Main Article Content

Abstract

The rapid development of autonomous vehicles (AVs) has intensified the demand for advanced strategies to guarantee crash safety in increasingly complex traffic environments. Traditional design methods, reliant on physical crash tests and limited empirical data, are insufficient to capture the full spectrum of biomechanical responses during collisions. This systematic review synthesizes recent advances in the integration of big data analytics and simulation technologies for optimizing collision safety, with a particular focus on biomechanical modeling. Big data enables the large-scale collection and analysis of heterogeneous data sources—including vehicle sensors, physiological signals, and traffic dynamics—supporting the construction of high-fidelity injury prediction models. Simulation methods, such as finite element analysis (FEA), multi-body dynamics (MBD), and parametric optimization, facilitate precise evaluation of occupant kinematics, stress distributions, and tissue-level injury mechanisms. Furthermore, emerging applications of machine learning, digital twin systems, and biomimetic design demonstrate substantial potential for improving active and passive safety. This review highlights the synergistic role of biomechanics, data science, and simulation technologies in shaping the next generation of collision protection systems. Finally, it identifies key challenges—including data privacy, model accuracy, and computational efficiency—and proposes future directions toward multi-scale biomechanical modeling, AI-driven optimization, and cross-disciplinary integration for safer and more adaptive autonomous driving systems.

Keywords

Autonomous vehicles Collision safety Biomechanics Big data Simulation technology Optimization design Machine learning

Article Details

How to Cite
Sun, L. (2025). Innovative applications of big data and simulation technologies in the optimization design of crash safety for autonomous vehicles: a systematic review from a biomechanical aspect. Future Technology, 4(4), 311–317. Retrieved from https://fupubco.com/futech/article/view/520
Bookmark and Share

References

  1. Pomerleau, D. A. (1988). ALVINN: An autonomous land vehicle in a neural network. Advances in Neural Information Processing Systems, 1. DOI: not found
  2. Yang, T., Murguia, C., Nesi, D., & Yuen, C. (2024). Towards crash-free autonomous driving: Anomaly detection and control for resilience to stealthy sensor attacks. IEEE Internet of Things Journal, 12(1). DOI: 10.1109/JIOT.2024.3459590
  3. Lee, S., Lee, S., Seong, H., Hyun, J., & Kim, E. (2023). Fallen person detection for autonomous driving. Expert Systems with Applications, 213, 119242. DOI: 10.1016/j.eswa.2022.119242.
  4. Wang, Y., Jiang, Y., Wu, Y., & Yao, Z. (2023). Mitigating traffic oscillation through control of connected automated vehicles: A cellular automata simulation. Expert Systems with Applications, 235, 121275. DOI: 10.1016/j.eswa.2023.121275.
  5. Chekired, D. A., Togou, M. A., Khoukhi, L., & Ksentini, A. (2019). 5G-slicing-enabled scalable SDN core network: Toward an ultra-low latency of autonomous driving service. IEEE Journal on Selected Areas in Communications, 37(8), 1769–1782. DOI: 10.1109/JSAC.2019.2927065
  6. Massa, F., Bonamini, L., Settimi, A., Pallottino, L., & Caporale, D. (2020). LiDAR-based GNSS-denied localization for autonomous racing cars. Sensors, 20(14), 3992. DOI: 10.3390/s20143992
  7. Deilamsalehy, H., & Havens, T. C. (2016). Sensor fused three-dimensional localization using IMU, camera and LiDAR. IEEE SENSORS (Orlando). DOI: 10.1109/ICSENS.2016.7808523
  8. Hess, W., Kohler, D., Rapp, H., & Andor, D. (2016). Real-time loop closure in 2D LiDAR SLAM. ICRA 2016, 1271–1278. DOI: 10.1109/ICRA.2016.7487258.
  9. P. Agrawal, A. Iqbal, B. Russell, M. K. Hazrati, V. Kashyap and F. Akhbari, "PCE-SLAM: A real-time simultaneous localization and mapping using LiDAR data," 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 2017, pp. 1752-1757, doi: 10.1109/IVS.2017.7995960.
  10. Shi, A., Tao, Z., Xinming, Z., & Jian, W. (2014). Unrecorded accidents detection on highways based on temporal data mining. Mathematical Problems in Engineering, 2014, 852495. DOI: 10.1155/2014/852495.
  11. Xie, K., Ozbay, K., Kurkcu, A., & Yang, H. (2017). Analysis of traffic crashes involving pedestrians using big data: Investigation of contributing factors and identification of hotspots. Risk Analysis, 37(8), 1459–1476. DOI: 10.1111/risa.12751.
  12. Zhuang, Y., Dong, C., Li, P., & Xu, B. (2024). Identifying spatio-temporal pattern of electric vehicles involved traffic accidents. Journal of Transportation Safety & Security, 16(12), 1448–1468. DOI: 10.1080/19439962.2024.2342478
  13. Abeyratne, D., & Halgamuge, M. N. (2023). Applying big data analytics on motor vehicle collision predictions in New York City. (Book chapter). DOI: 10.1002/9781119544487.ch11
  14. Zhou, Z. (2024). Applied mathematics and nonlinear sciences. Sciences, 9(1), 1-18. DOI: 10.2478/amns.2023.2.00338
  15. Losada, Á., Páez, F. J., Luque, F., & Piovano, L. (2022). Application of machine learning techniques for predicting potential vehicle-to-pedestrian collisions in virtual reality scenarios. Applied Sciences, 12(22), 11364. DOI: 10.3390/app122211364.
  16. Iftikhar, S., Zhang, Z., Asim, M., Muthanna, A., Koucheryavy, A., & Abd El-Latif, A. A. (2022). Deep learning-based pedestrian detection in autonomous vehicles: Substantial issues and challenges. Electronics, 11(21), 3551. DOI: 10.3390/electronics11213551.
  17. Zhang, Y., Zhang, D., & Jiang, H. (2023). A review of artificial intelligence-based optimization applications in traditional active maritime collision avoidance. Sustainability, 15(18), 13384. DOI: 10.3390/su151813384
  18. Papathanasopoulou, V., Spyropoulou, I., Perakis, H., Gikas, V., & Andrikopoulou, E. (2021). Classification of pedestrian behavior using real trajectory data. MT-ITS 2021, 1–6. DOI: 10.1109/MT-ITS49943.2021.9529266.
  19. Chen, M., Zhan, X., Tu, J., & Liu, M. (2019). Vehicle-localization-based and DSRC-based autonomous vehicle rear-end collision avoidance concerning measurement uncertainties. IEEJ Transactions on Electrical and Electronic Engineering, 14(9), 1348–1358. DOI: 10.1002/tee.22936.
  20. Chen, Z., Ngai, D. C. K., & Yung, N. H. C. (2008). Pedestrian behavior prediction based on motion patterns for vehicle-to-pedestrian collision avoidance. ITSC 2008, 316–321. DOI: 10.1109/ITSC.2008.4732782.
  21. Santos-Cuadros, S., Page del Pozo, Á., Álvarez-Caldas, C., & San Román García, J. L. (2024). Kinematic analysis of an unrestrained passenger in an autonomous vehicle during emergency braking. Frontiers in Bioengineering and Biotechnology, 12, 1270181. DOI: 10.3389/fbioe.2024.1270181.
  22. Xu, C., Gao, J., Zuo, F., & Ozbay, K. (2024). Estimating urban traffic safety and analyzing spatial patterns through the integration of city-wide near-miss data: A New York City case study. Applied Sciences, 14(14), 6378. DOI: 10.3390/app14146378.
  23. Zhang, C., He, J., Wang, H., Ye, Y., Yan, X., Wang, C., & Zhang, X. (2024). A systematic review of the application and prospect of road accident blackspots identification approaches. Transportation Letters. DOI: 10.1080/19427867.2024.2416304
  24. Ugurel, E., Wu, X., Wang, R., Lee, B. H. Y., & Chen, C. (2024). Metropolitan Planning Organizations’ uses of and needs for big data. Findings. DOI: 10.32866/001c.127143.
  25. Gálvez-Pérez, D., Guirao, B., & Ortuño, A. (2024). Analysis of the elderly pedestrian traffic accidents in urban scenarios: The case of the Spanish municipalities. International Journal of Injury Control and Safety Promotion, 31(3), 376–395. DOI: 10.1080/17457300.2024.2335482.
  26. Völz, B., Mielenz, H., Agamennoni, G., & Siegwart, R. (2015). Feature relevance estimation for learning pedestrian behavior at crosswalks. ITSC 2015, 854–860. DOI: 10.1109/ITSC.2015.7323382.
  27. Schratter, M., Bouton, M., Kochenderfer, M. J., & Watzenig, D. (2019). Pedestrian collision avoidance system for scenarios with occlusions. IEEE Intelligent Vehicles Symposium (IV), 1054–1060. DOI: 10.1109/IVS.2019.8813822.
  28. Badhon, F. A., Chowdhury, S. S., Haque, T., Rahman, S., Raihan, M. A., Hossain, M., & Al Mamun, M. A. (2023). Risk perception of vehicle-to-vehicle vendors and general pedestrians: A comparative study. Transportation Research Record. DOI: 10.1177/03611981231182927
  29. De Winter, J., van Leeuwen, P. M., & Happee, R. (2012). Advantages and disadvantages of driving simulators: A discussion. Measuring Behavior 2012 (conference). DOI: not found
  30. León-Domínguez, U., Solís-Marcos, I., Barrio-Álvarez, E., Barroso, Y., Martín, J. M., & León-Carrión, J. (2017). Safe driving and executive functions in healthy middle-aged drivers. Applied Neuropsychology: Adult, 24(5), 395–403. DOI: 10.1080/23279095.2015.1137296.