Main Article Content

Abstract

Solar photovoltaic (PV) panels are a fast-growing solar technology worldwide. However, the PV efficiency is still limited, especially in hot locations due to increased operating temperature. In this research, a PV panel cooled using L-shaped aluminium fins attached passively in various orientations was tested and analyzed compared with another conventional PV under hot Iraqi weather conditions. The average surface temperature reduction, power output augmentation, and electrical efficiency improvement were analyzed and discussed. The research outcomes exhibited positive thermal advancements for the modified PV regardless of fin orientation, with superior performance for the random arrangement. The PV maximum average surface temperature was reduced by 6.5 °C for the random fin arrangement, utilizing the vortices generated from various fin directions. The power output of the modified PV panel was improved over the conventional one by up to 6.54, 10, and 17 W for the vertical, horizontal, and random arrangements, respectively. Besides, the electrical efficiency of the PV with random fin orientation was augmented by 8.6 %, 13.7 % and 23.1 % compared to the vertical, horizontal, and base PVs.

Keywords

Electrical efficiency Fins Heat transfer Passive cooling Photovoltaic (PV)

Article Details

How to Cite
Al-Saedi, D. S. J., Al-Lami, H. ., Al-Furaiji, M. A. ., Hussein, R. A. ., & Al-Yasiri, Q. (2025). Fin orientation effect on passive cooling of photovoltaic panels: an experimental study under extreme hot climate. Future Technology, 5(1), 72–83. Retrieved from https://fupubco.com/futech/article/view/554
Bookmark and Share

References

  1. B. Johansson, “Security aspects of future renewable energy systems–A short overview,” Energy, vol. 61, pp. 598–605, 2013, https://doi.org/10.1016/j.energy.2013.09.023.
  2. Z. Zamanipour, S. K. Thallapelly, and S. M. S. Pirmahalleh, “Advances in the performance of hybrid photovoltaic-thermoelectric generators: a review,” Futur. Technol., vol. 3, no. 4, pp. 1–11, 2024, 10.55670/fpll.futech.3.4.1.
  3. A. Bhatnagar, A. K. Hegde, A. H S, K. V. Karanth, and M. N, “Innovative cooling for PV panels: Energy and exergy assessments of water-induced V-shaped channels,” Results Eng., vol. 24, p. 103100, 2024, https://doi.org/10.1016/j.rineng.2024.103100.
  4. H. A. Kazem, A. A. Al-Waeli, M. T. Chaichan, K. Sopian, A.-A. Ahmed, and W. I. Wan Nor Roslam, “Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review,” Case Stud. Therm. Eng., vol. 49, p. 103316, 2023, https://doi.org/10.1016/j.csite.2023.103316.
  5. M. Arulprakasajothi, L. Karthikeyan, A. Saranya, N. Poyyamozhi, and P. Prabhakar, “Comparative analysis of air-based Photovoltaic Thermal (PVT) systems with enhanced performance through fins and baffles: Experimental and CFD study,” Therm. Sci. Eng. Prog., vol. 63, p. 103736, 2025, https://doi.org/10.1016/j.tsep.2025.103736.
  6. I. Bashtani and J. A. Esfahani, “Improving the photovoltaic thermal system efficiency with nature-inspired dolphin turbulators from energy and exergy viewpoints,” Renew. Energy, vol. 231, p. 120931, 2024, https://doi.org/10.1016/j.renene.2024.120931.
  7. N. Mazaheri and M. Bahiraei, “Performance enhancement of a photovoltaic thermal system through two-phase nanofluid simulation in a channel equipped with novel artificial roughness,” Appl. Therm. Eng., vol. 230, no. PB, p. 120709, 2023, 10.1016/j.applthermaleng.2023.120709.
  8. I. Masalha, S. U. Masuri, O. Badran, and A. Alahmer, “A multi-method approach to investigating porous media cooling for enhanced thermal performance of photovoltaic panels: Exploring the effects of porosity, flow rates, channel design, and coolant types,” Int. J. Thermofluids, vol. 27, p. 101165, 2025, https://doi.org/10.1016/j.ijft.2025.101165.
  9. L. F. Wong, H. Nabipour Afrouzi, and J. Tavalaei, “Design and implementation of a dual-axis sun tracker for an Arduino-based micro-controller photovoltaic system,” Futur. Technol., vol. 3, no. 3, pp. 15–19, 2024, 10.55670/fpll.futech.3.3.3.
  10. A. B. Al-Aasam, A. Ibrahim, U. Syafiq, K. Sopian, B. M. Abdulsahib, and M. Dayer, “Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes,” Int. J. Renew. Energy Dev., vol. 12, no. 5, pp. 891–901, 2023, 10.14710/ijred.2023.54345.
  11. A. Mishra, R. K. Sharma, and N. Tiwari, “Numerical investigation of PCM-filled pin-fin microchannels for thermal management of HCPV cell,” Results Eng., vol. 27, p. 106946, 2025, https://doi.org/10.1016/j.rineng.2025.106946.
  12. M. Shafiee, M. Firoozzadeh, M. Ebrahimi, and A. Pour-Abbasi, “The effect of aluminum fins and air blowing on the electrical efficiency of photovoltaic panels; environmental evaluation,” Chem. Eng. Commun., vol. 210, no. 5, pp. 801–813, May 2023, 10.1080/00986445.2022.2067534.
  13. H. Madhi, S. Aljabair, and A. A. Imran, “Comparative numerical study on the effect of fin orientation on the photovoltaic/thermal (PV/T) system performance,” Int. J. Thermofluids, vol. 24, no. October, p. 100909, 2024, https://doi.org/10.1016/j.ijft.2024.100909.
  14. F. Engineering, J. Ums, K. Kinabalu, Z. Genge, and R. K. Periasamy, “Embossed fins for improved PV module efficiency - A CFD study,” Trans. Sci. Technol., vol. 11, no. 2, pp. 103–108, 2024.
  15. F. Wang et al., “Enhancing Heat Transfer of Photovoltaic Panels with Fins,” Int. J. Energy Res., vol. 2024, no. 1, p. 5180627, 2024, 10.1155/2024/5180627.
  16. R. Cabrera-Escobar et al., “Finite Element Analysis Method Design and Simulation of Fins for Cooling a Monocrystalline Photovoltaic Panel,” Clean Technol., vol. 6, no. 2, pp. 767–783, 2024, 10.3390/cleantechnol6020039.
  17. S.-V. Hudișteanu, N.-C. Cherecheș, F.-E. Țurcanu, I. Hudișteanu, M. Verdeș, and A.-D. Ancaș, “Experimental analysis of innovative perforated heat sinks for enhanced photovoltaic efficiency,” Energy Convers. Manag. X, vol. 25, p. 100842, 2025, https://doi.org/10.1016/j.ecmx.2024.100842.
  18. S. N. Razali et al., “Performance enhancement of photovoltaic modules with passive cooling multidirectional tapered fin heat sinks (MTFHS),” Case Stud. Therm. Eng., vol. 50, p. 103400, 2023, https://doi.org/10.1016/j.csite.2023.103400.
  19. A. Mahdavi, M. Farhadi, M. Gorji-Bandpy, and A. Mahmoudi, “A comprehensive study on passive cooling of a PV device using PCM and various fin configurations: Pin, spring, and Y-shaped fins,” Appl. Therm. Eng., vol. 252, p. 123519, 2024, https://doi.org/10.1016/j.applthermaleng.2024.123519.
  20. N. A. S. Elminshawy, A. Elminshawy, and A. Osama, “An innovative cooling technique for floating photovoltaic module: Adoption of partially submerged angle fins,” Energy Convers. Manag. X, vol. 20, p. 100408, 2023, https://doi.org/10.1016/j.ecmx.2023.100408.
  21. A. Chibani, S. Merouani, H. Laidoudi, A. Dehane, M. R. Morakchi, and L. Bendada, “Analysis and optimization of concentrator photovoltaic system using a phase change material (RT 35HC) combined with variable metal fins,” J. Energy Storage, vol. 72, p. 108283, 2023, https://doi.org/10.1016/j.est.2023.108283.
  22. N. A. S. Elminshawy, D. G. El-Damhogi, I. A. Ibrahim, A. Elminshawy, and A. Osama, “Assessment of floating photovoltaic productivity with fins-assisted passive cooling,” Appl. Energy, vol. 325, p. 119810, 2022, https://doi.org/10.1016/j.apenergy.2022.119810.
  23. G. Raina, S. Sinha, G. Saini, S. Sharma, P. Malik, and N. S. Thakur, “Assessment of photovoltaic power generation using fin augmented passive cooling technique for different climates,” Sustain. Energy Technol. Assessments, vol. 52, p. 102095, 2022, https://doi.org/10.1016/j.seta.2022.102095.
  24. A. Al Hariri, S. Selimli, and H. Dumrul, “Effectiveness of heat sink fin position on photovoltaic thermal collector cooling supported by paraffin and steel foam: An experimental study,” Appl. Therm. Eng., vol. 213, p. 118784, 2022, https://doi.org/10.1016/j.applthermaleng.2022.118784.
  25. M. Alktranee and B. Péter, “Energy and exergy analysis for photovoltaic modules cooled by evaporative cooling techniques,” Energy Reports, vol. 9, pp. 122–132, 2023, https://doi.org/10.1016/j.egyr.2022.11.177.
  26. M. B. Abdulsahib, K. Sopian, and A. Bin Ibrahim, “Photovoltaic Thermal (PVT) with Advanced Tube Design and Working Fluid - A Review,” Int. J. Renew. Energy Res., vol. 11, no. 2, pp. 600–617, 2021, 10.20508/ijrer.v11i2.11931.g8182.
  27. A. Khelifa, M. El Hadi Attia, K. Harby, A. Elnaby Kabeel, M. M. Abdel-Aziz, and M. Abdelgaied, “Experimental and economic evaluation on the performance improvement of a solar photovoltaic thermal system with skeleton-shaped fins,” Appl. Therm. Eng., vol. 248, p. 123180, 2024, https://doi.org/10.1016/j.applthermaleng.2024.123180.
  28. M. Sivashankar and C. Selvam, “Experimental investigation on the thermal performance of low-concentrated photovoltaic module using various pin-fin configurations of heat sink with phase change materials,” J. Energy Storage, vol. 55, p. 105575, 2022, https://doi.org/10.1016/j.est.2022.105575.
  29. A. M. A. Alshibil, I. Farkas, and P. Víg, “Experimental performance comparison of a novel design of bi-fluid photovoltaic-thermal module using Louver fins,” Energy Reports, vol. 9, pp. 4518–4531, 2023, https://doi.org/10.1016/j.egyr.2023.03.110.
  30. F. Wang et al., “Heat-dissipation performance of photovoltaic panels with a phase-change-material fin structure,” J. Clean. Prod., vol. 423, p. 138756, 2023, https://doi.org/10.1016/j.jclepro.2023.138756.
  31. T. Abdelaty, H. N. Chaudhry, and J. K. Calautit, “Investigation of Cooling Techniques for Roof-Mounted Silicon Photovoltaic Panels in the Climate of the UAE: A Computational and Experimental Study,” Energies, vol. 16, no. 18, p. 6706, 2023, 10.3390/en16186706.
  32. A. Khelifa, M. El Hadi Attia, Z. Driss, and A. Muthu Manokar, “Performance enhancement of photovoltaic solar collector using fins and bi-fluid: Thermal efficiency study,” Sol. Energy, vol. 263, p. 111987, 2023, https://doi.org/10.1016/j.solener.2023.111987.
  33. J. Li et al., “Performance evaluation of bifacial PV modules using high thermal conductivity fins,” Sol. Energy, vol. 245, pp. 108–119, 2022, https://doi.org/10.1016/j.solener.2022.09.017.
  34. C. Zhang, N. Wang, H. Xu, Y. Fang, Q. Yang, and F. K. Talkhoncheh, “Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins,” Energy, vol. 263, no. October 2022, 2023, 10.1016/j.energy.2022.125669.
  35. H. M. Taha and S. Hameed, “Optimization of Tilt Angle of a PV System to Get Maximum Generated Power: a Case Study,” Kurdistan J. Appl. Res., vol. 5, no. 2, pp. 71–81, 2020, 10.24017/science.2020.2.7.
  36. H. Al-Lami, N. N. Al-Mayyahi, Q. Al-Yasiri, R. Ali, and A. Alshara, “Performance enhancement of photovoltaic module using finned phase change material panel: An experimental study under Iraq hot climate conditions,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 3, pp. 6886–6897, 2022, 10.1080/15567036.2022.2103601.
  37. “Ardunic,” Ardunic Sinaa, Baghdad, Iraq, 2025. https://ardunic.com/
  38. Q. Al-Yasiri, A. K. Alshara, M. Al Sudani, A. Al Khafaji, and M. Al-Bahadli, “Advanced building envelope by integrating phase change material into a double-pane window at various orientations,” Energy Build., vol. 328, p. 115140, 2025, https://doi.org/10.1016/j.enbuild.2024.115140.
  39. H. W. Coleman and W. G. Steele, Experimentation, validation, and uncertainty analysis for engineers. John Wiley & Sons, 2009, 10.1002/9780470485682.
  40. A. R. Abdulmunem and M. J. Jalil, “Indoor investigation and numerical analysis of PV cells temperature regulation using coupled PCM/Fins,” Int. J. Heat Technol., vol. 36, no. 4, pp. 1212–1222, 2018, https://doi.org/10.18280/ijht.360408.
  41. M. A. Akrouch, K. Chahine, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, “Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification,” Energy Built Environ., 2023, https://doi.org/10.1016/j.enbenv.2023.11.002.
  42. A. El Mays et al., “Improving Photovoltaic Panel Using Finned Plate of Aluminum,” Energy Procedia, vol. 119, pp. 812–817, 2017, https://doi.org/10.1016/j.egypro.2017.07.103.
  43. H. Chen, X. Chen, S. Li, and H. Ding, “Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation,” Int. J. Smart Grid Clean Energy, pp. 374–379, 2014, 10.12720/sgce.3.4.374-379.
  44. A. M. Elbreki, M. A. Alghoul, K. Sopian, and T. Hussein, “Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution,” Renew. Sustain. Energy Rev., vol. 69, pp. 961–1017, 2017, https://doi.org/10.1016/j.rser.2016.09.054.
  45. M. Firoozzadeh, M. Lotfi, and A. H. Shiravi, “An Experimental Study on Simultaneous Use of Metal Fins and Mirror to Improve the Performance of Photovoltaic Panels,” Sustain., vol. 14, no. 24, p. 16986, 2022, 10.3390/su142416986.
  46. A. Sedaghat, M. R. Karami, and M. Eslami, “Improving Performance of a Photovoltaic Panel by Pin Fins: A Theoretical Analysis,” Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 44, no. 4, pp. 997–1004, 2020, 10.1007/s40997-019-00324-w.
  47. I. Ahmed and I. Hasan, “Enhancement the Performance of PV Panel by Using Fins as Heat Sink,” Eng. Technol. J., vol. 36, no. 7A, pp. 798–805, 2018, 10.30684/etj.36.7a.13.
  48. D. J. Hasan and A. A. Farhan, “Enhancing the efficiency of photovoltaic panel using open-cell copper metal foam fins,” Int. J. Renew. Energy Res., vol. 9, no. 4, pp. 1849–1855, 2019, 10.20508/ijrer.v9i4.10116.g7789.
  49. A. A. Farhan and D. J. Hasan, “An experimental investigation to augment the efficiency of photovoltaic panels by using longitudinal fins,” Heat Transf., vol. 50, no. 2, pp. 1748–1757, 2021, https://doi.org/10.1002/htj.21951.
  50. D. J. Hasan and A. A. Farhan, “The Effect of Staggered porous fins on the performance of Photovoltaic panel in Baghdad,” J. Eng., vol. 26, no. 8, pp. 1–13, 2020, 10.31026/j.eng.2020.08.01.
  51. P. Atkin and M. M. Farid, “Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins,” Sol. Energy, vol. 114, pp. 217–228, 2015, https://doi.org/10.1016/j.solener.2015.01.037.