Main Article Content
Abstract
The intensification of global agriculture demands precise and sustainable pest management strategies, as indiscriminate pesticide application continues to cause environmental degradation and reduce crop resilience. Existing approaches often rely on unimodal sensing or static rule-based spraying, which fail to capture the heterogeneous and dynamic nature of crop-pest-environment interactions. To address this limitation, we propose a multi-source field sensor data fusion framework that combines a cross-modal attention mechanism with a reinforcement learning-driven model for optimizing pesticide applications. The method integrates Unmanned Aerial Vehicle (UAV) hyperspectral imagery, soil and weather sensors, and pest monitoring signals through adaptive attention, encodes temporal dynamics with recurrent structures, and optimizes spraying actions via a PPO-based policy network. Experiments across rice, maize, and soybean datasets demonstrate superior performance, achieving the lowest RMSE (0.162), highest spray precision (88.3%), and notable pesticide reduction (18.3%) compared with state-of-the-art baselines. These findings highlight the potential of cross-modal AI and adaptive control to advance sustainable crop protection, providing a scalable paradigm for intelligent agriculture.
Keywords
Article Details
References
- Han, L., Wang, Z., & He, X. (2024). Development of an energy-saving PWM driving method for precision pesticide application using adjustable frequency and characterization of spray. Computers and Electronics in Agriculture, 217, 108634. doi: 10.1016/j.compag.2024.108634.
- Sharma, K., & Shivandu, S. K. (2024). Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International, 5, 100292. doi: 10.1016/j.sintl.2024.100292.
- Vashishth, T. K., Sharma, V., Sharma, K. K., Chaudhary, S., Kumar, B., & Panwar, R. (2024). Integration of unmanned aerial vehicles (UAVs) and IoT for crop monitoring and spraying. In Internet of Things applications and technology (pp. 95-117). Auerbach Publications. DOI: 10.1201/9781003458401-7.
- Wang, Y., Zhang, Z., Jia, W., Ou, M., Dong, X., & Dai, S. (2025). A review of environmental sensing technologies for targeted spraying in orchards. Horticulturae, 11(5), 551. DOI: 10.3390/horticulturae11050551.
- Taylor, Ethan, and J. J. Rivera. "Hydrogen fuel cell-powered drone ambulance for the emergency medical services." Future Energy 1.1 (2022): 6-11. DOI: 10.55670/fpll.fuen.1.1.9
- Anandhi, G., & Iyapparaja, M. (2024). Systematic approaches to machine learning models for predicting pesticide toxicity. Heliyon, 10(7). DOI: 10.1016/j.heliyon.2024.e28752.
- Khosravi, M., Jiang, Z., Waite, J. R., Jones, S. E., Pacin, H. T., Singh, A., ... & Sarkar, S. (2025). Optimizing Navigation And Chemical Application in Precision Agriculture With Deep Reinforcement Learning And Conditional Action Tree. Smart Agricultural Technology, 101194. DOI: 10.1016/j.atech.2025.101194.
- Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. DOI: 10.3390/agriculture13081593.
- Ayanlade, T. T., Jones, S. E., Laan, L. V. D., Chattopadhyay, S., Elango, D., Raigne, J., ... & Sarkar, S. (2024). Multi-modal AI for Ultra-Precision Agriculture. In Harnessing Data Science for Sustainable Agriculture and Natural Resource Management (pp. 299-334). Singapore: Springer Nature Singapore. DOI: 10.1007/978-981-97-7762-4_13.
- Anwar, B., Morsey, M. M., Hegazy, I., Fayed, Z. T., & El-Arif, T. (2024). Towards precise agriculture: integrating machine learning techniques for smart farming systems. IEEE Access. DOI: 10.1109/ACCESS.2024.3480868.
- Lu, F., Zhang, B., Hou, Y., Xiong, X., Dong, C., Lu, W., ... & Lv, C. (2025). A Spatiotemporal Attention-Guided Graph Neural Network for Precise Hyperspectral Estimation of Corn Nitrogen Content. Agronomy, 15(5), 1041. DOI: 10.3390/agronomy15051041.
- Wang, X., Yan, F., Li, B., Yu, B., Zhou, X., Tang, X., ... & Lv, C. (2025). A Multimodal Data Fusion and Embedding Attention Mechanism-Based Method for Eggplant Disease Detection. Plants, 14(5), 786. DOI: 10.3390/plants14050786.
- Jácome Galarza, L., Realpe, M., Viñán-Ludeña, M. S., Calderón, M. F., & Jaramillo, S. (2025). AgriTransformer: A Transformer-Based Model with Attention Mechanisms for Enhanced Multimodal Crop Yield Prediction. Electronics, 14(12), 2466. DOI: 10.3390/electronics14122466.
- Xu, D., Li, B., Xi, G., Wang, S., Xu, L., & Ma, J. (2025). A Shooting Distance Adaptive Crop Yield Estimation Method Based on Multi-Modal Fusion. Agronomy, 15(5), 1036. DOI: 10.3390/agronomy15051036.
- Zhao, J., Fan, S., Zhang, B., Wang, A., Zhang, L., & Zhu, Q. (2025). Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery. Agriculture, 15(11), 1223. DOI: 10.3390/agriculture15111223.
- Wang, Q., Zheng, S., Qiu, M., & Hu, D. (2025, February). Detection of pesticide residues by sensor arrays fused from SERS spectra of various substrates combined with deep learning. In Proceedings of the 2025 2nd International Conference on Generative Artificial Intelligence and Information Security (pp. 359-366). DOI: 10.1145/3728725.3728783.
- Akintuyi, O. B. (2024). Adaptive AI in precision agriculture: a review: investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Research Journal of Multidisciplinary Studies, 7(02), 016-030. DOI: 10.53022/oarjms.2024.7.2.0023.
- Aviles Toledo, C., Crawford, M. M., & Tuinstra, M. R. (2024). Integrating multi-modal remote sensing, deep learning, and attention mechanisms for yield prediction in plant breeding experiments. Frontiers in Plant Science, 15, 1408047. DOI: 10.3389/fpls.2024.1408047.
- Yang, Z. X., Li, Y., Wang, R. F., Hu, P., & Su, W. H. (2025). Deep Learning in Multimodal Fusion for Sustainable Plant Care: A Comprehensive Review. Sustainability (2071-1050), 17(12). DOI: 10.3390/su17125255.
- Liu, Z., Li, S., Yang, Y., Jiang, X., Wang, M., Chen, D., ... & Dong, M. (2025). High-Precision Pest Management Based on Multimodal Fusion and Attention-Guided Lightweight Networks. Insects, 16(8), 850. DOI: 10.3390/insects16080850.
- Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Cheng, Q., ... & Ma, Y. (2023). UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision agriculture, 24(1), 187-212. DOI: 10.1007/s11119-022-09938-8.
- Aarif KO, M., Alam, A., & Hotak, Y. (2025). Smart sensor technologies shaping the future of precision agriculture: Recent advances and future outlooks. Journal of Sensors, 2025(1), 2460098. DOI: 10.1155/2025/2460098
- Diao, Z., Guo, P., Zhang, B., Yan, J., He, Z., Zhao, S., ... & Zhang, J. (2023). Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning. Computers and Electronics in Agriculture, 212, 108092. DOI: 10.1016/j.compag.2023.108092.
- Chacón-Maldonado, A. M., Asencio-Cortés, G., & Troncoso, A. (2025). A multimodal hybrid deep learning approach for pest forecasting using time series and satellite images. Information Fusion, 103350. DOI: 10.1016/j.inffus.2025.103350.
- Xu, K., Xie, Q., Zhu, Y., Cao, W., & Ni, J. (2025). Effective Multi-Species weed detection in complex wheat fields using Multi-Modal and Multi-View image fusion. Computers and Electronics in Agriculture, 230, 109924. DOI: 10.1016/j.compag.2025.109924.
References
Han, L., Wang, Z., & He, X. (2024). Development of an energy-saving PWM driving method for precision pesticide application using adjustable frequency and characterization of spray. Computers and Electronics in Agriculture, 217, 108634. doi: 10.1016/j.compag.2024.108634.
Sharma, K., & Shivandu, S. K. (2024). Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International, 5, 100292. doi: 10.1016/j.sintl.2024.100292.
Vashishth, T. K., Sharma, V., Sharma, K. K., Chaudhary, S., Kumar, B., & Panwar, R. (2024). Integration of unmanned aerial vehicles (UAVs) and IoT for crop monitoring and spraying. In Internet of Things applications and technology (pp. 95-117). Auerbach Publications. DOI: 10.1201/9781003458401-7.
Wang, Y., Zhang, Z., Jia, W., Ou, M., Dong, X., & Dai, S. (2025). A review of environmental sensing technologies for targeted spraying in orchards. Horticulturae, 11(5), 551. DOI: 10.3390/horticulturae11050551.
Taylor, Ethan, and J. J. Rivera. "Hydrogen fuel cell-powered drone ambulance for the emergency medical services." Future Energy 1.1 (2022): 6-11. DOI: 10.55670/fpll.fuen.1.1.9
Anandhi, G., & Iyapparaja, M. (2024). Systematic approaches to machine learning models for predicting pesticide toxicity. Heliyon, 10(7). DOI: 10.1016/j.heliyon.2024.e28752.
Khosravi, M., Jiang, Z., Waite, J. R., Jones, S. E., Pacin, H. T., Singh, A., ... & Sarkar, S. (2025). Optimizing Navigation And Chemical Application in Precision Agriculture With Deep Reinforcement Learning And Conditional Action Tree. Smart Agricultural Technology, 101194. DOI: 10.1016/j.atech.2025.101194.
Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. DOI: 10.3390/agriculture13081593.
Ayanlade, T. T., Jones, S. E., Laan, L. V. D., Chattopadhyay, S., Elango, D., Raigne, J., ... & Sarkar, S. (2024). Multi-modal AI for Ultra-Precision Agriculture. In Harnessing Data Science for Sustainable Agriculture and Natural Resource Management (pp. 299-334). Singapore: Springer Nature Singapore. DOI: 10.1007/978-981-97-7762-4_13.
Anwar, B., Morsey, M. M., Hegazy, I., Fayed, Z. T., & El-Arif, T. (2024). Towards precise agriculture: integrating machine learning techniques for smart farming systems. IEEE Access. DOI: 10.1109/ACCESS.2024.3480868.
Lu, F., Zhang, B., Hou, Y., Xiong, X., Dong, C., Lu, W., ... & Lv, C. (2025). A Spatiotemporal Attention-Guided Graph Neural Network for Precise Hyperspectral Estimation of Corn Nitrogen Content. Agronomy, 15(5), 1041. DOI: 10.3390/agronomy15051041.
Wang, X., Yan, F., Li, B., Yu, B., Zhou, X., Tang, X., ... & Lv, C. (2025). A Multimodal Data Fusion and Embedding Attention Mechanism-Based Method for Eggplant Disease Detection. Plants, 14(5), 786. DOI: 10.3390/plants14050786.
Jácome Galarza, L., Realpe, M., Viñán-Ludeña, M. S., Calderón, M. F., & Jaramillo, S. (2025). AgriTransformer: A Transformer-Based Model with Attention Mechanisms for Enhanced Multimodal Crop Yield Prediction. Electronics, 14(12), 2466. DOI: 10.3390/electronics14122466.
Xu, D., Li, B., Xi, G., Wang, S., Xu, L., & Ma, J. (2025). A Shooting Distance Adaptive Crop Yield Estimation Method Based on Multi-Modal Fusion. Agronomy, 15(5), 1036. DOI: 10.3390/agronomy15051036.
Zhao, J., Fan, S., Zhang, B., Wang, A., Zhang, L., & Zhu, Q. (2025). Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery. Agriculture, 15(11), 1223. DOI: 10.3390/agriculture15111223.
Wang, Q., Zheng, S., Qiu, M., & Hu, D. (2025, February). Detection of pesticide residues by sensor arrays fused from SERS spectra of various substrates combined with deep learning. In Proceedings of the 2025 2nd International Conference on Generative Artificial Intelligence and Information Security (pp. 359-366). DOI: 10.1145/3728725.3728783.
Akintuyi, O. B. (2024). Adaptive AI in precision agriculture: a review: investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Research Journal of Multidisciplinary Studies, 7(02), 016-030. DOI: 10.53022/oarjms.2024.7.2.0023.
Aviles Toledo, C., Crawford, M. M., & Tuinstra, M. R. (2024). Integrating multi-modal remote sensing, deep learning, and attention mechanisms for yield prediction in plant breeding experiments. Frontiers in Plant Science, 15, 1408047. DOI: 10.3389/fpls.2024.1408047.
Yang, Z. X., Li, Y., Wang, R. F., Hu, P., & Su, W. H. (2025). Deep Learning in Multimodal Fusion for Sustainable Plant Care: A Comprehensive Review. Sustainability (2071-1050), 17(12). DOI: 10.3390/su17125255.
Liu, Z., Li, S., Yang, Y., Jiang, X., Wang, M., Chen, D., ... & Dong, M. (2025). High-Precision Pest Management Based on Multimodal Fusion and Attention-Guided Lightweight Networks. Insects, 16(8), 850. DOI: 10.3390/insects16080850.
Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Cheng, Q., ... & Ma, Y. (2023). UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision agriculture, 24(1), 187-212. DOI: 10.1007/s11119-022-09938-8.
Aarif KO, M., Alam, A., & Hotak, Y. (2025). Smart sensor technologies shaping the future of precision agriculture: Recent advances and future outlooks. Journal of Sensors, 2025(1), 2460098. DOI: 10.1155/2025/2460098
Diao, Z., Guo, P., Zhang, B., Yan, J., He, Z., Zhao, S., ... & Zhang, J. (2023). Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning. Computers and Electronics in Agriculture, 212, 108092. DOI: 10.1016/j.compag.2023.108092.
Chacón-Maldonado, A. M., Asencio-Cortés, G., & Troncoso, A. (2025). A multimodal hybrid deep learning approach for pest forecasting using time series and satellite images. Information Fusion, 103350. DOI: 10.1016/j.inffus.2025.103350.
Xu, K., Xie, Q., Zhu, Y., Cao, W., & Ni, J. (2025). Effective Multi-Species weed detection in complex wheat fields using Multi-Modal and Multi-View image fusion. Computers and Electronics in Agriculture, 230, 109924. DOI: 10.1016/j.compag.2025.109924.