Main Article Content

Abstract

This paper presents robust energy-demand and renewable power forecasts for the microgrid using deep learning-based forecasting and a metaheuristic-based optimization model. A Long Short-Term Memory (LSTM) is used to model the temporal nonlinear dynamics of the energy datasets. A new Improved Dynamic Arithmetic Optimization Algorithm (IDAOA) is developed to fine-tune LSTM parameters, incorporating inertial weights, a mutation factor, and the triangle mutation operator to balance exploration and exploitation. The model's performance is verified on various datasets, including wind turbines (WT), photovoltaic (PV) systems,  load demands, and day-ahead electricity pricing. This work shows that the IDAOA-LSTM model outperforms other strategies. Practically, the Root Mean Squared Error (RMSE) was 0.021 in the forecast of WT power and 0.031 in the case of PV power. The model performs well in predictions, with high coefficient of determination (R²) values (R² ≥ 0.98) throughout all tasks. These findings strengthen the applicability of the proposed method to enhance energy-saving measures while preserving the stable operation of those microgrid (MG) systems.

Keywords

Energy management Improved dynamic arithmetic optimization Photovoltaic Wind turbine Deep learning

Article Details

How to Cite
Almousawi, A. Q., Aklo, N. J. ., & Alhadrawi , Z. . (2025). An efficient novel deep learning-based predicting model optimized by an improved DAOA algorithm for microgrid energy management. Future Technology, 5(1), 303–313. Retrieved from https://fupubco.com/futech/article/view/629
Bookmark and Share

References

  1. Khalid, M, ‘Smart grids and renewable energy systems: Perspectives and grid integration challenges’ Energy Strategy Reviews, 51, 101299, 2024. DOI: https://doi.org/10.1016/j.esr.2024.101299
  2. Nassar, Y. F., El-Khozondar, H. J., & Fakher, M. A. ‘The role of hybrid renewable energy systems in covering power shortages in public electricity grid: An economic, environmental and technical optimization analysis’, Journal of Energy Storage, 108, 115224, 2025. DOI: https://doi.org/10.1016/j.prime.2024.100887
  3. Thirunavukkarasu, G. S., Seyedmahmoudian, M., Jamei, E., Horan, B., Mekhilef, S., & Stojcevski, A. ‘Role of optimization techniques in microgrid energy management systems—A review’, Energy Strategy Reviews, 43, 100899, 2022. DOI: https://doi.org/10.1016/j.esr.2022.100899
  4. Teixeira, R., Cerveira, A., Pires, E. J. S., & Baptista, J. ‘Advancing renewable energy forecasting: A comprehensive review of renewable energy forecasting methods’, Energies, 17(14), 3480, 2024. DOI: https://doi.org/10.3390/en17143480
  5. González-Niño, M. E., Sierra-Herrera, O. H., Pineda-Muñoz, W. A., Muñoz-Galeano, N., & López-Lezama, J. M. ‘Exploring Technology Trends and Future Directions for Optimized Energy Management in Microgrids’, Information, 16(3), 183, 2025. DOI: https://doi.org/10.3390/info16030183
  6. Aslam, S., Herodotou, H., Mohsin, S. M., Javaid, N., Ashraf, N., & Aslam, S. ‘A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids’, Renewable and Sustainable Energy Reviews, 144, 110992, 2021. DOI: https://doi.org/10.1016/j.rser.2021.110992
  7. Benti, N. E., Chaka, M. D., & Semie, A. G. ‘Forecasting renewable energy generation with machine learning and deep learning: Current advances and future prospects’, Sustainability, 15(9), 7087, 2023. DOI: https://doi.org/10.3390/su15097087
  8. Hazim Obaid, Z., Mirzaei, B., & Darroudi, A. ‘An efficient automatic modulation recognition using time–frequency information based on hybrid deep learning and bagging approach’, Knowledge and Information Systems, 66(4), 2607-2624, 2024. DOI: https://doi.org/10.1007/s10115-023-02041-y
  9. Wazirali, R., Yaghoubi, E., Abujazar, M. S. S., Ahmad, R., & Vakili, A. H. ‘State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques’, Electric power systems research, 225, 109792, 2023. DOI: https://doi.org/10.1016/j.epsr.2023.109792
  10. Tayab, U. B., Yang, F., Metwally, A. S. M., & Lu, J. ‘Solar photovoltaic power forecasting for microgrid energy management system using an ensemble forecasting strategy’, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4), 10045-10070, 2022. DOI: https://doi.org/10.1080/15567036.2022.2143945
  11. Joshi, A., Capezza, S., Alhaji, A., & Chow, M. Y. ‘Survey on AI and machine learning techniques for microgrid energy management systems’, IEEE/CAA Journal of Automatica Sinica, 10(7), 1513-1529, 2023. DOI: 10.1109/JAS.2023.123657
  12. Zarma, T. A., Ali, E., Galadima, A. A., Karataev, T., & Usman, S. ‘Energy Demand Forecasting for Hybrid Microgrid Systems Using Machine Learning Models’, Proceedings of Engineering and Technology Innovation, 29, 68-83, 2025. DOI: https://doi.org/10.46604/peti.2024.14098
  13. Cavus, M., Dissanayake, D., & Bell, M. ‘Deep-Fuzzy Logic Control for Optimal Energy Management: A Predictive and Adaptive Framework for Grid-Connected Microgrids’, Energies, 18(4), 995, 2025. DOI: https://doi.org/10.3390/en18040995
  14. Mahmoudabadi, N. D., Khalaj, M., Jafari, D., Herat, A. T., & Ahranjani, P. M. ‘Energy management of microgrid coalitions considering renewable energy prediction based on machine learning algorithms’, AIP Advances, 15(4), 2025. DOI: https://doi.org/10.1063/5.0236597
  15. Khosravi, N., Oubelaid, A., & Belkhier, Y. ‘Energy management in networked microgrids: A comparative study of hierarchical deep learning and predictive analytics techniques’, Energy Conversion and Management: X, 25, 100828, 2025. DOI: https://doi.org/10.1016/j.ecmx.2024.100828
  16. Ashok Babu, P., Mazher Iqbal, J. L., Siva Priyanka, S., Jithender Reddy, M., Sunil Kumar, G., & Ayyasamy, R. ‘Power control and optimization for power loss reduction using deep learning in microgrid systems’, Electric Power Components and Systems, 52(2), 219-232, 2024. DOI: https://doi.org/10.1080/15325008.2023.2217175
  17. Mahjoub, S., Chrifi-Alaoui, L., Drid, S., & Derbel, N. ‘Control and implementation of an energy management strategy for a PV–wind–battery microgrid based on an intelligent prediction algorithm of energy production’, Energies, 16(4), 1883, 2023. DOI: https://doi.org/10.3390/en16041883
  18. Indira, G., Bhavani, M., Brinda, R., & Zahira, R. ‘Electricity load demand prediction for microgrid energy management system using hybrid adaptive barnacle‐mating optimizer with artificial neural network algorithm’, Energy Technology, 12(5), 2301091, 2024. DOI: 10.1002/ente.202301091
  19. R. Singh, A., Kumar, R. S., Bajaj, M., Khadse, C. B., & Zaitsev, I. ‘Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources’, Scientific Reports, 14(1), 19207, 2024. DOI: https://doi.org/10.1038/s41598-024-70336-3
  20. Kim, H. J., & Kim, M. K. ‘A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid’, Applied Energy, 332, 120525, 2023. DOI: https://doi.org/10.1016/j.apenergy.2022.120525
  21. Alabi, T. M., Lu, L., & Yang, Z. ‘Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy’, Applied energy, 314, 118997. DOI: https://doi.org/10.1016/j.apenergy.2022.118997
  22. Youyuan Peng, Feng Huang, Xin Xie, Guocai Gui,Fei Zhao, Yuliu Ou, and Hai Xu. ‘A Predictive Approach for Lithium-Ion Battery SOH using LSTM Neural Networks Enhanced by Health Matrix Optimization’, Distributed Generation & Alternative Energy Journal, 39(04), pp. 831–850, 2024. DOI: https://doi.org/10.13052/dgaej2156-3306.3947
  23. Srinivas Singirikonda and Yeddula Pedda Obulesu. ‘Lithium-Ion Battery State of Charge Estimation Using Deep Neural Network’, Distributed Generation & Alternative Energy Journal, 38(03), pp. 761–788, 2023. DOI: https://doi.org/10.13052/dgaej2156-3306.3833
  24. Aklo, N.J., Rashid, M.T. ‘Mitigation of take-or-pay concept drawbacks in hybrid microgrid’, Electrical Engineering, 105(1), pp. 61–75, 2023. DOI: https://doi.org/10.1007/s00202-022-01682-6
  25. PJM Interconnection, “Data Miner 2,” PJM Interconnection LLC. [Online]. Available: https://dataminer2.pjm.com.