I. Ušakovs, D. Mishkinis, I.A. Galkin, A. Bubovich, A. Podgornovs, Experimental thermal characterization of the in-wheel electric motor with loop heat pipe thermal management system, Case Studies in Thermal Engineering 47 (2023) 103069. https://doi.org/10.1016/j.csite.2023.103069
- X. Wang, B. Li, D. Gerada, K. Huang, I. Stone, S. Worrall, Y. Yan, A critical review on thermal management technologies for motors in electric cars, Applied thermal engineering 201 (2022) 117758. https://doi.org/10.1016/j.applthermaleng.2021.117758
- S.K. Chawrasia, A. Das, C.K. Chanda, In-wheel motor design with thermal and mechanical model analysis for electric bikes, International Journal of Performability Engineering 18(9) (2022) 613. https://doi.org/10.23940/ijpe.22.09.p2.613625
- E. Gundabattini, R. Kuppan, D.G. Solomon, A. Kalam, D. Kothari, R.A. Bakar, A review on methods of finding losses and cooling methods to increase efficiency of electric machines, Ain Shams Engineering Journal 12(1) (2021) 497-505. https://doi.org/10.1016/j.asej.2020.08.014
- J. Park, J. An, K. Han, H.-S. Choi, I.S. Park, Enhancement of cooling performance in traction motor of electric vehicle using direct slot cooling method, Applied Thermal Engineering 217 (2022) 119082. https://doi.org/10.1016/j.applthermaleng.2022.119082
- P.-O. Gronwald, T.A. Kern, Traction motor cooling systems: A literature review and comparative study, IEEE transactions on transportation electrification 7(4) (2021) 2892-2913. https://doi.org/10.1109/TTE.2021.3075844
- M. Chang, B. Lai, H. Wang, J. Bai, Z. Mao, Comprehensive efficiency analysis of air-cooled vs water-cooled electric motor for unmanned aerial vehicle, Applied Thermal Engineering 225 (2023) 120226. https://doi.org/10.1016/j.applthermaleng.2023.120226
- C. Guo, L. Long, Y. Wu, K. Xu, H. Ye, Electromagnetic-thermal coupling analysis of a permanent-magnet in-wheel motor with cooling channels in the deepened stator slots, Case Studies in Thermal Engineering 35 (2022) 102158. https://doi.org/10.1016/j.csite.2022.102158
- K.S. Garud, M.-Y. Lee, Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor, International Journal of Heat and Mass Transfer 201 (2023) 123596. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123596
- Y. Li, Q. Li, T. Fan, X. Wen, Heat dissipation design of end winding of permanent magnet synchronous motor for electric vehicle, Energy Reports 9 (2023) 282-288. https://doi.org/10.1016/j.egyr.2022.10.416
- N.G. Han, H.L. Lee, R.H. Kim, T.Y. Beom, Y.K. Kim, T.W. Ha, S.W. Lee, D.K. Kim, Thermal analysis of the oil cooling motor according to the churning phenomenon, Applied Thermal Engineering 220 (2023) 119791. https://doi.org/10.1016/j.applthermaleng.2022.119791
- P. Chen, N.B. Hassine, S. Ouenzerfi, S. Harmand, Experimental and numerical study of stator end-winding cooling with impinging oil jet, Applied Thermal Engineering 220 (2023) 119702. https://doi.org/10.1016/j.applthermaleng.2022.119702
- X. Wang, B. Li, K. Huang, Y. Yan, I. Stone, S. Worrall, Experimental investigation on end winding thermal management with oil spray in electric vehicles, Case studies in thermal engineering 35 (2022) 102082. https://doi.org/10.1016/j.csite.2022.102082
- L. Gao, X. Liu, H. Liu, Analytical Calculation of Magnetic Field and Temperature Field of Surface Mounted Permanent Magnet Synchronous Motor, Journal of Electrical Engineering & Technology (2024) 1-14. https://doi.org/10.1007/s42835-024-02108-y
- A. Tikadar, D. Johnston, N. Kumar, Y. Joshi, S. Kumar, Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors, Applied Thermal Engineering 183 (2021) 116182. https://doi.org/10.1016/j.applthermaleng.2020.116182
- M.H. Park, S.C. Kim, Development and validation of lumped parameter thermal network model on rotational oil spray cooled motor for electric vehicles, Applied Thermal Engineering 225 (2023) 120176. https://doi.org/10.1016/j.applthermaleng.2023.120176
- Y. Yan, C. Mao, L. Chen, Multi-physical Field Coupling Analysis of Flat Wire Motor, International Journal of Automotive Technology 26(2) (2025) 475-489. https://doi.org/10.1007/s12239-024-00155-y
- T. Sciberras, M. Demicoli, I. Grech, B. Mallia, P. Mollicone, N. Sammut, Thermo-mechanical fluid–structure interaction numerical modelling and experimental validation of MEMS electrothermal actuators for aqueous biomedical applications, Micromachines 14(6) (2023) 1264. https://doi.org/10.3390/mi14061264
- M. Popescu, D.G. Dorrell, L. Alberti, N. Bianchi, D.A. Staton, D. Hawkins, Thermal analysis of duplex three-phase induction motor under fault operating conditions, IEEE Transactions on Industry Applications 49(4) (2013) 1523-1530. https://doi.org/10.1109/TIA.2013.2258392
- A. Ansaldi, Integrated drive for high-power alternating bidirectional electric vehicles charging: the EMC issuers, simulations, design and tests, Politecnico di Torino, 2024. http://webthesis.biblio.polito.it/id/eprint/31477
- C. Kim, W. Sim, J. Yoon, T. Lee, J. Yoo, Numerical and experimental analysis of a dual-channel electric motor housing cooling system, Applied Thermal Engineering 265 (2025) 125537. https://doi.org/10.1016/j.applthermaleng.2025.125537
- M. Khoshvaght-Aliabadi, A. Feizabadi, Compound heat transfer enhancement of helical channel with corrugated wall structure, International Journal of Heat and Mass Transfer 146 (2020) 118858. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118858
- D. Anders, U. Reinicke, M. Baum, Analysis of heat transfer enhancement due to helical static mixing elements inside cooling channels in machine tools, The International Journal of Advanced Manufacturing Technology 127(5) (2023) 2273-2285. https://doi.org/10.1007/s00170-023-11501-2
- L. Zhou, S. Li, A. Jain, G. Sun, G. Chen, D. Guo, J. Kang, Y. Zhao, Optimization of thermal non-uniformity challenges in liquid-cooled lithium-ion battery packs using NSGA-II, Journal of Electrochemical Energy Conversion and Storage 22(4) (2025). https://doi.org/10.1115/1.4066725
- Y. Wang, M. Li, R. Wang, G. Hou, W. Chang, Design and optimization of driving motor cooling water pipeline structure based on a comprehensive evaluation method and CNN-PSO, e-Prime-Advances in Electrical Engineering, Electronics and Energy 3 (2023) 100125. https://doi.org/10.1016/j.prime.2023.100125
- S. Fu, H. Qin, Optimization of Thermoelectric Module Configuration and Cooling Performance in Thermoelectric-Based Battery Thermal Management System, World Electric Vehicle Journal 16(7) (2025) 344. https://doi.org/10.3390/wevj16070344
- M. Ranta, M. Hinkkanen, E. Dlala, A.-K. Repo, J. Luomi, Inclusion of hysteresis and eddy current losses in dynamic induction machine models, 2009 IEEE International Electric Machines and Drives Conference, IEEE, 2009, pp. 1387-1392. https://doi.org/10.1109/IEMDC.2009.5075384
- G. Bertotti, Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations, Journal of applied Physics 57(6) (1985) 2110-2117. https://doi.org/10.1063/1.334404
References
S. Lei, S. Xin, S. Liu, Separate and integrated thermal management solutions for electric vehicles: A review, Journal of Power Sources 550 (2022) 232133. https://doi.org/10.1016/j.jpowsour.2022.232133
I. Ušakovs, D. Mishkinis, I.A. Galkin, A. Bubovich, A. Podgornovs, Experimental thermal characterization of the in-wheel electric motor with loop heat pipe thermal management system, Case Studies in Thermal Engineering 47 (2023) 103069. https://doi.org/10.1016/j.csite.2023.103069
X. Wang, B. Li, D. Gerada, K. Huang, I. Stone, S. Worrall, Y. Yan, A critical review on thermal management technologies for motors in electric cars, Applied thermal engineering 201 (2022) 117758. https://doi.org/10.1016/j.applthermaleng.2021.117758
S.K. Chawrasia, A. Das, C.K. Chanda, In-wheel motor design with thermal and mechanical model analysis for electric bikes, International Journal of Performability Engineering 18(9) (2022) 613. https://doi.org/10.23940/ijpe.22.09.p2.613625
E. Gundabattini, R. Kuppan, D.G. Solomon, A. Kalam, D. Kothari, R.A. Bakar, A review on methods of finding losses and cooling methods to increase efficiency of electric machines, Ain Shams Engineering Journal 12(1) (2021) 497-505. https://doi.org/10.1016/j.asej.2020.08.014
J. Park, J. An, K. Han, H.-S. Choi, I.S. Park, Enhancement of cooling performance in traction motor of electric vehicle using direct slot cooling method, Applied Thermal Engineering 217 (2022) 119082. https://doi.org/10.1016/j.applthermaleng.2022.119082
P.-O. Gronwald, T.A. Kern, Traction motor cooling systems: A literature review and comparative study, IEEE transactions on transportation electrification 7(4) (2021) 2892-2913. https://doi.org/10.1109/TTE.2021.3075844
M. Chang, B. Lai, H. Wang, J. Bai, Z. Mao, Comprehensive efficiency analysis of air-cooled vs water-cooled electric motor for unmanned aerial vehicle, Applied Thermal Engineering 225 (2023) 120226. https://doi.org/10.1016/j.applthermaleng.2023.120226
C. Guo, L. Long, Y. Wu, K. Xu, H. Ye, Electromagnetic-thermal coupling analysis of a permanent-magnet in-wheel motor with cooling channels in the deepened stator slots, Case Studies in Thermal Engineering 35 (2022) 102158. https://doi.org/10.1016/j.csite.2022.102158
K.S. Garud, M.-Y. Lee, Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor, International Journal of Heat and Mass Transfer 201 (2023) 123596. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123596
Y. Li, Q. Li, T. Fan, X. Wen, Heat dissipation design of end winding of permanent magnet synchronous motor for electric vehicle, Energy Reports 9 (2023) 282-288. https://doi.org/10.1016/j.egyr.2022.10.416
N.G. Han, H.L. Lee, R.H. Kim, T.Y. Beom, Y.K. Kim, T.W. Ha, S.W. Lee, D.K. Kim, Thermal analysis of the oil cooling motor according to the churning phenomenon, Applied Thermal Engineering 220 (2023) 119791. https://doi.org/10.1016/j.applthermaleng.2022.119791
P. Chen, N.B. Hassine, S. Ouenzerfi, S. Harmand, Experimental and numerical study of stator end-winding cooling with impinging oil jet, Applied Thermal Engineering 220 (2023) 119702. https://doi.org/10.1016/j.applthermaleng.2022.119702
X. Wang, B. Li, K. Huang, Y. Yan, I. Stone, S. Worrall, Experimental investigation on end winding thermal management with oil spray in electric vehicles, Case studies in thermal engineering 35 (2022) 102082. https://doi.org/10.1016/j.csite.2022.102082
L. Gao, X. Liu, H. Liu, Analytical Calculation of Magnetic Field and Temperature Field of Surface Mounted Permanent Magnet Synchronous Motor, Journal of Electrical Engineering & Technology (2024) 1-14. https://doi.org/10.1007/s42835-024-02108-y
A. Tikadar, D. Johnston, N. Kumar, Y. Joshi, S. Kumar, Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors, Applied Thermal Engineering 183 (2021) 116182. https://doi.org/10.1016/j.applthermaleng.2020.116182
M.H. Park, S.C. Kim, Development and validation of lumped parameter thermal network model on rotational oil spray cooled motor for electric vehicles, Applied Thermal Engineering 225 (2023) 120176. https://doi.org/10.1016/j.applthermaleng.2023.120176
Y. Yan, C. Mao, L. Chen, Multi-physical Field Coupling Analysis of Flat Wire Motor, International Journal of Automotive Technology 26(2) (2025) 475-489. https://doi.org/10.1007/s12239-024-00155-y
T. Sciberras, M. Demicoli, I. Grech, B. Mallia, P. Mollicone, N. Sammut, Thermo-mechanical fluid–structure interaction numerical modelling and experimental validation of MEMS electrothermal actuators for aqueous biomedical applications, Micromachines 14(6) (2023) 1264. https://doi.org/10.3390/mi14061264
M. Popescu, D.G. Dorrell, L. Alberti, N. Bianchi, D.A. Staton, D. Hawkins, Thermal analysis of duplex three-phase induction motor under fault operating conditions, IEEE Transactions on Industry Applications 49(4) (2013) 1523-1530. https://doi.org/10.1109/TIA.2013.2258392
A. Ansaldi, Integrated drive for high-power alternating bidirectional electric vehicles charging: the EMC issuers, simulations, design and tests, Politecnico di Torino, 2024. http://webthesis.biblio.polito.it/id/eprint/31477
C. Kim, W. Sim, J. Yoon, T. Lee, J. Yoo, Numerical and experimental analysis of a dual-channel electric motor housing cooling system, Applied Thermal Engineering 265 (2025) 125537. https://doi.org/10.1016/j.applthermaleng.2025.125537
M. Khoshvaght-Aliabadi, A. Feizabadi, Compound heat transfer enhancement of helical channel with corrugated wall structure, International Journal of Heat and Mass Transfer 146 (2020) 118858. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118858
D. Anders, U. Reinicke, M. Baum, Analysis of heat transfer enhancement due to helical static mixing elements inside cooling channels in machine tools, The International Journal of Advanced Manufacturing Technology 127(5) (2023) 2273-2285. https://doi.org/10.1007/s00170-023-11501-2
L. Zhou, S. Li, A. Jain, G. Sun, G. Chen, D. Guo, J. Kang, Y. Zhao, Optimization of thermal non-uniformity challenges in liquid-cooled lithium-ion battery packs using NSGA-II, Journal of Electrochemical Energy Conversion and Storage 22(4) (2025). https://doi.org/10.1115/1.4066725
Y. Wang, M. Li, R. Wang, G. Hou, W. Chang, Design and optimization of driving motor cooling water pipeline structure based on a comprehensive evaluation method and CNN-PSO, e-Prime-Advances in Electrical Engineering, Electronics and Energy 3 (2023) 100125. https://doi.org/10.1016/j.prime.2023.100125
S. Fu, H. Qin, Optimization of Thermoelectric Module Configuration and Cooling Performance in Thermoelectric-Based Battery Thermal Management System, World Electric Vehicle Journal 16(7) (2025) 344. https://doi.org/10.3390/wevj16070344
M. Ranta, M. Hinkkanen, E. Dlala, A.-K. Repo, J. Luomi, Inclusion of hysteresis and eddy current losses in dynamic induction machine models, 2009 IEEE International Electric Machines and Drives Conference, IEEE, 2009, pp. 1387-1392. https://doi.org/10.1109/IEMDC.2009.5075384
G. Bertotti, Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations, Journal of applied Physics 57(6) (1985) 2110-2117. https://doi.org/10.1063/1.334404