Main Article Content

Abstract

Accurate cycle-time forecasting remains a persistent challenge in semiconductor wafer fabrication due to highly dynamic, multivariate process conditions. This study proposes an optimized Hierarchical Transfer Learning with Hyperparameter Optimization (HTL-HPO) framework that integrates cross-fab knowledge transfer with Bayesian Tree-Structured Parzen Estimator–based optimization to improve predictive precision and generalization. The methodology involves hierarchical pretraining on source fabs, Maximum-Mean-Discrepancy–driven domain alignment, and probabilistic hyperparameter tuning for fine-grained adaptation to target lines. Using a real industrial multivariate dataset, the model’s performance was benchmarked against established baselines—Decision Tree, GRU, and LSTM—under consistent experimental protocols. The proposed approach achieved the lowest forecasting error (MSE = 0.006; RMSE = 0.079) and the highest explanatory power (R² = 0.934; Explained Variance = 0.938), with paired t-tests (p < 0.05) confirming statistically significant gains. Results reveal that hierarchical knowledge reuse and Bayesian optimization jointly enhance model stability, convergence speed, and robustness under noise and domain shifts. The findings underscore substantial operational implications for predictive scheduling, resource allocation, and sustainable production within smart-fab ecosystems. Overall, HTL-HPO offers a scalable, interpretable, and deployment-ready framework for next-generation intelligent manufacturing.

Keywords

Cycle-time forecasting Semiconductor manufacturing Hierarchical transfer learning Bayesian optimization Intelligent manufacturing

Article Details

How to Cite
Kumar, K. A. ., & Hemachandran , K. (2025). Optimized cycle time forecasting in semiconductor wafer fabrication via hierarchical transfer learning and hyperparameter optimization. Future Technology, 5(1), 55–64. Retrieved from https://fupubco.com/futech/article/view/534
Bookmark and Share

References

  1. Wang, J., Gao, P., Zheng, P., Zhang, J., & Ip, W. H. (2021). A fuzzy hierarchical reinforcement learning based scheduling method for semiconductor wafer manufacturing systems. Journal of Manufacturing Systems, 61, 239-248. https://doi.org/10.1016/j.jmsy.2021.08.008
  2. Leray, P., & De Gendt, S. (2024). Exploring Machine Learning for Semiconductor Process Optimization: A SystematiclReview.
  3. Chen, Y. L., Sacchi, S., Dey, B., Blanco, V., Halder, S., Leray, P., & De Gendt, S. (2024). Exploring machine learning for semiconductor process optimization: a systematic review. IEEE Transactions on Artificial Intelligence. DOI: 10.36227/techrxiv.172114788.85190557/v1
  4. Gentner, N., 2023. Enhancing Scalability of Deep Learning Based Approaches in Semiconductor Manufacturing.
  5. Rashidi, E., Bhuiyan, T. H., & Mason, S. J. (2024). Production planning for semiconductor manufacturing under demand and yield uncertainty. Computers & Industrial Engineering, 196, 110403. https://doi.org/10.1016/j.cie.2024.110403
  6. Taha, K. (2023). Machine Learning Techniques for Identifying the Defective Patterns in Semiconductor Wafer Maps: A Survey, Empirical, and Experimental Evaluations. https://doi.org/10.1007/s10845-024-02521-0
  7. Huang, A. C., Meng, S. H., & Huang, T. J. (2023). A survey on machine and deep learning in semiconductor industry: methods, opportunities, and challenges. Cluster Computing, 26(6), 3437-3472. https://doi.org/10.1007/s10586-023-04115-6
  8. Umamahesh Ritty, N., 2023. Predicting product characteristics using neural networks (Master's thesis, UniversityiofiTwente).
  9. Xu, H. W., Zhang, Q. H., Sun, Y. N., Chen, Q. L., Qin, W., Lv, Y. L., & Zhang, J. (2024). A fast ramp-up framework for wafer yield improvement in semiconductor manufacturing systems. Journal of Manufacturing Systems, 76,p222-233. https://doi.org/10.1016/j.jmsy.2024.07.001
  10. Shahroz, M., Ali, M., Tahir, A., Gongora, H. F., Rios, C. U., Samad, M. A., & Ashraf, I. (2024). Hierarchical Attention Module-Based Hotspot Detection in Wafer Fabrication Using Convolutional Neural Network Model. IEEEiAccess. DOI: 10.1109/ACCESS.2024.3422616
  11. Lee, Y. H., & Lee, S. (2022). Deep reinforcement learning based scheduling within production plan in semiconductorPfabrication. ExpertPSystemsPwithPApplications, 191,p116222.https://doi.org/10.1016/j.eswa.2021.116222
  12. Adaloudis, M. (2024). Remaining Useful Lifetime (RUL) Estimation for Predictive Maintenance in SemiconductoriManufacturing.
  13. Espadinha-Cruz, P., Godina, R., & Rodrigues, E. M. (2021). A review of data mining applications in semiconductor-manufacturing. Processes, 9(2),p305. https://doi.org/10.3390/pr9020305
  14. Xia, B., Tian, T., Gao, Y., Zhang, M., & Peng, Y. (2022). A Dynamic Dispatching Method for Large Scale Interbay Material Handling Systems of Semiconductor FAB. Sustainability, 14(21), 13882. https://doi.org/10.3390/su142113882
  15. Yoon, H., & Kim, H. (2024). Few-Shot Classification of Wafer Bin Maps Using Transfer Learning and Ensemble Learning. Journal of Manufacturing Science and Engineering, 146, 070903-1. https://doi.org/10.1115/1.4065255
  16. Jaiswal, R. (2023). Machine learning based prediction models for silicon heterojunction solar cell optimization (Doctoral dissertation, The University of New Mexico).
  17. Doinychko, A. (2023). Multiview Learning with Missing Views and Learning Solutions for Cross-Process Modeling in Semiconductor Manufacturing Industry (Doctoral dissertation, Université Grenoble Alpes. HAL Id : tel-04142555 , version 2
  18. Piedrafita Acin, V. M. (2023). Forecasting inventory demand for a semiconductor manufacturer: a case study using machine learning and other methods applied to time series data. https://urn.fi/URN:NBN:fi:amk-2023121737970
  19. Chien, C. F., Hung, W. T., & Liao, E. T. Y. (2022). Redefining monitoring rules for intelligent fault detection and classification via CNN transfer learning for smart manufacturing. IEEE Transactions on Semiconductor Manufacturing, 35(2), 158-165. DOI: 10.1109/TSM.2022.3164904
  20. Maitra, V., Su, Y., & Shi, J. (2024). Virtual metrology in semiconductor manufacturing: Current status and future prospects. Expert Systems with Applications, 123559. https://doi.org/10.1016/j.eswa.2024.123559
  21. Yang, Y., Bom, S., & Shen, X. (2024). A hierarchical ensemble causal structure learning approach for wafer manufacturing. Journal of Intelligent Manufacturing, 35(6), 2961-2978. https://doi.org/10.1007/s10845-023-02188-z
  22. Bardossy, A., & Duckstein, L. (2022). Fuzzy rule-based modeling with applications to geophysical, biological,PandPengineeringPsystemsPCRCPpress. https://doi.org/10.1201/9780138755133
  23. Wang, Y. C., Chen, T., & Hsu, T. C. (2021). A fuzzy deep predictive analytics approach for enhancing cycle time range estimation precision in wafer fabrication. Decision Analytics Journal, 1, 100010. https://doi.org/10.1016/j.dajour.2021.100010
  24. Alizadeh, M., & Ma, J. (2021). A comparative study of series hybrid approaches to model and predict the vehiclePoperatingPstates. ComputersP&PIndustrialPEngineering, 162,p107770. https://doi.org/10.1016/j.cie.2021.107770
  25. Patel, T., Murugan, R., Yenduri, G., Jhaveri, R., Snoussi, H., & Gaber, T. (2024). Demystifying Defects: Federated Learning and Explainable AI for Semiconductor Fault Detection. IEEE Access. DOI: 10.1109/ACCESS.2024.3425226
  26. Tin, T. C., Tan, S. C., & Lee, C. K. (2022). Virtual metrology in semiconductor fabrication foundry using deepPlearningPneuralPnetworks.pIEEEPAccess,p10,p81960-81973. DOI: 10.1109/ACCESS.2022.3193783
  27. Lee, G. M., & Gao, X. (2021). A hybrid approach combining fuzzy C means based genetic algorithm and machine learning for predicting job cycle times for semiconductor manufacturing. Applied Sciences, 11(16), 7428. https://doi.org/10.3390/app11167428
  28. Wang, J., Gao, P., Li, Z., & Bai, W. (2021). Hierarchical Transfer Learning for Cycle Time Forecasting for Semiconductor Wafer Lot under Different Work in Process Levels. Mathematics, 9(17), 2039. https://doi.org/10.3390/math9172039
  29. Schelthoff, K., Jacobi, C., Schlosser, E., Plohmann, D., Janus, M., & Furmans, K. (2022). Feature Selection for Waiting Time Predictions in Semiconductor Wafer Fabs. IEEE Transactions on Semiconductor Manufacturing, 35(3),546-555. DOI: 10.1109/TSM.2022.3182855
  30. Tchatchoua, P., Graton, G., Ouladsine, M., & Christaud, J. F. (2023). Application of 1D ResNet for Multivariate Fault Detection on Semiconductor Manufacturing Equipment. Sensors, 23(22), 9099. https://doi.org/10.3390/s23229099